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Free energy of hot gauge theories arith fermions through gs
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We compute the free energy density I" for gauge theories, with fermions, at high temperature
and zero chemical potential. In the expansion F = T [co + c29 + csg + (c4lng+ c4)g + (cslng+
cs)g + O(g )] we determine cs aud cs analytically by calculating two- and three-loop diagrams.
The g term constitutes the 6rst correction to the g term and is for the non-Abelian case the last
power of g that can be computed within perturbation theory. We find that the g term receives no
contributions from overlapping double-frequency sums and that c5 vanishes.

PACS number(s): 11.10.Wx, 05.70.Ce, 12.38.Bx, 12.38.Mh

I. INTRODUCTION

The perturbative expansion of the &ee energy density
of high-temperature gauge theory in four dimensions can
be written as

I" =T [co+ c2g + csg + (c41ng+ c4)g
+'(cs lng+ cs)g'+ O(g )],

where the c&' are numerical coefFicients (that depend
on the Geld content of the theory, the renormalization
scheme, and the renormalization scale) and where we
have assumed the temperature high enough that fermion
masses can be ignored. Previously, E has been computed
to O(g ) for QED by Akhiezer and Peletminskii [1] and
for QCD by Kapusta [2], while the g4 lng term was ob-
tained by Toimela [3]. More recently, I' has been com-
puted to O(g4) by Arnold and one of the present authors
(C.Z. ) [4]. Coriano and Parwani [5] have recently stud-
ied high-temperature QED up to O(g5). The Bee energy
density (or, equivalently, the pressure) is also known to
O(gs) in 44 theory (see Ref. [6] and references therein).
Here we determine the coeKcients t"5 and c5 in expan-
sion (1.1). For this purpose we need to take into account
Debye screening at three loops (for a review on Debye
screening, see Refs. [7, 8]).

Note that, for the non-Abelian case, the g term is be-
lieved to be the last power in g accessible within pertur-
bation theory [9] (for a review, see Refs. [7, 8]). Starting
at four loops, infrared problems that are believed to be
cured by nonperturbative magnetic screening lead to con-
tributions to the g term &om diagrams with arbitrarily
high numbers of loops.

The g term is also interesting because it constitutes
the Grst correction to the g term, the lowest order at
which Debye screening plays a role. The renormalization-
group invariance to this order can be tested. The de-
pendence of E on the renormalization scale due to the
g term should be diminished by including the g term.
Checking this, we can gain some idea about the theoreti-
cal uncertainties of the g term as well as the behavior of
the perturbative expansion. Also, our result can be used
for a test of an evaluation of E on the lattice. Finally,

our result is potentially interesting for the evolution of
the early Universe, where one might have to add scalars
to the theory.

In Sec. II notation and conventions are established. In
Sec. III we outline our general computational procedure
and emphasize what is new as compared to the g4 calcula-
tion. In Sec. IV we conclude by presenting and analyzing
our result as well as comparing it to related results.

II. NOTATION AND CONVENTIONS

We use the same notation and conventions as in Ref.
[4]. We now present an almost verbatim review of these
to keep this work as self-contained as possible.

We consider gauge theories given in Euclidean space-
time by Lagrangians of the form

8@=Qp„(0„—igA„T ) g

+—(B„A —B„A„+gf 'A„A'„) + ZGF sh,

(2.1)

(2 2)

d~ is the dimension of the total fermion representation
(e.g. , 18 for six-8avor QCD), and SF and SzF are de-
fined in terms of the generators T for the total fermion
representation as

SF = tr(T'), S,F = tr [(T')'], (2.3)
A. dA

where T = T T . For SU(N) with nI fermions in the
fundamental representation, the standard normalization
of the coupling gives

with gauge fixing and ghost term ZGF g~, and where the
T are the generators of a single, simple Lie group, such
as U(l) or SU(3). To simplify our presentation, we will
not derive results for an arbitrary product of simple Lie
groups such as SU(2) x U(1), but such cases could easily
be handled by adjusting the overall group and coupling
factors on the results we give for individual diagrams.

d~ and C~ are the dimension and quadratic Casimir
invariant of the adjoint representation, with

gaa d fabc fdbc g gad
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1
gF ——ny, S2F ——

2

d„=N' —y, C'A —N, dF ——Nnf,
N —1

4N
(2.4)

For U(1) theory, relabel g as e and let the charges of the
ny fermions be q, e. Then

FIG. 1. The one-loop gluon self-energy.

dA=&) CA ——0,

~2F =):q,'.
dF —Af ) S~ =) q,'. ,

(2.5)

This is accomplished by rewriting our Lagrangian den-
sity, in &equency space, as

