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The Aharonov-Bohm eKect has been invoked to probe the phase structure of a gauge theory. Yet
in the case of non-Abelian gauge theories, it proves difBcult to formulate a general procedure that
unambiguously speci6es the realization of the gauge symmetry, e.g. , the unbroken subgroup. In this
paper we propose a set of order parameters that will do the job. We articulate the fact that any
useful Aharonov-Bohm experiment necessarily proceeds in two stages: calibration and measurement.
World sheets of virtual cosmic string loops can wrap around test charges, thus changing their states
relative to other charges in the universe. Consequently, repeated Qux measurements with test charges
will not necessarily agree. This was the main stumbling block to previous attempts to construct
order parameters for non-Abelian gauge theories. In those works, the particles that one uses for
calibration and subsequent measurement are stored in separate "boxes." By storing all test particles
in the 8ame "box" we show how quantum Buctuations can be overcome. The importance of gauge
fixing is also emphasized.

PACS number(s): 11.15.—q, 03.65.Bz, 03.80.+r

I. INTRODUCTION

A gauge theory can have an interesting phase diagram.
Depending on its Higgs structure and on the parameters
of the Higgs potential, the theory may be in a Coulomb
phase, a Higgs phase, or a confinement phase. Order
parameters that distinguish among the various phases
have been proposed. Consider pure SU(N) gauge theory.
The Wilson loop operator

W(C) = tr Pexp
~

ig a. dz
~)

may be regarded as an insertion of a classical source of
charges, transforming as the defining representation of
SU(N), that propagates along the world line C. In the
confinemen phase, C is the boundary of the world sheet
of an electric flux tube. For large loops, W(C) exhibits
area-law behavior

W(C) - exp[ —KA(C)], (2)

where A(C) is the minimal area of a surface bounded by
C, and v is the string tension. In the Higgs phase, electric
flux is screened, and the Wilson loop has the perimeter-
law behavior

W(C) - exp[ —pP(C)],
where P(C) is the length of C. Thus, W(C) is a useful
order parameter for pure SU(N) gauge theory.

Once dynamical quarks [a matter field that transforms
nontrivially under the center ZN. of SU(N)] are intro-
duced, the confining and Higgs phases can no longer be
distinguished by the above criterion. Quark-antiquark
pairs appear as quantum fluctuations, allowing the elec-
tric flux tube to break. The Wilson loop therefore always
obeys the perimeter law. In the case of SU(N) discussed

above, it is widely believed that no sharp boundary ex-
ists between the confinement phase and the Higgs phase
of interest [1].

However, two types of Higgs phases are possible, de-
pending on whether the center Z~ is manifest or bro-
ken. If the Z~ symmetry is manifest, there will be a Z~
superselection rule. If it is broken, no such superselec-
tion rule exists. It is presumably the Higgs phase with
spontaneous broken Z~ that is indistinguishable from the
confining phase.

How can we distinguish between the two types of Higgs
phases'? Topological defects are potentially useful. In
this paper, we assume, for simplicity, that a gauge theory
with a (simply connected) symmetry group K is sponta-
neously broken in two stages: first to a discrete subgroup
G at mass scale vi, then to H, a subgroup of G at mass
scale v2 &( vi. We will focus on the second stage of the
symmetry breakdown and construct a set of order oper-
ators for our investigation. The first stage of symmetry
breakdown gives rise to topological vortices (in 2 + I di-
mensions) and cosmic strings (in 3 + 1 dimensions). A
cosmic string carries a "flux" which is labeled by an ele-
ment of the unbroken group G. [Vortices are classified by
the homotopy group vrq(K/G) [2,3]. It follows from the
exact homotopy sequence . . . -+ vrq(K) + vrq(K/G) +
zo(G) ~ z.o(K) that vrq(K/G) pro(G) G under the
assumptions that K is simply connected and G is dis-
crete. To be more precise, the spectrum of stable vortices
only spans G as a vortex associated with an element g
of G may be unstable to the decay into two or more
vortices of the same total flux. This is, however, of no
interest to us. ] Notice that there is a one-to-one corre-
spondence between the elements of the unbroken group
and the topological classes of stable string loops. This
remains true even when G is spontaneously broken into
H, in which case the topological classes of stable string
loops are labeled by elements of H. (An element a of G'
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which is not in H is not associated with isolated string
loops, but with string loops that are bounded to domain
walls. ) Therefore, by reading off' the spectrum of stable
strings, we can determine the unbroken group and de-
cide whether the second stage of symmetry breakdown
has occurred.

So the question becomes the following: How can we
read off the fluxes of the stable vortices in our theory?
A string generally has long-range Aharonov-Bohm-type
[4] interactions with various particles: The wave func-
tion of a particle acquires a non-Abelian phase when it
is covariantly transported around a string [5,6].

This simple phenomenon has deep consequences. Since
the Aharonov-Bohm interaction is long range and no
local operator can destroy an object with an infinite-
range interaction, gauge theories with such interactions
obey nontrivial superselection rules. The structure of
the superselection sector can be invoked to distinguish
among the various possible phases of a gauge theory.
Moreover, the Aharonov-Bohm interaction exposes the
limitations of the classical no-hair conjecture in black
hole s&~ysics. A black hole may carry quantum num-
ber.-. 4.~-,at are detectable only by means of quantum me-
chanical interference experiments with cosmic strings [7].
By sending particles around the various string loops and
measuring the non-Abelian Aharonov-Bohm factors ac-
quired by them, we can read off the spectrum of stable
strings. The use of the Aharonov-Bohm effect between
charged particles and cosmic strings to probe the unbro-
ken group of a non-Abelian gauge theory was proposed
by Preskill and Krauss [6]. It requires a framework that
takes full account of the effect of virtual particles and
virtual string loops. Nevertheless, generalization to non-
Abelian gauge theories turned out to be very elusive.
In spite of much progress in our understanding of the
subtler aspects of non-Abelian gauge theories [8—12] it
proves difficult [13—15] to formulate a general procedure
that unambiguously specifies the realization of the gauge
symmetry.

In this paper, we construct a set of order parameters
that will do the job, elaborating on our key results stated
in Ref. [16]. These order parameters are closely related to
some operators investigated by Alford et al. three years
ago [15]. They, however, immediately rejected their op-
erators because, in their original formulation, they were
plagued by quantum fluctuations.

As we will see below, any useful Aharonov-Bohm ex-
periment to determine the flux of a string loop necessar-
ily proceeds in two stages: calibration and subsequent
measurement. Both stages involve interference experi-
ments with two beams of charged particles, one of which
traverses the string loop while the other just sits at the
base point. To construct an order parameter for non-
Abelian gauge theories, the effects of virtual string loops
need to be considered. The formulation by Alford et al.
corresponded to storing the charged particles that one
uses for calibration and those for measurement in sepa-
rate boxes [see Fig. 1(a)]. It was only because of this
decoupling of the two that quantum fluctuations due to
virtual string loops may spoil the result. What happened
is that a small world sheet of a virtual string loop can
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FIG. 1. (a) The test particles that we use for calibration
and measurement are stored in separated boxes. This ar-
rangement is vulnerable to quantum Huctuations. More con-
cretely, a virtual string loop may nucleate, wrap around one
of the boxes, and annihilate, thus changing the state of the
particles in one box but not the other. When we use test par-
ticles in the two boxes to determine the Bux of a string loop,
they give two different values (which are related by conjuga-
tion by the group element associated with the virtual string
loop). (b) If the test particles for both calibration and subse-
quent measurement are stored in the same box, the problem
disappears as any virtual string loop which affects the par-
ticles for calibration is going to affect those for subsequent
measurement in the same way.

wind around the box which contains all the calibrating
particles, changing their state relative to those we used
for subsequent measurement (that are stored in another
box). As a result, the subsequent Qux measurement gives
an answer different &om the calibrated value. If we keep
both types of particles in the same box (and for the sub-
sequent measurement, an interference experiment is per-
formed between a wave packet that is kept in the box and
another that is parallel transported around the string of
interest) [see Fig. 1(b)], we argue that the effect of vir-
tual strings can be safely ignored.
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Another important issue that has been overlooked in
previous work [14,15] is gauge fixing. Recall that we are
interested in studying the symmetry breakdown of G into
a subgroup H. Without gauge fixing, an element 6 in
an unbroken group H has no invariant meaning. Under
a global gauge transformation by g p G, 6 ~ ghg
However, after symmetry breakdown strings with fluxes
h, and ghg are generally not gauge invariant. To test
whether a symmetry breaking has occurred, one has to
choose a field P as a candidate for the Higgs field, gauge
fix P = Pp, and consider II(gp) and its conjugacy classes
and representations. By dealing with the issues of quan-
tum Huctuations and gauge fixing squarely, we see clearly
how a gauge group G is reduced to an effective subgroup
H at low energies. Subsequent symmetry breaking of H
can be studied in a similar manner.