If the fermion representation is irreducible or consists of
several identical copies of an irreducible representation
[as in (2.4) above], we have

dASF = dFS2F . (2.6)

M p T (2 8)

We work in Feynman gauge. We also work exclusively
in the Euclidean (imaginary time) formulation of ther-
mal field theory. We conventionally refer to four mo-
menta with capital letters K and to their components
with lower-case letters: K = (ko, k). All four momenta
are Euclidean with discrete &equencies ko ——2vrnT for
bosons and ghosts and ke ——2vr (n+ —) T for fermions.
We regularize the theory by working in d = 4—2e di-
mensions with the modified minimal subtraction (MS)
scheme, which corresponds to doing minimal subtraction
(MS) and then changing the MS scale y, to the MS scale
p, by the substitution

f+ p2
P =

4
(2.7)

The trace over the identity in spinor space is by conven-
tion trI = 4.

To denote summation over discrete loop &equencies
and integration over loop three momenta, we use the
shorthand notation

Z~ = (Za+ 2M AOAehp, ) —2M AeAobp, , (2.12)

where bp, is shorthand for the Kronecker delta symbol

bp, 0. Then we absorb the erst Ao term into our unper-
turbed Lagrangian Zo and treat the second Ao term as a
perturbation.

Since the &ee energy density is computed by consider-
ing vacuum diagrams (diagrams without external legs),
there is no need to explicitly introduce wave-function
renormalizations. We only need to renormalize the cou-
pling constant. We do this by expressing the bare cou-
pling constant gg in terms of the renormalized coupling
g:

2

(2.1S)

and then using the bare coupling constant gg to the re-
quired order in g at all vertices in the vacuum diagrams.
Through g it is suFicient to know the one-loop renormal-
ization given above. However, for the computation of the
Debye screening mass (2.11) we have used the renormal-
ized coupling g. This is allowed because for the cure of
the in&ared problems achieved by reorganizing the per-
turbation expansion according to (2.12), only the leading
contribution in g to the Debye mass is crucial.

for bosonic momenta and

I"T 3 2 (2 9)

III. COMPUTATIONAL PROCEDURE

A. g~ order contributions

for fermionic momenta, where

).~ ).
pp pp =2mnT (pp ) J,=2~(n+ —,')z'

(2.10)

M 8 = II (0) = II (0)

=g 8 C~(d —2)
Q

1
4SF (d —2)— (2.11)

We handle the resummation of hard thermal loops
[which is required to make perturbation theory well be-
haved beyond O(g )] as was done in Ref. [4]. Specifically,
we must improve our propagators by incorporating the
Debye screening mass M for Ao, which is determined at
leading order by the self-energy diagrams of Fig. 1:

In the expansion of the &ee energy density, the zeroth-
order term represents the free energy density of an ideal
gas containing &ee gauge bosons and massless quarks.
The leading contribution due to the interaction is of or-
der g which is represented by two-loop diagrams. For
the calculation of higher-order terms the resummation
(2.12) for the static timelike gluon propagator is required
because of in&ared divergences. It is this resummation,
which introduces the Debye screening mass into the the-
ory, that causes the expansion of the &ee energy density
being in powers of g instead of g . Consequently, one can-
not determine the order of a diagram by naively count-
ing the number of interaction vertices. The leading odd
power contribution is of order g which comes from the
one-loop diagram with the resummed static gluon prop-
agator. The g term receives contributions &om the sub-
leading pieces of two-loop diagrams as well as the leading
pieces of three-loop diagrams. To get the g term of the
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&ee energy density, we need to compute the two-loop
diagrams to higher order and the subleading pieces of
three-loop diagrams. Figure 2 contains all the diagrams
contributing to the &ee energy density up to g order.

We mainly follow the formal manipulations in Refs.
[4] to simplify the sum integrals obtained by applying
the Feynman rules to the diagrams in. Fig. 2. We shall
focus on the contributions at order g . Due to the resum-
mation, there are two momentum scales, gT (the Debye
mass) and T, appearing in the sum integrals. We will
conveniently refer to momenta of order gT as "soft" and
momenta of order T as "hard. " A sum integral usually
gains its dominant piece from a momentum integral re-
gion where some momenta are hard and others are soft.
Our strategy is to identify the soft and hard momenta
in the sum integrals and carry out an expansion about
the ratio between the Debye mass or the soft momenta
and the hard momenta to extract the leading piece. We
then construct a new sum integral &om the original one
by subtracting its leading piece out. We then find the
corresponding soft and hard momenta for this new sum
integral to extract its leading piece which is the next-
to-leading piece for the original integral. This procedure
enables us to get a systematic expansion in powers of g.
Since when getting the leading piece of a sum integral, a
soft momentum is always neglected compared to a hard
momentum, the integrals for two difI'erent scales T and
gT are separated or decoupled.

In the following two subsections, we give more details
about our computational procedure by considering sepa-

rately two- and three-loop diagrams. We concentrate on
explaining the way in which we perform the calculation
but spare the reader &om all the messy details for com-
puting individual diagrams. The expressions for all the
diagrams in Fig. 2 are provided in Appendix A.

B. Two-loop diagrams

To illustrate the general discussion in the previous sub-
section, let us first consider a typical two-loop sum inte-
gral arising from the setting sun diagram (e) in Fig. 2:

At
b Vo

2

~/P +M 2 P+ (3 1)

with

2
(o) bpo gp
tm P~ Q~(P+ Q)~

(3.3)

We shall use superscripts to denote the pieces in the ex-
pansion of Atop in M, i.e., A~ for the leading piece, A~
for the subleading piece and so on. The leading piece of

A&yp may be obtained by setting M to zero since At~p
is infrared safe as M + 0 and since the typical P con-
tributing to At~p is of order T which is much larger than
M. We can then subtract this leading piece &om At~p
which gives

2
A(o) go

3 P P2(P2 +. M2) Q2(P + Q)2

(3.2)

(b) (e)

Now, we find that the P integral in the second term on
the right-hand side of Eq. (3.2) is infrared sensitive to M
which means this P integral picks up contribution mainly
at the region where P is of order M. Thus, P is soft for
the subleading piece of Aq~p. Since Q is always hard, the
subleading piece At is

(&) (9) (h) A(' = —M' b 2

tyP P2 P2+ M2 4 la 4

and then

(3.4)

(k) ( j-) (m) tm + txp ~gP jP +M~pl Q g)
2

go
Q4

2
&o

Q'(P+ Q)' (3 5)

(o) Here we have defined the integral

p,v

FIG. 2. Diagrams contributing to the free energy of gauge
theories with fermions. The crosses are the "thermal coun-
terterms" arising from the last term of (2.12).

"' qP'gM' P')~

M2 Po

P(P +M) (3.6)

which is of order g in four spacetime dimensions. Its
value can be found in Appendix B.
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Now since the P integral in the last term of (3.5) be-
haves as 1/(P2 + M2) when P is much less than T, we
And that the P integral receives its main contribution
kom the region where P is hard. Thus,

and

2
~(2) M2 ~» 0 qo

&xp™p4 q4PQ

2
go

q2(p+ q)2

= A"' + A'" + A~'~ —M' hp,
typ typ typ typ M

-Q ~ +MP4(P2 2)
2 2
o &o

Q4 Q'(P+q)' (3.8)

We then identify P as soft to get Atyp as

A,„=—M q

P 4(P Q)
.q' Q'

1 M2 J &o
2

la Qs (3.9)

C. Three-loop diagrams

We now turn to the three-loop diagrams. Previously
[4], the Debye mass in the resummed propagator (2.12)
has been ignored for the three-loop diagrams since after
reorganizing perturbation theory the three-loop diagrams
are in&ared Gnite if we set the Debye mass to zero. Now,
since we need to explore one more order, the subleading
terms need to be extracted. Since the Debye mass only
appears in the static gluon propagator and is only probed

where we have expanded the denominator (P + Q) in
powers of the ratio of P and Q, replaced bp, (P Q)2 by
bp, J» q /(d —1) and integrated by parts in q. It is not hard

to see that Atyp) Atyp) Atyp) and Atyp are of orders 1, g,
g, and g, respectively, in four spacetime dimensions.

For a two-loop diagram, there is an extra factor g&
——

p 'Z g multiplying Aty . Thus, At and At con-
tribute to the g part of F. Therefore, the above asymp-
totic expansion of Atyp demonstrates how we extract the
g order contributions to the Bee energy density &om
two-loop diagrams.

by soft momenta of order gT, the sum integrals that we
need to deal with contain at most two &equency sums
and at least one soft-momentum integral.

Three different cases appear.
(1) Case one is where we have pure three-dimensional

triple-momentum integrals with the Debye mass being
the only mass scale. Since there are three loops, there
is a prefactor g T for these triple-momentum inte-
grals. Thus, these three-dimensional triple-momentum
integrals will give a result proportional to the Debye mass
to make up for the missing mass dimension, i.e., they
contribute to the free energy density at order g T M oc

g T . These pure three-dimensional three-loop integrals
are one of the new features which we encounter in the
g order calculation. Their evaluations are provided in
Appendix C.