We emphasize that the idea of using the Aharonov-
Bohm effect to probe the phase diagram is rather general.
In particular, the existence of stable cosmic strings is not
a necessary condition nor is the symmetry group required
to be discrete. (After all, the Aharonov-Bohm effect ex-
ists in ordinary QED which has a continuous symmetry. )
One can always imagine setting up localized magnetic
Hux tubes and studying their long-ranged Aharonov-
Bohm interactions with charged particles. Suppose sym-
metry breaking now occurs. Some of those flux tubes will
then become the boundaries of unstable domain walls and
the Aharonov-Bohm interactions will be modified in such
a way to be consistent with the symmetry of the unbro-
ken group. It is only for simplicity that we restrict our
discussion to gauge theories with discrete symmetry only.
Besides, we sometimes make use of non-gauge-invariant
operators. The reader should, however, bear in mind
that the whole discussion can be recast in objects that
are gauge invariant with respect to the unbroken low en-
ergy symmetry group.

The organization of the paper is as follows. Section
II concerns the relation between Dirac quantization con-
dition and the Aharonov-Bohm effect. In Sec. III, we
discuss the basic ideas behind the construction of the
Aharonov-Bohm order parameters. How quantum Huc-
tuations can change the state of test particles and affect
the result of a subsequent Aharonov-Bohm experiment is
the main subject of our study in Sec. IV. Sections V and
VI concern, respectively, quantum Huctuations and gauge
fixing, two crucial issues in the construction. Finally, we
present our discussions and conclusions in Sec. VII. In
the Appendix, we review the application of the order pa-
rameters to the Zq gauge-Higgs system by Preskill and
Krauss.

condition. Note that it has an explicit dependence on
Planck's constant and therefore on the quantum theory.
Moreover, it shows a perfect symmetry between electric-
ity and magnetism.

Generalization of this simple condition has deep impli-
cations. For instance, consider an underlying gauge the-
ory with gauge group G which is spontaneously broken
into a subgroup SU(N)/Z~. This theory admits mag-
netic monopoles with ZN magnetic charges. Fields that
transform nontrivially under Z~ and the monopole with
minimal magnetic charge taken together do not satisfy
the Dirac condition. One immediately sees that the quan-
tum mechanics of a system of a free minimal monopole
and a &ee Z~ charge is inconsistent. Thus, one is led
to the conclusion that either the minimal monopole or
the Z~ charge must be confined. This is the basic con-
cept behind 't Hooft's discussion of quark confinement
[1]. The 't Hooft operator B (C') essentially introduces,
as a classical source, a Z~ monopole world line along the
curve O'. It is the magnetic analogue of the Wilson loop
operator A (C), which introduces, as a classical source,
a world line of a charged particle in the representation v.
't Hooft considered a Green's function (B„(C')4"(C)).
If the Dirac quantization condition is not satisfied, this
object is generally multivalued.

If the charged particle is regarded as free, it will see
the Dirac string associated with the monopole. That is
to say, the Dirac string is physical and it has a long-
range Aharonov-Bohm interaction with the charged par-
ticle. The Green's function can be made single valued
if a world sheet E of the Dirac string is chosen; i.e. ,
(B (C', Z*)A (C)) is single valued. If C' shrinks to
a point, we replace the operator B„(C',Z') by F(Z*)
which introduces a closed world sheet of string. We em-
phasize that the Aharonov-Bohm efFect is quantum me-
chanical. It can be determined only through interference
experiments. [Incidentally, the Aharonov-Bohm interac-
tions between magnetic monopole and electric Hux tubes
can be discussed in a totally analogous manner [15]: If
a monopole is regarded as free (i.e. , there is no physi-
cal Dirac string), charged particles which do not satisfy
the Dirac quantization condition are confined. There-
fore, it is appropriate to consider operators G (Z) and
B which respectively introduce a world sheet of an elec-
tric flux tube and a world line of a magnetic monopole. ]
As we will see in next section, the operators E and A will
play a key role in the construction of order parameters
for gauge theories.

III. ORDER PARAMETERS

II. DIRAC QUANTIZATION CONDITION AND
THE AHARONOV-BOHM EFFECT

In his seminal paper of 1931, Dirac [17] proposed that
the quantization of electric charge can be "explained"
by postulating the existence of isolated magnetic poles.
Specifically, he showed that, for a charged particle of
charge e moving in the field of a magnetic monopole
of strength po, the consistency of its quantum mechan-
ics demands that the product of the two charges satisfy
ego ——2nhc. This is the well-known Dirac quantization

In this section, we consider the order parameters for
Abelian gauge theories proposed by Preskill and Krauss
[6] and elaborated by Alford et al. [15]. By the well-
known Elitzur's theorem [18], the Higgs field P is not a
true order parameter because it has no gauge-invariant
meaning. The order parameters proposed by Preskill and
Krauss make use of the Aharonov-Bohm interactions be-
tween cosmic strings and charged particles.

While our ideas are general, for simplicity, we shall dis-
cuss the concepts for only the case of finite gauge groups
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[6,14,15]. More specifically, we consider a discrete gauge
group G which arises as a result of a symmetry breaking
of a simply connected group K. We are interested in in-
vestigating the further symmetry breakdown of G into a
subgroup H at low energies.

The symmetry breakdown of K into G leads to the ex-
istence of stable vortices labeled by elements of G. (More
details will be discussed in the next section. ) Suppose
we prepare (and calibrate) a set of cosmic strings. In a
free G charge phase, a particle scattering oK a cosmic
string will recover the flux of the string as a non-Abelian
Aharonov-Bohm factor. If G is broken into H instead,
then the elements of G that are not in H are not as-
sociated with isolated cosmic strings, but with strings
that are boundaries of domain walls. Such domain walls
are unstable and will decay via spontaneous nucleation
of string loops [2,3]. Consider a string of flux a g H
bounded by a domain wall. Many holes eventually ap-
pear in the wall bounded to a. They collide with one
another. Ultimately, the one with the least string ten-
sion, 6, will dominate the decay. As a result of this de-
cay, the a string is turned into a composite string with
total flux ab g H. Hence, a particle scattering oK a
cosmic string in a &ee H charge phase will only acquire
phases that are associated with the elements of H. (We
must include the possibility that the set of strings with
the least string tension has more than one element. For
instance, a string with the least string tension can have a
flux 6 or O'. Therefore, the Aharonov-Bohm experiment
may show that the composite flux after the decay of the
domain wall is ab or ab'. )

The basic idea of the Aharonov-Bohm order parame-
ters is the following. Since, in the case of discrete gauge
theories, there is always a one-to-one correspondence be-
tween the topological classes of stable vortices and the el-
ements of the unbroken group (see the Introduction and
the next section for details), we can figure out the man-
ifest symmetry group just by reading out the spectrum
of stable vortices. To read ofF the spectrum, we use the
Aharonov-Bohm e8'ect. Physically, we proceed in two
stages: (1) Prepare (calibrate) a localized vortex for each
element of G; (2) send particles around those vortices
to measure the associated Aharonov-Bohm factors. The
results of the measurements can tell us whether the sym-
metry breaking &om G to H has occurred or not.

Let us consider the first stage of an Aharonov-Bohm
experiment: calibration of string flux [19]. We need an
operator which inserts, as a classical source, a string
world sheet of flux a. It was suggested in [5] that when a
U(1) gauge symmetry is spontaneously broken into Ziv,
the discrete Ziv charge Qg. contained in a closed surface
Z* can still be measured via the Gauss law

the Coulomb force between two charged particles. It is
screened in a Higgs phase. Therefore, the Gauss law ac-
tually gives zero for the Coulomb charge. However, the
Aharonov-Bohm interactions between confined flux tubes
and charges are unscreened (see, for example, [20]). In
Eq. (4), we are just making the heuristic statement that
charges can be detected by their Aharonov-Bohm inter-
actions with vortices. ]

Now we turn to the operator which introduces classical
charges into the system. An obvious choice would be the
Wilson loop operator W"(C) where v is an irreducible
representation of the gauge group G. Therefore, one
might naively expect F(Z')W" (C) to be the order pa-
rameter. This is not quite correct because quantum me-
chanical fluctuations near the surface Z* cause an area-
law decay of the modulus of F(Z*) exp [

—vA(Z')].
Fortunately, the phase of F(Z*) remains unscreened and
we can isolate it by dividing out its vacuum expectation
value and obtain ~&I&.I~ [6]. Similarly, quantum fluctua-
tions also lead to the exponential decay of the expectation
value of W(C). Therefore, the true order parameter for
Abelian gauge theories is [6]

F(Z*)W (C)
(F(Z*))(W"(C))

(5)

In the free ZN charge phase, the order parameter (for the
fundamental representation) gives

lim(A(Z', C)) = exp
~

k(Z*, C)
~

.
(2vri

(6)

lim(A(Z*, C)) = 1.

The nonanalytical behavior of A(Z*, C) guarantees that
the two phases are separated by a well-defined phase
boundary. An order parameter can be easily generalized
to probe the realization of any Abelian discrete gauge
symmetry.

IV. QUANTUM FLUCTUATIONS

Here the order parameter takes a value that is indepen-
dent of the details of Z* and C as long as the limit is
taken with Z' and C increasing to infinite size, and with
the closest approach of Z* to C also approaching infin-
ity; k(Z*, C) denotes the linking number of the surface
Z' and the loop C. (Z* and C have to be far away from
each other because we are only interested in the long-
range Aharonov-Bohm interactions. ) On the other hand,
if there are no &ee Z~ charges, then we have

(2vri ) ( 27riF(Z') =exp' Qg.
i
=exp' E.ds i. (4)

EN y qNe z.

[F(Z') is closely related to the 't Hooft loop operator
[1]. Strictly speaking, Eq. (4) is incorrect as an oper-
ator statement. Charge can be defined in two difFer-
ent ways: the Coulomb charge and the Aharonov-Bohm
charge. The Coulomb charge is the one that enters in

The case of non-Abelian gauge theories is more subtle.
In this section, we will show how quantum fluctuations
can acct the result of a non-Abelian Aharonov-Bohm
experiment, thus making the construction of the order
parameter much more difBcult.

Consider, in two spatial dimensions, a simply con-
nected gauge group K which gets spontaneously broken
into a discrete, non-Abelian subgroup G. This pattern
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of symmetry breaking will admit stable classical vortex
solutions. Since the size of the vortex core is of the or-
der of the inverse symmetry breaking scale, it is almost
pointlike at low energies. We shall, therefore, ignore the
core of the vortex and idealize it as a point singularity.
The "fIux" carried by a vortex is labeled by an element
of the unbroken group G. To assign a group element to
the vortex, we arbitrarily choose a "base point" xo and a
path C, beginning and ending at xo, that winds around
the vortex. The efFect of parallel transport in the gauge
potential of the vortex is then encoded in the untraced
Wilson loop operator [21,22)

U" (C, xo) = P exp
i

i

where P denotes path ordering. Suppose a particle is in
the initial state ~u). When it winds around a vortex (or a
cosmic string loop in three dimensions), its state becomes
U (C xp) ~u). The matrix U (C, xo) specifies a group el-
ement in the subgroup G(xo) of K that preserves the
Higgs condensate at the point xo, since transport of the
condensate around the vortex must return it to its origi-
nal value. If G is discrete, then the element assigned will
remain unchanged as the path C is smoothly deformed,
as long as the path never crosses the cores of any vortices.
(The gauge connection is locally Hat outside the vortex
cores, with curvature singularities at the cores. )

In the non-Abelian case, the flux a of a vortex is not a
gauge-invariant quantity. Upon a global gauge transfor-
mation by g, a ~ gag . One might naively identify two
vortices in the same conjugacy class as identical. How-
ever, this is not quite correct because there is only one
overall global gauge degree of freedom. For example, if
there are two vortices of flux a and b, upon a global gauge
transformation by g, we have a —+ gag, b + gbg
[6,12,22,23). It is important to note that two vortices
with conjugate but different Huxes (in soine gauge) are
not identical to each other. Consider two vortices of con-
jugate but difFerent Quxes, a and b = cac, in some
gauge. They are clearly difFerent in this gauge. (As we
will see below, a particle that winds around the a vortex
first and then in the inverse sense around the b = cac
vortex will pick up the Aharonov-Bohm factor depend-
ing on ca c a. Here our convention for multiplica-
tion is &om right to left. If these two vortices had the
same flux, the Aharonov-Bohm factor would be trivial
instead. ) Now under a global gauge transformation, by
g, a ~ gag and cac + gcac g and the two fluxes
clearly remain difFerent. Notice also that the one-to-one
correspondence mentioned in the last section is between
the spectrum of stable vortices and the elements of the
unbroken group rather than its conjugacy classes. It is,
therefore, crucial to be able to distinguish between vor-
tices that are associated with difFerent elements in the

same conjugacy class. To obtain this one-to-one corre-
spondence, one has to f1x a gauge. Fortunately, a change
of gauge merely amounts to a change of basis and the
one-to-one correspondence still exists in the new gauge.
The analogy with isospin may be helpful for understand-
ing why vortices of conjugate but difFerent fluxes should
be regarded as nonidentical. In an isospin symmetric
universe, it is a matter of convention to call an object a
neutron rather than a proton. However, once we call an
object a neutron, our convention has been fixed and we
will be able to distinguish a proton from a neutron by
comparing their isospins.

If a particle that transforms as an irreducible repre-
sentation (v) traverses a string of Hux a, the Aharonov-
Bohm phase that it acquires, when averaged over a basis
for the representation, is

where y" and n„are the character and the dimension
of (v). Now if two strings of fluxes a and 6 are patched
incoherently, the Aharonov-Bohm phase acquired by the
particle that travels around the two strings in succession
1S

(io)

If the two strings are combined coherently instead, the
phase acquired is

Thus, the Aharonov-Bohm factor associated with a co-
herent pair of string is not just the product of the
Aharonov-Bohm factors associated with the two individ-
ual strings. This coherence property is the hallmark of
the non-Abelian Aharonov-Bohm efFect.

The above discussion ignores the efFect of quantum
Huctuations. Quantum Huctuations can spoil the coher-
ence between various strings. It is instructive to consider
a double-slit experiment with takeo vortices of fIuxes g1
and g2 placed between the two slits and using a particle-
antiparticle pair in the representation (v). I et us put
the g2 vortex in front of the two slits and the gi vortex
behind. Suppose the particle-antiparticle pair is initially
in the zero-charged state, i.e. ,

io, v) = ) ~e; e,'"). (12)

Let us first consider the case without quantum fluctu-
ations. When the particle traverses the double slit, the
state of the entire state will transform in the following
manner:

~gi g2) ).~e,
"S e,*")~ ~gi, g2) S ) ~e,

"
C3 e,' )D,,

"
(gig2), (13)
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where D, are the matrix elements of the representation (v).
For the particle-antiparticle pair to annihilate, we project onto the zero-charged state using the projection operator

Pparticle = log +&(oy +I (14)

to obtain

lgi g2) @ ).Ier e'„")).(4 @e'„le,"@e.*") DI; (g~g2) m Ig~ g2) glo ~) x (gig2).n AV +V
A, ijk

In other words, in the absence of virtual processes, the interference pattern will determine the Wilson loop to be—„'x"(gig2).
I et us now turn to quantum fluctuations. Notice that two beams of particles are split and recombined in an

Aharonov-Bohm experiment. For those quantum fluctuations (such as virtual vortices that wind around only one of
the two beams) whose effects do not depend on the flux of vortex with which we are performing the Aharonov-Bohm
interference experiment, their effect can simply be factored out [cf. Eq. (5) and Fig. 13]. However, there are quantum
fluctuations (that affect both beams) whose effects cannot be factored out: Consider the spontaneous nucleation of a
charge-zero virtual vortex-antivortex pair in the conjugacy class [g ], i.e. ,

o, [g']) = ' ) Ig, g-'
"»'] g~[a]

(here n[~ ] is the number of elements in the conjugacy class [g ]), in the region between the two slits and. the gq vortex.
Suppose the vortex and antivortex move apart just before the double-slit experiment. When a particle traverses the
two slits, the state of the entire system will change as follows:

I»») „).Ig g ') „).Ie;ei"&
"[g'] .~['] V

m lgg, g2) Ia ) ) Ig, g ', e,". g) e,*")DI,"](gggg 'g2)
[g'] v ~[ g]

(i.e. , for each g E [g'], the particle "sees" a flux ggqg g2 rather than gqg2). Now to make sure that the virtual
vortex-antivortex pair will annihilate, we apply the projection operator

P- ~- = lo [g']&«[g']I. (18)

We also project onto the zero-charged state for the particle-antiparticle pair by using the operator Pp, t,,~, defined in
Eq. (14). Therefore, we obtain

I»») „).5. lg, g ', e,'e, *")D,'", '(ggig '»)
[g'1 gg[g ] .g

'"""'
lg~ g2) Io [g'])Io ~) 5. x"(g»g '»).

~tg'j
gqtg I

Notice that the Aharonov-Bohm factor acquired by the
particle,

).x"(ggig 'g2),
"t '~

ggrg )

(2o)

is generally di8'erent from the corresponding
Aharonov. -Bohm factor without the virtual vortex pair
[
—X (gqg2)]. This result shows clearly that quantum

fluctuations due to virtual string loops can spoil the hall-
mark of the non-Abelian Aharonov-Bohm e8'ect—the co-
herence between two strings in a double-slit measurement
[24]. This tends to create great diKculty in interpreting
the outcome of a non-Abelian Aharonov-Bohm experi-
ment. We will come back to discuss how this difBculty
can be overcome in Sec. V.