(2) The second case we consider is where the sum in-
tegral contains only one sum and two three-dimensional
soft-momentum integrals. Thus, in this case there is only
one hard loop momentum integral. Neglecting the soft
momentum relative to the hard momentum enables us to
decouple the three-loop integral into a product of a one-
loop sum integral and a two-loop pure three-dimensional
momentum integral, which can be evaluated by standard
methods. In fact, we can show that these do not con-
tribute to the &ee energy density at order g . The point
is that a two-loop three-dimensional momentum integral
produces a result proportional to the Debye mass to an
even power. Since only soft-momentum integrals gener-
ate odd powers in g, this case is not relevant to the g
order evaluation.

(3) Finally, we need to consider the case where two sum
integrals and one soft-momentum integral are involved.
Again, for the hard-momentum sum integral, it is valid
to neglect the soft momentum compared to the hard one.
This leads to a product of a two-loop sum integral and
a one-loop three-dimensional momentum integral. With
the methods developed in Ref. [4], we can evaluate the
two-loop sum integrals. However, it turns out that after
we sum up all the pieces contributing to free energy den-
sity at g order, all the overlapping double sum-integrals
cancel and only the nonoverlapping double sum-integrals,
which can be written as a product of two one-loop sum-
integrals, survive. This observation was already made
earlier for the case of @ED [5].

As a concrete example, let us consider the simplest
three-loop diagram, the basketball diagram (j) in Fig. 2.
Applying the Feynman rules gives

d(d 1)~ d~C'~Ib—.»+ — & d~&~
~

2' +4 ~ bb 3(d—1) 4 (1—8„. 8„.
16 8

1
+M ~~

-
P Q ~ (P+q+~) (3.1O)

The de6nition of Ib j& may be found in Appendix B. It is convenient to rewrite the expression above as
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(P2+M2) (Q2+M2) P2Q2 K2 (P+Q+K) 2

h„, 8„,l f b~, b~, l 1-8i„
~g~ &P'+M2 P2 rl EQ'+M2 Q2)l K.(P+Q+K),

( 8p, b„, ) 1 —b~, bI„

(P2+M2 P2 j Q2K (P+Q+K) (3»)

Let us consider each term at the right-hand side of
Eq. (3.11) above. The first term, involving Ibssii, is of
order g and represents the leading contribution of many
three-loop diagrams and has been evaluated in Ref. [4].

Recall that we listed three cases in the general treat-
ment of the three-loop diagrams. The second, third,
and fourth terms correspond to these three cases, respec-
tively.

The second term is a three-loop pure three-dimensional
momentum integral. This is the first case discussed
above. We encounter a class of these three-dimensional
integrals which are de6ned in Appendix B and computed
in Appendix C.

The third term involves two soft-momentum integrals
corresponding to the second case. Since K is hard, it is
valid to neglect P, Q compared to K to write this third
term as

3(d —1) 4 , ( 1 1 )
8 A Po Qo + )

q Q2+M2 Q2 ) K4

3(d —1) ,
g d~C~ J, (3.12)

which is of order g as what we have expected (even
power in g}.

The fourth term corresponds to the third case where
P is the soft momentum since P needs to resolve the
Debye mass M. Therefore, as described above, we can
approximate (P + Q + K) as (Q + K) (the case where

go + I"o = O and ~q + k~ is soft contributes only at order

3(d-1) 4

4 g d~C~Ji I,„„, (3.13)

where we have introduced I,„„as

Ib
Q~ 2K2 +K 2 (3.14)

and omitted the term vanishing in dimensional regular-
ization.

Therefore, we have explicitly shown how to extract the
order g contribution to the Bee energy density f'rom a
simple three-loop diagram. These order g contributions
are expressed as either three-loop pure three-dimensional
momentum integrals or as products of a single three-
dimensional soft-momentum integral and a double sum
integral. For other three-loop diagrams, parallel steps
can be followed except for possibly more elaborate ex-
pressions; of course, we need to introduce more double
sum integrals and pure three-dimensional momentum in-
tegrals. However, as mentioned before, when we add up
all the pieces contributing to the Bee energy at order g
&om the three-loop diagrams, these double sum integrals
cancel except for the "nonoverlapping" sum integrals that
can be expressed as a product of two single sum integrals.
We do not know a fundamental reason which leads to this
cancellation.

gs because of phase space suppression). Now, the P in-
tegral decouples f'rom the Q, K sum integral. Therefore
the fourth term in (3.11) can be expressed as a product
of a single three-dimensional momentum integral and a
double sum integral:

IV. R.ESULT AND ANALYSIS

Combining the results for all the diagrams listed in Appendix A produces the final result for the free energy density
through order g in four spacetime dimensions as

4vr2 1 ( 7d~) gI =d~T —
~

1+
~
+ (C~+ -,'S~)

9 5 ( 4d~) 4'

g 4
2 f22 P, 38 ('(—3) 148 ('(—1) 64'

4vr 3 47rT 3 g(-3) 3 g( —1) 5
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C~ 176 ln +176'@—24m —494+264 ln 2
4+T

+C~S~ 112ln +112p~+72—128 ln 2P
4mT

+Sz —64 ln —64p~+32 —128 ln 2
I

2 P
4mT

(47 p 1 ('(—3) 74 ('(—1) 1759 37
+C~Sp

~

—ln +— —— —8p~+ +—ln2
~i 3 47rT 3 ((-3) 3 ((-I) 60 5

20 p 8 (,"(—3) 16 ('(—1) 1 88
+S~

~

——ln +- —— —4~~--+—»2
~3 47rT 3 (,'(—3) 3 ((—1) 3 5

(
gS2~

~

— +241n2
~)

g s (C~+S~l
47r (, 3 )

—144S2~ + O(g ) (4.1)

where (,
' is Riemann's zeta function and p~ is the Euler-Mascheroni constant.

For QCD with nf quark fiavors, to gs order, the &ee energy density is

8m T 1+ sznf —0.09499g (1+ i2ny) + 0.12094g (1+ snf)

+g 0.08662 (1+ snf) ln
~ g 1+ en' ~

—0.01323 (1+ i2nf) (1 —ssnf) ln—

+0.01733 —0.00763 n y
—0.00088 n&

+g 1+ q~n7 002627(1+ —n7) (1 ——n7) 1n ——012806 —000717n7+000027n7 +O(g )), (4.2)

where we have evaluated the coefBcients numerically.
For QED with nf charged fermions with charges q;e, the fifth-order &ee energy density may be read &om the

expression above on using (2.5):

F&nn —— () qq) (
—

) () q,. ) (641n + 647n —82 + 128 1n 2) + 144 ) q; (4.3)

Taking p = T, it is not hard to check that this result
agrees with Ref. [5].

As in Ref. [4], we now check whether the perturba-
tive expansion of the QCD free energy density behaves
well for physically realized values of couplings to g or-
der. Although the free energy does not have any renor-
malization scale p dependence, the partial sum does so.
If the perturbative expansion is well behaved, including
higher-order corrections into the partial sum reduces the
p dependence. The inclusion of the g order term in
the partial sum compensates the p dependence of the g3
term. Besides looking at the p, dependence of the partial

In Ref. [4], with the help of the renormalization group a
g Inp, /T was introduced to compensate for the y, dependence
due to the g term. We note that our present g order result
correctly produces this desired g ln p, /T term

1

1
Pi =

( )4 (—s C~ + s C&Ss'+ 8S2s') . (4 5)

In Ref. [4], it was found that including the g4 term does
not make the partial sum for the free energy density less

sums, we also compare the size of the contributions from
each order.

Define n, (T)—: g(2T)/(4 )7r. Figure 3 shows the result
for six-fiavor QCD when c2., (T)=0.1 (which corresponds
to scales of order a few 100 GeV). The &ee energy density
is plotted vs the choice of renormalization scale p. We
have taken

p pi P
g'(P ) g'(T) T Pp

—Pp ln —+ —ln 1 —Ppg (T) ln—
T

(4.4)