A somewhat simpler but less precise way of stating our
result is that for non-Abelian gauge theories repeated
Aharonov-Bohm flux measurements do not necessarily
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FIG. 2. Two consecutive Aharonov-Bohm experiments are
performed to measure the Bux of a vortex. The dashed line
(with arrow) represents the world line of a virtual vortex,
which is linked to the union of the two Wilson loops and the
vortex world line of interest. The second measurement of the
Qux gives a value which is a conjugate of that of the first; i.e. ,
quantum Huctuations render the aux of a string uncertain up
to conjugation.

agree [15]. Suppose we send out some of the charged
particles to calibrate a vortex and keep the rest elsewhere
for later use. A virtual vortex-antivortex pair is sponta-
neously nucleated and the virtual vortex winds around
the charged particles that we use for calibration. We
now send out the remaining charged particles to measure
the Aux of the vortex again. The claim is that we will
6nd that its flux has been conjugated. As shown in the
spacetime diagram (Fig. 2), the virtual vortex world line
has a nontrivial linking number with the union of the fol-
lowing three objects: the world line of the vortex under
consideration and the world lines of the charged parti-
cles that we use for the calibration and that of the ones
that we use for subsequent measurement. The topolog-
ical linking number shows that the virtual vortex world
line conjugates the result of the subsequent measurement
relative to the calibrated value [24].

We remark that there are other kinds of quantum fluc-
tuations in which quantum numbers are exchanged be-
tween two objects. For instance, an i vortex can momen-
tarily emit a —1 vortex, turning itself into a —i vortex.
If this —1 vortex is absorbed by the j vortex, quantum
numbers will be exchanged between the i and j vortices.
However, these types of quantum fluctuations are unin-
teresting for our purposes and will not be considered any
further in this paper.

This generalization turns out to be difFicult and all pre-
vious attempts have not been entirely successful [14,15].
For ease of discussion, let us Gx the gauge completely.
As discussed in Sec. IV, we shall regard vortices of con-
jugate but different Quxes to be nonidentical. For each
element a C G, we need to define an operator P (Z*)
which introduces a world sheet Z' of a string of flux a.
(The fact that the flux a is not a gauge-invariant quantity
is not a problem because, at the end of our discussion,
we will apply the overall global gauge degree of freedom
to obtain gauge-invariant operators. )

For simplicity, consider the case of 2+1 dimensions.
How can we specify the world line Z* of a vortex of fIux
a using the operator F (Z')? One can imagine assem-
bling a laboratory of test particles at some arbitrary base
point xo and choosing a basis for various representations
there. We then send two beams of particles to pass on ei-
ther side of the vortex, recombine the beams, and study
the resultant interference pattern. In fact, a sequence
of the Aharonov-Bohm experiments has to be performed
over time to specify the whole world line of the vortex.
To localize the vortex world line to (be close to) Z', those
calibration experiments have to be done near to the vor-
tex. (To be more precise, for each of those calibration
experiments, the two beams involved are split only in a
small region near Z*. One of the beams then traverses
the vortex and the two beams are recombined immedi-
ately afterwards. ) The case of 3+1 dimensions is the
same except that now we have to specify the world sheet
of a string.

In a cubic four-dimensional lattice formulation, it is
convenient to put a string world sheet on a closed sur-
face Z* on the dual lattice. I et Z be the set of pla-
quettes threaded by Z'. Here comes the crucial point.
We pick our calibration paths: For each plaquette P in
Z, we choose a path l~ that runs from the base point
xo to a corner of the plaquette [15). Calibration of the
plaquette is done along the path i~PL& . The opera-
tor E (Z*, xo, (lp)) inserts, as a classical source, a string
world sheet Z' calibrated along paths (lp) and modifies
the gauge action in the following manner. Suppose that
the Euclidean plaquette action is

(21)

where B is some representation of the gauge group that
defines the theory and Up = Q&&p U~ associates with
each plaquette (labeled by P) the ordered product of the
four U~'s associated with the oriented links of the pla-
quette. The insertion of P (Z', xo, (lp)) modifies the
action on each plaquette in Z to

V. ORDER PARAMETERS FOR NON-ABELIAN
GAUGE THEORIES where

S „,p -+ —Pyi ~(V)~aVi Up) + c.c. , (22)

A. General formulation

We have seen in Sec. III how the Aharonov-Bohm
efFect can be used to probe the phase diagram of an
Abelian gauge theory. In this section, we would like to
extend the construction to non-Abelian gauge theories.

Lgl p

[This procedure can be generalized to insert coherently
many string loops using an operator
F„,„(Zi,Z&, . . . , Z*, xp, (lp)) (see below). Note
that for coherent insertion it is crucial to choose the
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same base point xo for all string loops. This op-
erator is not gauge invariant. Upon gauge trans-
formation by g at the base point, it changes to

}).]
Up to now, we have been vague about the choice of

the "tails" (l~} (i.e. , the paths for the calibration). As it
turns out, the choice is actually quite important. Unless
the tails (l~} are chosen in a judicious manner, because
of quantum fluctuations, there is no guarantee that a
subsequent measurement of the flux of a calibrated string
will recover the same result.

Now we turn to the operator which introduces classical
charges into the system. After gauge fixing, all informa-
tion of the non-Abelian Aharonov-Bohm eKect is encoded
in the untraced Wilson loop operator

the operator [15]

(A" (Z* (l }.C)) = (F~(Z*)») (ly })U "(C)xP))
(& (Z* » (&~}))(«U'"'(C»))

A:(z',c)
+V

(25)

B. Quantum 8uctuations

where k(Z*, C) is the linking number of the surface Z*
and the loop C and the limit that Z* and C are in-
finitely large and far away is taken. This shows that,
once a string loop is calibrated to be of flux a along
the paths (l~}, a subsequent interference experiment
with a charged particle will recover the same non-Abelian
Aharonov-Bohm factor.

U(~) (C z )
—D(~)

lac )
(24)

where C is a closed loop around xo and v is an irreducible
representation of the gauge group G. Conceptually, after
gauge fixing all the matrix elements in U&"l (C, xo) can, in
principle, be determined by interfering charged particles
in the representation v that traverse C with those that
stay at the base point [19]. Just like I", the operator
U~"l(C, xo) is not gauge invariant.

When P &) 1, the plaquettes are hard to excite. There-
fore, configurations with only a small number of &us-
trated plaquettes will be important and we can expand
in powers of exp( —P) (or equivalently in terms of world
sheets of virtual string loops). When E (Z*, zo, (l~}) is
inserted, the configuration at weak couplings that has
none of its plaquette frustrated is an "a forest" [14] in
which, roughly speaking, all the links that intersect the
minimal surface with boundary Z' are of flux a (Fig. 3).
Suppose the Wilson loop links once with the string loop.
Exactly one of its links l (say, with a flux Vi) is an a-
forest link and this gives a flux a for the Wilson loop.
More generally, in a phase with &ee G charges, and in
the leading order of weak coupling perturbation theory,

However, owing to quantum fluctuations, higher or-
der terms in the weak coupling expansion may spoil this
result [15]. Recall that the dominant contribution in a
weak coupling expansion comes &om configurations with
a low density of frustrated plaquettes (or, equivalently, a
low density of virtual string loops). Now in the definition
of F (Z', xo, (l~}), for each plaquette P, there is a long
tail of links l~ that connects it to xo. This is the cali-
bration path for that particular plaquette. Alford et al.
have considered the choice in which the long tails (l~}
&om all the plaquettes finally merge together and con-
nect to the base point through a single link which is not
on the Wilson loop. Essentially, they keep all the charged
particles for the calibration in a small box whose world
line runs &om zo to yo before performing the experiment
(see Fig. 4). However, this choice is vulnerable to quan-
tum fluctuations. Totally analogous to our discussion
concerning Fig. 2 in Sec. IV, consider the spontaneous
nucleation of a virtual vortex-antivortex pair whose world
line is nontrivially linked to the union of three objects:
the Wilson loop, the tails, and the string loop under cal-
ibration. This will conjugate the measured flux relative

FIG. 3. The dashed line is Z', comprised of links of the
dual lattice. The plaquettes shown belong to Z and are dual
to the links of Z*. The links marked by arrows are a-forest
links; i.e., in the leading weak coupling expansion, they are of
Qux a.

FIG. 4. Suppose all lz merge together at some point yo not
on the Wilson loop before reaching the base point. A world
line of virtual vortex conjugates the calibrated Bux.
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to the calibrated value. In the weak coupling expansion,
such a configuration has a single excited link on the path
that connects xo to E'. This causes (in three spacetime
dimensions) the excitation of four plaquettes and is sup-
pressed by terms that are independent of the size of Z*
and C or the separation between them. Thus, higher
order corrections render the flux uncertain up to conju-
gation and this operator is useless as an order parameter.
This was the conclusion drawn by Alford et al. [15].