where
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1.05- j,

1.025-

1

~+ 0.975-

0.95-
0

0.925-

0.9-

through g———through g4
~ —- —- —- through gP
~ 0 ~ ~ ~ 0 ~ 0 ~ 0 0 0 through

~~~~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~
~ yO~yO

cx (T) =0.1

2 4

1ogzo ( P/T)

~ 0.99-
~Q

0.97-
4

-6 -2 0 2

log«( P'/T ~

~ g ~ ~ ~ ~ ~
~ ~ ~

~ ~ ~ ~
~ ~ ~

s(T) =0.02
Hg -0

FIG. 3. The dependence of the free energy density I' on
the choice of renormalization scale p for six-flavor @CD with
n, (T) = 0.1. The free energy density is normalized in units of
the ideal gas result —(—d~ + d~)vr —T . The dotted, dot-
dashed, dashed, and solid lines are the results for I' including
terms through orders g, g, g, and g, respectively.

FIG. 4. The same as Fig. 3 but for n, (T) = 0.02 without
fermions.

d~~'T4
[1 —0.0239 + 0.0152 + (—0.00378

45
+o+ o.oo1o9) + (o —o.oo4o6) + o(g')]. (4.7)

dependent on the renormalization scale. There, one of
the main sources of the p, dependence is the g term which
requires the order g term to balance its renormalization
scale dependence. According to Fig. 3, inclusion of the
g term in the partial sum does not generally make this
sum less dependent on p and the perturbative expansion
does not behave well in this respect. For p = T, the
terms at each order are

79~'T4
E = — 1 —0.0846 + 0.0976

90

+(0.0255 + 0 —0.0192) + (0 —0.0818) + O(g )

(4.6)

For this value of n» the g and g terms have about the
same size. This does not necessarily mean that pertur-
bation theory does not work well since the g term is the
leading term of new physics at the scale of gT instead of
being a correction to the g term. If the corrections at g
and g are smaller than the g and g terms, perturba-
tion theory may still work well. However, the numerical
values above show that the g term appears not to be
generally smaller than the g term. Therefore, perturba-
tion theory seems not to work well for this value of a,
which corresponds to QCD at the electroweak scale.

Figure 4 shows the p, dependence for n, (T) = 0.02
without any fermions, i.e., with ny ——0. This is inter-
esting since it is [see Eq. (2.4)] equivalent to pure SU(2),
i.e., electroweak gauge theory at the electroweak scale,
with o. I/33. It is not hard to see that the g order
&ee energy density is less sensitive to the renormalization
scale than the g order &ee energy density. However, the
&ee energy density through g5 order is not more stable
than the result through g order. This is due to a large
cancellation between the g3 term and the g2 term. Here
are the values for the contributions at each order to the
&ee energy density for the choice p, = T:

0.99926-

% 0.99924.

+o 0.99922-

0.9992-

0.99918.
0

0.99916.
0.99914 ~ ~ e ~ 4

~ ~ ~ ~ ~

~ ~ ~ ~ y ~

~ ~ ~
~ ~ ~

~ ~ ~ ~ ~
~ ~ ~ ~

~ ~ ~
~ ~ ~..- ~ ~ ' " (xg(T) =0.001

0
lotto( g/T)

10

FIG. 5. The same as Fig 3but for n. , (T) = 0.001.

Obviously, the corrections at orders g and g are smaller
than the g2 and g terms. This suggests that perturba-
tion theory works.

In Fig. 5 we show a similar plot for ny = 6 and n, (T) =
0.001 where the behavior of the perturbative expansion
is good. In Fig. 6, we provide the corresponding plot for
o., (T) = 0.2 but ny = 5 (for T being several GeV).

We like to comment on the absence of the g lng term
in the expansion of the free energy density. It is conve-
nient to view the contributions to the &ee energy at each
order with an efFective 6eld theory technique as was done
in Refs. [10]. In hot gauge theories, there are three rele-
vant scales in the imaginary time formalism: T, gT, and
g T. The scale T is related to the nonstatic fields while
gT is the scale for the Debye screening efI'ect. The scale
g T is believed to be the inverse of the magnetic screen-
ing length which cures the remaining in&ared problem
of hot non-Abelian gauge theories. Since the g T scale
contributes to the &ee energy starting only at order g,
we can ignore it. Imagine first integrating out the non-
static fields (scale T physics) to arrive at an efFective
6eld theory which correctly describes physics in the low