Such a conclusion is unwarranted as it is based. on an
implicit choice of {l~).Before we present our resolution,

let us note another related problem that we have already
raised in the last section. It is a subtle issue to main-
tain the coherence between various strings when quantum
fluctuations are taken into account. With this implicit
choice of long tails, these quantum fluctuations do de-
stroy such coherence. This is because the calibrated flux
of one string may be conjugated while the elements asso-
ciated with others are unaffected. This relative change in
flux is highly physical and does not go away even when
we take the trace of our operator.

Consider the operator

(26)

It was suggested in Ref. [15] that when a charged particle winds around vortices of flux a„,a q, . . . , a2, aq in succes-
sion, it will acquire an overall Aharonov-Bohm phase

lim tr(A (Ez, Zz, , Z„*,xo, {~s);+)) =
l I

X"(oj.a2' on). (27)

With our implicit choice of {l~) in Fig. 5, one finds, contrary to the claim made in Ref. [15], that (in three spacetime
dimensions) there is a higher order correction term

lim tr(A, , (Z*, , Z2, . . . , Z„*,xp, {l~);t ))
(11 (R) u —1=

i

—
I
~"(n~~2 . .n-)+). &(exp[8&(Re~' '(~) —~~)])~"(gu~~ a' .n-)

(Yt~ ) (28)

where n„(n~) is the dimension of the representation v
(R). The second term on the right-hand side (RHS) (the
higher order correction term) shows that coherence of
the strings has been spoiled [cf. Eq. (20)]. Taken at face
value, our results seem to suggest that, because of quan-
tum fluctuations, construction of order parameters for

FIG. 5. Suppose the l~ from each vortex merge together
before reaching the base point. There exists a short world line
of virtual vortexes (dashed line) which is topologically linked
to the rest of the 6gure. Owing to quantum fluctuations,
the calibrated Bux of vortex 2 relative to that of vortex 1 is
rendered uncertain up to conjugation. This would destroy the
coherence of Qux between the two vortices.

non-Abelian gauge theories is a hopeless enterprise. Of
course, this conclusion is only an artifice of the particular
choice of {l~). Let us look at the problem more closely.
Since conjugation of some (but not all) of the plaquettes
of a string requires the dynamical propagation of strings
carrying the commutator of the various inserted fluxes,
it is reasonable to believe that configurations of this type
are energetically costly. For this reason, only conjuga-
tion of the calibrated flux of a whole string loop deserves
attention. Here comes the question. With an ingenious
choice of {lI), can one prevent vacuum fluctuations Rom
conjugating the inserted flux of a whole string loop at a
low energetic cost? The answer is no. Since all the tails
{l~)originate from the base point, quantum fluctuations
can always conjugate the flux of a whole string loop just
by flipping all the links from which the tails leave the
base point. This corresponds to the picture in which a
virtual string loop wraps around all the calibrating and
measuring particles. Fortunately, this only leads to a re-
de6nition of the basis that we use for both calibration
and measurement and does not afFect the result of our
experiment.

The relevant question really is the following: Are there
choices of {lJ) by which one can prevent energetically in-
expensive vacuum fluctuations &om conjugating the in-
serted flux of a whole string loop without afFecting the
Wilson loop? The answer is yes. As emphasized in Sec.
III, any experimental determination of the non-Abelian
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FIG. 6. A deformation of the configuration shown in Fig.
4. The world line of the virtual vortex now winds around
the Wilson loop, thus affecting the measurement, but not the
calibration apparatus.

Aharonov-Bohm factor essentially proceeds in two stages:
calibration and measurement. Unless the two are done in
a coordinated manner, it is entirely understandable that
one may be fooled by quantum fluctuations. The idea is
that quantum fluctuations in Fig. 4 conjugate the cal-
ibrated flux without affecting the measuring apparatus,
thus preventing the recovery of the calibrated flux in the
measurement. One can also consider an analogous pro-
cess in which quantum fluctuations affect the measuring
apparatus but not the calibrating apparatus. This would
correspond to the configuration depicted in Fig. 6 where
the world line of the vortex-antivortex pair winds around
the Wilson loop. Note that the configuration in Fig. 6 is,
in fact, a smooth deformation of that of Fig. 4. In both
figures, the vortex-antivortex world line has a nontrivial
linking number with the union of the Wilson loop (l~)
and the string loop.

Recall that, in the original choice of (l~) by Alford et
al. , all the tails run along a chain of links from xo to yo
which is not on the Wilson loop. Physically, this essen-
tially means that the particles used for calibration and
the subsequent measurement are kept in separate boxes.
(We can regard a portion of the Wilson loop as the box
for storing particles for subsequent measurement. ) The
problem is that a virtual string loop may nucleate, wrap
around one of the boxes, and reannihilate. If this hap-
pens, the state of charged particles contained in the box
wrapped around by the string loop will change relative
to those in the other box, since we are using particles in a
particular box for calibration and those in the other box
for subsequent measurement. Clearly, we get different
answers for the two experiments. This is why this choice
of (l~) does not work.

C. Resolution

Having observed this point, the resolution is simple.
We shall first present our resolution &om a mathemati-
cal point of view and then back it up with physical in-

tuition. First, note that if the Wilson loop and the path
of calibration were the same, i.e., C = lI Pl,& for some
P, the Wilson loop would trivially recover the calibrated
element. A moment of thought reveals that the key prob-
lems are that, on the one hand, all the tails must merge
to the base point; on the other hand, since we take the
limit that the closest approach of C to Z* approaches in-
finity in the definition of the order parameter (i.e. , long-
range experiments), the tails lI s inevitably contain links
that are not on the Wilson loop. Quantum mechanical
fluctuations of those links affect the calibration appara-
tus but not the measurement apparatus. The original
construction is particularly vulnerable because there is a
single link that belongs to all tails but is not on the Wil-
son loop. Branching may help reduce its vulnerability.
Moreover, it may be a good idea for at least some of the
tails to be initially on our Wilson loop, even though they
must eventually branch out from it. Consider the con-
figuration shown in Fig. 7 where the tails are chosen in
such a way that many of them beginning from the base
point are on our Wilson loop initially and branch out
one by one from it. In what fol"ows, we argue that this
construction overcomes all diKculties caused by quantum
fluctuations. In order for quantum fluctuations to affect
the calibration but not the measurement, links on the
Wilson loop must not be excited. Since by construction

FIG. 7. Lots of long tails initially lie on the Wilson loop
C. They eventually branch out from it one by one and never
intersect one another afterwards. Moreover, the Wilson loop
never comes close to retracing itself. To conjugate the cali-
brated Qux without afI'ecting the measurement, each tail II,.
must be wrapped around by a virtual string loop after its
branching out from the Wilson loop. Since the number of
tails becomes large as C and Z' get large, such configura-
tions are energetically costly. We therefore conclude that,
with a coordinated choice of the Wilson loop and (lz), any
energetically inexpensive excitation that affects the calibra-
tion process necessarily aKects the measurement process and
vice versa.
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the tails that branch out &om the Wilson loop never in-
tersect one another after their branching out, to achieve
overall conjugation of the flux of string loops, we must
then lip a link in each tail after it has branched out.
Since the number of tails that branch out goes to infinity
as Z* and C get large, we must excite a large number of
links (see Fig. 7). Such configurations have large actions
and their contribution to the partition function is sup-
pressed by factors proportional to the system size (e.g. ,
the length of the Wilson loop). Our conclusion is that
there is no energetically inexpensive way of conjugating
the Aux of a whole string loop without affecting the Wil-
son loop.

The above paragraph requires a severe qualification.
It is important for our choice of the Wilson loop not to
come close to retracing itself. Otherwise, it is possible for
quantum fluctuations to affect the measuring but not the
calibrating apparatus. Suppose the Wilson loop is chosen
to be of the shape of a tennis racket; i.e. , it runs along a
long chain L of links from the base point xo to a point yo
and goes around various vortices of interest before coming
back to yo where it retraces L back to xo. The tails are
chosen such that many of them initially follow the chain
L of links on the Wilson loop, but finally branch out
from L one by one. Now the Wilson loop is vulnerable
to quantum fluctuations: A world line of virtual vortex
can be linked to the Wilson loop near to yo. With the
choice of the Wilson loop in Fig. 8, the world line of the
virtual vortex, and therefore the energetic cost one pays
in conjugating the measured flux relative to its calibrated

value, is small.
There are strong physical motivations for our new

choice of (l~) shown in Fig. 7. That the tails initially
follow the Wilson loop corresponds to the physical pic-
ture that we keep the charged particles that we use for
both calibration and subsequent measurement in the same
box. The portion of the Wilson loop that the tails ini-
tially lie on corresponds to the world line of this box.
The fact that we are calibrating every plaquette through
which the string passes (stage 1) means that we cali-
brate the string loop continuously over time from the
base point. (We need to specify the whole world sheet. )
Since the particles for both calibration and subsequent
measurement are stored in the same box, lots of tails
branch out from the Wilson loop.

Moreover, it is crucial not to send out the two beams
of particles for subsequent measurement (stage 2) too
closely spaced in time. Otherwise (with the tennis racket
choice in Fig. 8), quantum fluctuations will spoil our re-
sult: A virtual string loop may wrap around both beams.
This will conjugate the measured flux. To avoid this phe-
nomenon, a wave packet of some test particles (one of
the two beams) should be kept in the box that stores the
particles (for both calibration and measurement) and in-
terferes with another wave packet (the other beam) that
traverses the string. This is the physics underlying our
new choice of (l~).

Recall in the discussion in the last section that it is
always possible for a virtual string loop to wrap around.
just one of two beams that we use for subsequent mea-
surement. (This is true even in the case of an Abelian
gauge theory. ) However, this incoherent effect will go
away on average if we repeat independent identical ex-
periments many times to extract the expectation value
[see Eq. (5) in Sec. III, Eq. (33) in Sec. VII, and Fig.
13I.

In conclusion, our construction coordinates the calibra-
tion and measurement processes, making it impossible for
our results to be sabotaged by just a few small virtual
string loops. As noted earlier, it is always possible for
a virtual string loop to wrap around. the box storing all
the particles. This leads to no real change as calibra-
tion and measurement are affected in the same way. The
calculation in the next subsection will verify our asser-
tion that a careful coordination between calibration and
measurement solves the problem of quantum fluctuations
that has plagued all previous attempts to construct order
parameters for non-Abelian gauge theories.

D. Calculation

FIG. 8. The Wilson loop C is of the shape of a tennis racket
with a long chain running from xo to yo. Starting from the
base point, lots of long tails initially lie on the long chain.
They ultimately branch out from it one by one and never
intersert one another thereafter. A virtual vortex world line
(the dashed line) winds around the Wilson loop, thus affecting
the measurement process but not the calibration.

Having specified our choice of tails, we shall now prove
that at weak coupling Eq. (25) is unspoiled by higher
order corrections. Let us first consider the vacuum ex-
pectation value of the untraced Wilson loop operator
(U&"l(C, xo)). Totally analogous to the Zz gauge-Higgs
theory, at weak couplings discussed in the Appendix, we
can completely ignore the matter action without chang-
ing our conclusion. Besi.des, the link excitations are so
heavily suppressed that our result will be dominated by
configurations with a low density of excited links. There-
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fore, configurations where any two excited links share a
plaquette can be safely ignored, thus enabling us to fac-
torize the sum over the links U;~ into two parts: one over
the links that are on C and one over those that are not.

The contributions &om the second part are canceled by
a corresponding sum in the denominator. Now the gauge
action, being gauge invariant, can be expressed in terms
of character functions and we obtain

(29)

where Z is same as the numerator but without the fac-
tor Di ~. As discussed before, when E (Z', xo, (l~j) is
inserted, the configuration at weak couplings that has
none of its plaquette &ustrated is an "a forest" in which,
roughly speaking, all the links that intersect the minimal
surface with boundary Z' are of Hux a (Fig. 3). Suppose
the Wilson loop links once with the string loop. Exactly
one of its links l (say, with a Hux Vi) is an a-forest link. So
its parallel neighbors are all of flux a and any plaquette
containing I and one of its parallel neighbors will be of
flux a V~. We can take this into account simply by defin-
ing a new variable V&' ——a i'. Thus, in Eq. (29) we re-
place Di"l(ViV2 .V„)by D~"l(ViV2 . Vi i«j —V~)
and Vj by V&' elsewhere. It follows &om the orthogo-
nality relations between matrix elements of irreducible
representations,

that Eq. (25) survives higher order corrections.

E. More on virtual vortex loops

It is important to note that the a forest, which is
bounded by an inserted string world sheet, is unphysi-

cal and can be moved around. We leave it as an exercise
for the reader to show that the eKect of the virtual vortex
loop shown in Fig. 9 can be safely ignored. Note that
the virtual vortex loop has trivial linkage with the union
of the Wilson loop, the tails, and the inserted string.

Incidentally, a careful choice of (l~) and the Wilson
loop C taken together will also maintain the quantum
coherence between various string loops. A bad choice of
C by which quantum coherence is spoiled is shown in Fig.
10. A virtual vortex worM line conjugates the measured
flux of one vortex relative to another. As a comparison,
in Fig. 11, we show a choice of C which would preserve
quantum coherence. Let us consider paths which begin
and end at points on the Wilson loop. Some of those
paths (e.g. , Pzq) are contractible. Some (e.g. , Pz, ) are
not. We can classify paths into classes in which they are
smoothly deformable into one another. Let us consider
the topologically nontrivial classes of paths. If the min-
imal lengths of all such paths diverge as Zj Zg and C
get large, then coherence of the inserted flux between the
two vortices can be maintained. This is because quan-
tum fluctuations that would conjugate the lux of one
string relative to another are energetically costly and can,
therefore, be safely ignored. Consequently, for a charged
particle traversing n coherent strings in succession, we
obtain

~ ~ ~ ~

~ +e ~

Xo

FIG. 9. The effect of the virtual vortex world line (the
dashed line) shown in the figure can be safely ignored. The
"a forest" is unphysical and can be moved around by gauge
transformations. The virtual vortex world line is unlinked to
the rest of the 6gure.

FIG. 10. The Wilson loop winds around vortex 2 first and
vortex 1 second. Suppose it is chosen such that it returns
to the base point after winding around vortex 2. A virtual
vortex world line of small size can conjugate the measured
6ux of an inserted string relative to another.
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VI. GAUCE FIXING

We have considered a discrete non-Abelian gauge
group G which arises as a result of the spontaneous
symmetry breakdown of a simply connected group K.
We have successfully proved that in a &ee G charge
phase, with a careful choice of (l~), Eq. (25) remains
valid even when quantum Quctuations are fully taken
into account. One might naively expect that; the opera-
tor A"(2', xo, {ly );C) in Eq. (25) is the order parameter
for non-Abelian gauge theories.

However, there are still complications in the study of
the symmetry breakdown: G + H. For one thing, with
the breaking of G into H, an irreducible representation
v of G is typically reducible in H. In general, only one of
the irreducible representations of H that is contained in
v will dominate the asymptotic behavior of W(C) when
t is large. Since particles in diR'erent irreducible rep-
resentations of H in the decomposition can be resolved
&om one another, it makes no sense to normalize them
by the same factor tr U (C, 2:e) in the denominator of
the first liiie of Eq. (25). The correct thing to do is to
consider each irreducible representation of H separately
and normalize the matrix elements (for each irreducible
representation) by dividing the trace over the particular
representation that one is working with.

There is a more serious problem. Unless H is in the
center of G, it does not make any sense to talk about ir-
reducible representations of H without some gauge-Axing
scheme. In particular, when G is spontaneously broken
into a non-normal subgroup H, it is easy to see that our
original set of order parameters does not work. A gauge
transformation by g 6 G at » in Eq. (25) shows that

Xo

FIG. 11. The path P„qjoining the points p and q on the
Wilson loop is contractible while there is topological obstruc-
tion to the shrinkage of the path P„to a single point.

~,"„,, (Z', *„(&~);C))
=U (~)&h(~* » (1~) C)U"(~ '). (»)

The order parameters A for h and gh, g are not in-
dependent and there is no way for us to distinguish the
behavior of a string h c H with one ghg i