energy region (of order gT). I.et A be the cutoff sep-
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arating the scales T and gT. Integrating out the non-
static fields gives a contribution to the free energy den-
sity f (T, A, g ) which has an even power expansion in g
since no resummation is required. Integrating out these
nonstatic Gelds also generates effective interaction terms
for the static Gelds. This introduces a dependence on the
cutofF A into the bare parameters of the effective field
theory for the static fields at scale gT with cutoff A. An
lng term arises only through the logarithm of the ratio
of the scales gT and T, i.e., through cancellation between
ln A/T and ln A/(gT). ln A/T terms enter the free energy
density through f(T, A, g ) and the bare parameters of
the effective theory for the static Geld at scale gT. It can
be shown that there are only two parameters relevant
to the &ee energy density through g, the effective mass

and the effective coupling constant [10]. Since the cou-
pling constant in the (superrenormalizable) efFective the-
ory requires no renormalization, there will be no ln A/T
appearing inside the efFective coupling. Since f (T, A, g )
has an even power expansion in g, a g lng term comes
only from the cancellation between an ln A/T term in the
effective mass term and another ln A/(gT) coming from
the evaluations of the effective theory. Therefore, the ab-
sence of the gs lng term means that there is no ln A/T at
order g in the effective mass term which has been exam-
ined explicitly in Ref. [11].In other words, this effective
mass has vanishing anomalous dimension and does not
"run" at the leading order as we vary the cutoff A [12).
In fact, at the next-to-leading order, the effective mass
does "run" [13].

As an outlook, it would be interesting to investigate
the reasons for the cancellation of overlapping double-
frequency sums as well as for the absence of a g5 ln g term
in E. It would further be worthwhile to include scalar
fields and to consider the case of nonvanishing chemical
potential.

Note added: Recently, using a different method,
Braaten and Nieto have confirmed our result [15].
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APPENDIX A: RESULTS POR INDIVIDUAL DIAGRAMS

Here are the contributions to the free energy density through g order from individual diagrams in Fig. 2. The
newly appearing symbols are defined in Appendix B:

—p 'E~ = ——d~d lnP —d~ M Jq~,2' = 1 2 1 2

2 P d —1
(A1)

—p 'Eg ——d~ lnP,
P

(A2)

F d4M J
2

(A3)

2 2

IJ' +& dA+A(d 1)(dbl + 2Jlabl)I
Z g 2

4

Z2 2

P, 'I', = — d~—C~(—18(d —1)bi+6(d —1)(2d —7)Jl~bl+6[Jl +4M J2 +4M Al —2(2d —3)M A2]

+(2d' —13d + 39)M' Jl b2) + O(g'),

Z2 2

P, 'Fy = — d~C—~[6bl —6(d —3)Jl~bl + 12M A2 —(d —5)M Jl~b2]+ O(g ), (A6)
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4
p—'Fg —— d~C~ ((20d —23)Ib n + 4Jg~ [4I.„„+(16d —23)Ig~ —(16d —28) Igg —2(4d —7) (d —3)bqbq]

g2(3 Js~ + 4Jsg + 16Js, —36Js~ + 16Js; + 12Js~ —12J~~Jza) j + O(g ), (A7)

4
p'—Fg = d~—C~ ( Ib~—n + 4J~~ [ Ig~—+ 2Igs + (d —3)by by] j + 0 (g ), (As)

4
—p, 'F; = d—~—C&(Ib~n+ 4Jq~Iq~) + O(g ) (A9)

4

p, 'E—
~

= d&C&(d —1)(dIb~&&+ 4J& I,„„+2Jss) + O(g ),16
(A10)

4
—p, 'FI, = d~C&( 9(d ——1)Ib~&& —12J&~[IS„„+(2d —3)Iq~] + 4(—2Jst, + 3J3, Jsj + J]~JQ~)j+ O(g ), (A11)

4

p, 'P)—= Iq,g —— d~ C—~ Jg~ (C~ [(3d —10)I,„„—(10d —12)Ig —8 (d —2) Igs —2 (d —2) (d —6d + 6)by by]

+S~ [ 4(d —4—)If„„+16(d —3)Ip, +. 32Igg -t 8(d —6d + 6) fgbg] jg4, J~s t' 3d —5 d —3
+—d~C~ —2(d —3) + 4' ~

— Jg + 4 Jg + SJgg
~16 M'

q d —2 d —2

( 1 5d —ll 8
+

~
Js +2 Jss+ Js, —64Js +64 3Jf

(d —2 d —2 d —2

16 3d -5
+ Js, —8 Js~

l
+ O(g'),

d —2 d —2 )
(A12)

4
p'F~ = — d&C~(Ib—~—n+ 4J&~I&~) + O(g ), (A13)

—p2'/„= 2d~ lnP ) (A14)

—p E =—26
Z2 2

d~ S~ [3(d —2) (f~ —2bg fg) —6(d —2) Jg~ fg —3M (A~ —4A~ )

-(d —2)M'Jg fg]+0(g ), (A15)

4
p'F„= —dg(2Sgy ——Cga)(d —2)[2(d —4)Ib )(

—(d —6)Ib )( + 8(bg —fg)I,„„
+4Ji If„„+16Jg Ig, ] + O(g ), (A16)

—p Fq = g dASgp ((d —2) [2Hs —Ib~, )
—(bg —fg) fg]

+2(d —2)Jg~[—I,„„—4', + (4 —d) (bg —fg) fg] j + O(g ), (A17)