g H. The
way out is to perform gauge fixing. [To be more precise,
the embedding of the unbroken group H in G changes
as P varies. One should take this into account and con-
sider H as a function of P, i.e. , H(P). ] Suppose G acts
transitively on the Higgs P. (We believe that the re-
quirement that G acts transitively on P is only a workiiig
assumption. For configurations of finite energy, the Higgs
6eld necessarily approaches its vacuum expectation value
at spatial inanity and our gauge-Axing procedure is well
defined. ) Without loss of generality, one can consider
the gauge-fixed insertion operator I" (E', », (l~j, Po),
where the Higgs field P = Pe. When this operator is
inserted in a Green s function with gauge-invariant op-
erators, its gauge-invariant part will be projected out.
Thus, it will have the same effect as the gauge-invariant
operator

~~~ Qi„~~(p)Eg~g — (Z xo (l~), Q).
Even in the case that H is normal in G but not

in the center of G, it is still necessary to gauge Gx

P = Pe for the untraced Wilson loop operator U" (C).
The reason is that, without gauge fixing, U~"l(C, xe) ~
D~ l(g)U~"l(C, xo)D~"&(g i) under a global gauge trans-
formation by g. The expectation value (U~"l C, xo)) is in-
variant under G. By the Schur's lemma, (U "l(C, xp)) =
AI for some A. The interpretation is clear: An irreducible
representation of G is typically reducible in H. In the ab-
sence of gauge Gxing, it would not be possible for us to
resolve the various irreducible representations of H in the
decomposition.

Therefore, we should always gauge fix P = Po and con-
sider U~ l(C, », gp). From now on, we will only be in-
terested in gauge transformation by the unbroken group
H(ge). I et us decompose the representation (v) into
irreducible representations (p, i), (pz), . . . , (p„)of H and
the representation space V = Vq V2 . V . The lead-
ing nontrivial contribution to (U~ & (C, xo, $0)) must arise
when one of the links on C takes a value h in the unbroken
group H. [If it takes a value g g H, some matter fields
are excited. Thus, its contribution to (U~ l(C, xp Pp))
must be suppressed. ] By gauge fixing P = $0, we can
disentangle various irreducible representations of H from
one another and see clearly that the symmetry group has
been reduced to H. In other words, in the &ee H charged
phase and with gauge fixing, we obtain again Eq. (25) for
a representation of H (rather than G). As discussed in
Sec. IV, a string with fiux a g H is now bounded to
a domain wall which decays to a composite string with
Aux ab 6 H. Thus, the Aharonov-Bohm phases will
give elements of H only and this shows clearly that the
unbroken group is H. From that point on, there is no
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obstacle to repeating our original analysis to study any
symmetry breaking of H at an even lower energy scale.

VII. DISCUSSION
A. Gauge-invariant formulation

Note that the operators F (Z*, xo, (tJ ), po) and
U+(C xp po) we use in the definition of our order param-

eters are not gauge invariant under H. However, it is pos-
sible for us to redefine the order parameters in terms of
quantities which are invariant under H. This is done by
tracing over an irreducible representation (p, ) of H in the
Wilson loop operator, and for the insertion of strings, we
use the operator

~H~ Ph&Hi@, ~
Fg g-~ (E*&To, (~s ), Po).

In conclusion, we propose that

Q hpH(4, ) h h ( 0 ) P) 4) ( 0 00))
(A"(2*,xo, Po, (ly );C)) =

( ~H~ p„,H~q, ~
Er..~ (K', xD-, (ls ), 00)) (t»'(&, ~o, 4D))

(33)

is an order parameter for non-Abelian gauge theories. At
first sight, our order parameters may appear to be redun-
dant because their definition seems to require a knowl-
edge of the identity of the Higgs field and the action of
the gauge group on it. Does it not mean that we already
know what the unbroken group is'? Our viewpoint is that
one should think of P only as a candidate for the Higgs
field rather than the Higgs field itself. We are testing
with our order parameters if a Higgs phenomenon has
occurred. The actual realization of the gauge symmetry
depends on the values of the coupling constants in our
theory.

B. Example: S3 —+ Z~

Since the above discussion is rather abstract, one de-
sires an explicit model in which the behavior of the order
parameter A" (2, C) can be studied analytically. How-
ever, there are some technical difhculties. A matter ac-
tion on a lattice that we find tractable is of the form

where the sum runs over all irreducible representations
of G. Perturbative methods can be used to analyze this
model when some of the p„'sare large ()) 1) while all oth-
ers are small (&( 1 ). In the weak coupling limit p~ ~ oo,

iUP becomes restricted to the kernel of the represen-
tation (p) at each link and U~ takes value in the kernel
at each plaquette. In other words, G is spontaneously
broken into the subgroup H = Ker(D"), which is nor-
mal in G. Indeed, the breaking of G into any normal
subgroup can be obtained by choosing some p„'sto be
large. Of course, it is still conceivable that at immediate
couplings a more general symmetry-breaking pattern can
occur and a non-normal subgroup may happen to be the
unbroken group. However, at immediate couplings, our
perturbative methods clearly break down and there is no
simple way of analyzing the result other than numerical
methods.

It would be very helpful if one could come up with
a more general tractable lattice action in which a non-
Abelian group is spontaneously broken into a non-normal
subgroup. Let the matter field P take values in the left

coset of H (denoted by G/H) and consider the action of
the form

S = —P) [y (U~) + C.C.]
—p) F (y;, U; y, ), (35)

where F is a mapping from G/H x G/H to real numbers.
F has to respect gauge invariance, i.e. , F(ggiH, gg2H) =
F(giH, g2H). In addition, F(H, H) ) F(giH, g2H) for
all gi, g2 p G. Let us apply our formalism to the case
of the symmetry breakdown of S3 to Z2. Without loss
of generality, let H = (e, (12)). Suppose E(H, H) = 1
and F(H, (23)H) = E(H, (13)H) = 0. We shall as-
sume without proof that there exist convergent weak and
strong coupling expansion schemes for the matter action
of Eq. (35).

(1) P )) l, p (( 1. Just like the Z2 gauge-Higgs sys-
tem discussed in the Appendix, the matter action can
be safely ignored. (F (Z*)) is dominated by an a forest.
Our order parameters show that the theory is in a free
S3 charge phase.

(2) P, p )) 1. Now the leading nontrivial contribu-
tion to (W(C)) arises when one of the links on C has
Ui = (12). [A configuration with one of the links on C
taking a value Ui g e or (12) excites the matter field
and its contribution is thus severely suppressed. ] It is
easy to check that the two-dimensional irreducible repre-
sentation of S3 is decomposed into trivial and nontrivial
representations of Z2. With gauge fixing, the two repre-
sentations can easily be resolved from each other. While

P~j&~ inserts a stable string loop, other E insert string
loops which are bounded by domain walls. Thus, the
theory is in a free Z2 charge phase.

Prom the nonanalytic behavior of the order parame-
ters across the phase bound. ary, we see that there is a
symmetry breaking from S3 to Z2.

C. Vacuum overlap order parameters

Other order parameters for gauge theories have also
been previously proposed. (For a review, see Ref. [25].)
One promising probe of the phase structure of a gauge
theory is the vacuum overlap order parameters (VOOP's)
proposed by Fredenhagen and Marcu [13]. Suppose a
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matter field 4~~~ which transforms irreducibly under a
gauge group G. Choose a path P~ „which connects two
widely separated points x and y and consider the gauge-
invariant operator

K~"~( x, y, P ) = e~"ltD~"~

If the gauge group H is unbroken, the field Ct should
create a stable particle which will propagate between x
and y. Therefore, we have

exp M~"~—1(P) exp (
—Mi „~~T

—yf), (37)

where M,~,
„

is the renormalized mass of the classical
source of charges propagating along P, M&

„

is the dy-

namical mass of the stable particle created by 4'~"~t, L(P)
is the length of P, and ~x —

y~ is the distance &om x to y.
If the representation (p) is confined or screened, there will
be no dynamical propagation of stable charged particles.
Thus, we expect that (K~"l(x, y, P „))is independent of

~x —
y~ for large separation, i.e., M&~ l ——0. Fredenhagen

and Marcu proposed that Mdy„) 0 is the criterion for
4t to create a free charge. Their construction is highly
similar to our order parameters. When the gauge group
is broken into a subgroup H, the complications in disen-
tangling various irreducible representations of H in the
decomposition of an irreducible representation of G dis-
cussed in the last section also arise here. We expect the
resolution is again gauge Axing. It would be interest-
ing to work it out. Finally, we remark that application
of the VOOP's to the study of partial symmetry break-
down has been considered in the explicit example of the
Georgi-Glashow model [26].

and the symmetry group being discrete may be relaxed.
The subtleties of quantum fluctuations and gauge fixing
are intrinsic properties of non-Abelian gauge theories.

We eniphasize that, after gauge fixing, vortices of con-
jugate but different fluxes should be regarded as noniden-
tical. The coherence of the fluxes between various strings
is characteristic of non-Abelian gauge theories. Quantum
fluctuations tend to destroy these two important features.
In our construction of the order parameter, we show how
these problems can be overcome by a careful coordination
between the calibrating and measuring processes.

When a gauge group G is broken into H, an irreducible
representation of G is typically reducible in H. Particles
in different irreducible representations of the decomposi-
tion can be resolved from one another. In order to isolate
the behavior of a particular irreducible representation of
H, it is crucial to gauge fix the Higgs field P = Pe. This
simple but crucial point has also been largely overlooked
in previous works. We also sketch briefly the application
of the Aharonov-Bohm order parameters to study the
symmetry breaking of S3 to Z2 and discuss the vacuum
overlap order parameters suggested in the literature.

We would also like to remark that a Chem-Simons
term can be added to the action of a gauge theory in
2+ 1 dimensions. Our construction remains to be gen-
eralized to this case. It is also of interest to note that
linked Wilson loops are useful as order parameters for
a Maxwell-Chem-Simons-Higgs system. In the unbro-
ken Chem-Simons phase, matter charges are attached
with fluxes, thus experiencing Aharonov-Bohm interac-
tions with one another. There are, however, no such
Aharonov-Bohm interactions in the Chem-Simons Higgs
phase because the Higgs mechanism removes the fluxes
that are attached to the matter charges in the unbroken
phase [27]. Finally, &om a mathematical point of view,
it is conceivable that these types of nonlocal objects in-
volved in the construction of order parameters may give
rise to interesting topological invariants [28).

D. Phase transition without symmetry breaking?

It was suggested in Ref. [15] that there is a possibility
of having a phase transition without a change in the sym-
metry group. Recall that generally just one irreducible
representation of H will dominate the asymptotic behav-
ior of U". Alford et al. proposed that in some parameter
space of the theory a "crossover" may occur, where this
representation changes. We are not sure whether such an
interesting phenomenon is possible.
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E. Conclusions APPENDIX: Sg GAUGE-HIGGS SYSTEM

Our order parameters are useful for studying the sym-
metry breakdown of non-Abelian gauge theories. While
we have concentrated our discussion on discrete group
theories, we emphasize that the idea of the Aharonov-
Bohm order parameter is rather general. The assump-
tions of the existence of topologically stable flux tubes Ui E Z2 = (1,—1) (A1)

Here we review the application of the order parameter
to a simple model in the work of Preskill and Krauss [6]:
Z2 lattice gauge theory coupled to a Z2 spin system. The
degrees of freedom of the model are gauge variables
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residing on links (labeled by l) of a cubic four-dimensional
spacetime lattice and spin variables

gauge transformation

Ul —+ —Ul (Alo)
Q, EZg=(1, —1) (A2)

Z= ) es,
(U) (P)

(A3)

where the Euclidean action is

residing on sites (labeled by i). The partition function of
the theory is

on all the links that are dual to those cubes. [As shown in
Fig. 3, in three spacetime dimensions, Z is the bound-
ary of a set of plaquettes in the dual lattice. The inser-
tion of E(Z*) is equivalent to performing singular gauge
transformations Ul —+ —Ul on all the links dual to these
plaquettes. Those links are marked by arrows. ] So E(Z*)
is just a change of variable and

where

S:Sg~~ge + Ssp j~ ~ (A4)
(E(Z*)) =1

The Wilson loop on the lattice is defined as

(A11)

Sgauge P ) Up
P

(A5)
W(C) =

I

lqC
Ul, (A12)

and

S, ;„=—p ) (PUP)i,
l

(A6)
(E(Z*)~(C)) = —(~(C)). (A13)

where C is a closed loop of links. If the surface Z* and
the loop C have a linking number 1, E(Z') Hips the sign
of one Ul on C and we find

g; CZ2=(1, —1), (A7)

where the variables transform as

U;, m q;U;, g, . (A8)

Note that the gauge variable Ul is invariant under a
nontrivial global gauge transformation g, = —1, but the
spin variable P; is not. The spin variable is, therefore,
a matter field with a nontrivial Z2 charge and we would
like to determine if there is a Z2 superselection rule.

Now we must consider how the operator E(Z*) is to
be defined on a lattice. Recall that inserting E(Z*) into
a Green's function is supposed to be equivalent to intro-
ducing a classical cosmic string source on the world sheet
Z'. In a (3+1)-dimensional lattice, we consider Z* to be
a closed surface made up of plaquettes of the dual lattice.
There is a set Z of plaquettes of the original lattice that
are dual to the plaquettes of Z*. (It is easier to visualize
in three spacetime dimensions. Then Z* is a closed path
made up of links in the dual lattice. Each link of Z* is
dual to a plaquette of the original lattice. See Fig. 3.)
The operator E(Z*) modifies the gauge action of these
plaquettes:

where UP = Q&&P U& associates with each elementary
plaquette P the product of the four gauge variables Ul's
sitting on its links, and (PUP);~ = P;U,~P~ for each pair
of neighboring sites. The action is invariant under the
Z2 gauge transformation defined by

This shows that Z2 charge is not screened in a pure gauge
system and a Z2 cosmic string can be detected at long
range by a Z2 charge.

Let us now turn to the full theory: Z2 gauge-Higgs sys-
tem. This model is tractable because it can be analyzed
by means of convergent perturbation expansions. The
phase structure of this theory shown in Fig. 12 has pre-
viously been conjectured and confirmed by Monte Carlo
simulations. Preskill and Krauss have shown that the
order parameter A(Z, C) is an appropriate order param-
eter. To avoid overburdening the reader with technical
details, we shall only present explicit calculations in two
regions. These calculations are sufEcient to prove their
case.

(1) P )) 1, p (( 1. In this region, exp( —P) and p are
small. So the gauge variables are hard to excite but the
spin variables are easy. Therefore, configurations with
only a small number of frustrated plaquettes will be im-
portant and we can expand the gauge action in powers of
exp( —P). In effect, we are expanding in terms of world
sheets of virtual strings. The matter action can be ex-
panded. , in powers of tanhp, as

Z 2 spin

Charge Screening

—PUP -+ PUP, P C Z. (A9)
ge

This is equivalent to Hipping the sign of p in these pla-
quettes.

Let us consider a pure gauge theory first. Z* is the
boundary of a set of cubes of the dual lattice. The in-
sertion of E(Z*) is equivalent to performing a singular

Z, gauge

FIG. 12. Phase diagram of the Z2 gauge-Higgs system.
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cite, while the spin variables are disordered and nearly
indifferent to a flip in their nearest-neighbor couplings
inside Z*. We expand the spin partition function with
the plaquette variables &ozen at these values to Bnd

X

[1 —(tanh p) 4]~

[1+ (tanhp)4]&
= exp[ —2A(tanhp) + . ]. (A16)

FIG. 13. The leading nontrivial contribution to (W(C))
has a single link flipped (U~ = —1). Note that the Wilson
loop and the virtual vortex world line (denoted by the dashed
line with arrow) have a linking number 1.

Here summing over the spin variables around each pla-
[1-(t h )4]quette on Z gives a factor ti+(~ h ) )

and A ls the al ea
of Z'. With the contribution to A(Z', C) being domi-
nated by the —1 forest, a cosmic string has hair and we
find

lim A(Z', C) = —1 (A17)

e "'" = 1V(p) [1+ (PUP)~ tanhp]. (A14)

Consider the leading nontrivial contribution to (W(C)).
It is zeroth order in tanhp and indifferent to spin &us-
trations. Therefore, we can safely ignore the matter ac-
tion without changing our conclusion. Considering the
gauge action alone, the leading nontrivial contribution to
(W(C)) arises when one of the links on C has U~ = —1.
In four spacetime dimensions, this will &ustrate six pla-
quettes that contain the link. (For ease of visualization,
the corresponding picture in three dimensions in which
four plaquettes are &ustrated is drawn in Fig. 13. It
corresponds simply to the physical picture of having a
small virtual vortex world line linked to the Wilson loop. )
Thus, we find

if Z and C have an odd linking number. Therefore, there
is a Z2 superselection rule. In other words, Z2 is the
manifest low energy symmetry group.

(2) P, p )) 1. Once again the leading nontrivial contri-
bution to (W(C)) arises when one of the links on C has
U~

———1. The only difference is that flipping U~ now &us-
trates the spins on the link as well as the six plaquettes
that contain the link. Therefore,

(W(C)) = exp[ —2L(e ~) e '~ +.. .], (A18)

where I is the length of C. The crucial difference &om
region (1) lies in the behavior of (E(Z*)). Since spin frus-
tration is now costly, the leading contribution to (E(Z'))
no longer arises &om a —1 forest. A —1 forest will &us-
trate spins in a volume bounded by Z*. The preferable
configuration is to &ustrate all plaquettes dual to Z*.
This gives an area-law decay

9'(Z')) = (
' )"+ (A19)

exp( —I(e 2~)s+ . . )(W(C)) =
(+L( P)

where A is the area of E'.
Since the gauge variables U~'s deep inside the volume

bounded by Z' are unaffected by the insertion of E(Z'),
we see clearly that

= exp[ —2L(e ~) + . .], (A15) lim (A(Z', C)) = l. (A20)

where L is the number of links on C. The exponentiation
results from summing over the L /N! ways of fhpping
the sign of N of the links on C. For (E(Z*)), the lead-
ing contribution is obtained by flipping all the links dual
to the volume enclosed by Z'. Then U~ ———1 on the
plaquettes dual to Z* and U~ ——1 elsewhere, so that no
plaquette variables are &ustrated. Let us call this set of
links with flux —1 a "—1 forest" (see Fig. 3). This —1-
forest configuration, in which the gauge variables U~ are
fhpped in a volume bounded by Z', dominates (F(Z'))
because the gauge variables are ordered and costly to ex-

The interpretation is simple. Spontaneous symmetry
breaking of Z2 has occurred. Condensation of the mat-
ter field causes the string to become the boundary of a
domain wall, but the wall is unstable and decays by nu-
cleation of a loop of string. The inserted Z2 string thus
becomes bounded to another Z2 string and the composite
object then gives a trivial Aharonov-Bohm factor.

From the different behaviors in the two regimes, one
concludes that (A(Z*, C)) is an appropriate order pa-
rameter for the Z2 model. This result can be readily
generalized to a lattice gauge theory with an arbitrary
Abelian gauge group.
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