p'F„= g d~C~Sy—((d —2) [Ib~n + 2(bg —fg) I~„„]

+4 '~[(d —3)Ig, + 2Iqd + (d —2)Ig, + (d —3)fgbg] j + O(g ). (A18)

The sum of those parts in the contributions above that lead to g (and potentially g lng) terms as e ~ 0 is
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AM J,.(6(~' - 1) + g'[(d' - »d + 58)C~b, —4(d - 2)S~f,])
—2g (d —2) (d —4) d~ S2~Ji~ (bi —

f i )f2
d —31~3 3d —5

gg d~C~ — ', + Ji~ — J2a+ 2~+2 2&
8 M2 4d —2

3d —5 (d —3) (3d —5) 2d —3
1.6(d —2) 8(d —2) 2(d —2)

1 3d —5—4'. + 4Jsy + Jag —
~

Jan + &s' ),d —2 ' 2d —2
(A19)

where Z should be used up to order g . Using the identities of Appendix 8 we can simplify this expression and get9

IJ, 'F—~ l = d~—M—J,~(6(Z —1) + g [(d —13d+ 58)C~b2 —4(d —2)Sz f2]f
—2g4(d —2)(d —4)d~S2P. Ji (bi —fi) f3

3d2 —24d+ 37 (d —3) (3d —14)
8(d —7) (d —5) 2 4(d —5) (d —4) (2d —9)

(d5 —23d4 + 199d —809d2 + 1548d —1132)(d —3) Ji
8(d —7)(d —5)2(d —4)2 M2 (A20)

Note that for this term the cancellation of overlapping
double-frequency sum integrals still holds outside of d =
4. Using the results of Appendix 8 it is further easy to
see how the 1/e terms associated with the scales T and
gT cancel separately so that for e ~ 0 no g lng term
arises in F.

APPENDIX B:BASIC INTEGRALS

Here we give the de6nitions for the integrals appearing
in our derivations. In the next subsection, we first pro-
vide the definitions of the sum integrals which have been
evaluated in Ref. [4] and give the results for those that are
relevant for the g term of the free energy density. Then
we define and give the results for five additional two-loop
sum integrals which appear in the result of individual
diagrams but cancel each other after summing up the di-
agrams. In the second subsection, the definitions of and
results for the three-dimensional integrals arising in the
g evaluation are given. They are evaluated in Appendix
C.

1
SllI1

sllll P2 Q2 (P q) 2

Three-loop integrals are

(B3)

The relevant cases are

bi —— 1+2e
~

1+ ln +
~

+ O(e ),
T2 ( p g'( —1))
12 q 4vrT —1 )

b2 ——
~

—+ 2p& + 21n
~
+ O(e),

1 fl p
4irT )

1 + 2e
l

1 —ln 2 + ln +
T2 (
24 47rT —1 )

+O(")
p,

f2 ——
i

—+ 2p@ + 41n 2 + 2 ln
~

+ O(e) .
4~ E. 4vrT )

(B2)

Two-loop sum integrals are

1. Scene sum iniegrals

Here is a list of integrals evaluated in Refs. [14,5]. One-
loop integrals are

r(n ——+ e)((2n —3+ 2e)
X 2

r( )

1
P Q K (P+Q+It)

z-b f
J qlscl P'Q'&'(P + Q + &)' '~

Iff ~
Q. K

&»~~ p'q Z'(p+q) (p+Z) (B4)

f (22n 3+2m 1)b—1

j&)
(B1) Now we define some integrals that were computed in

Ref. [4] but not explicitly defined:
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nno (1 hvo) ~b bi o &o

~~P Q (Pyq) ' iqP Q

2
qo

Q'(P+ Q)'

bpo f
2

po qO

P2Q2(p + Q)2
~ 2 P4 Q4

2

Iq,d,
= tr [II„„(P)—II„„(0)]',

where the values for the first four integrals may be found in the evaluations of bi, h2, hs in Ref. [4] and I~,g may be
expressed in terms of I d, I,&, and I,& there.

The following five two-loop sum integrals appear only in individual diagrams but not in the Anal result for the &ee
energy density. They can be evaluated using the methods introduced in [4]. Here we only give the definitions and the
values of these five integrals:

2Jo 0P4Q2 (P+Q) 2

q2 T2

~~ P4Q2(P+Q)2 12(4vr) 2

P4q2(p+q) 2 12(4~)2 8e 8 4 4 2 47fT 4 q( —1)

Poqo

l~lg P Q (P + Q) 16(4') (B6)

2. Three-dimensional momentum integrals

Here is a list of our basic three-dimensional momentum integrals. %e use dimensional regularization to control
both the ultraviolet and the in&ared divergences. Therefore, "three-dimensional momentum integrals" really means
integrals in 3 —2e dimensions. The steps for computing these integrals are provided in Appendix C:

pob

~ P2+ M2

TM p P
4' 1+2 ln +1 e+

~

21n +4ln +4+ —
~

e +O(e ),2M 2M 2M 4)
J2

h bpo go T 1 p 1

(P + M )(Q + M2)(P+ Q) {4vr) 4e 2M 2

h„,h~,
P2+M2 2 P+ 2 4m 2 4e 2M 2

M2bp, b~, 1 T'
~q P'{Q'+ M') [(P+ Q)'+ M ] 8 (4~) 2

M2bp, bq, 1 T
( )

~& (P'+ M')'(Q + M2)(P+ q)2 4 (4~)2

J3 b„,hq, b&,

~&Jr (p'+M') (Q'+M') (K'+M') [(p+q+K) 2+M2]

—+ 6 ln —4 ln 2 + 8 + 0(e),4~ s e 2M

/Q~ (p2+M2) (Q2/M2) K2(p+q+K) 2

24~ ' e 2M q 2M 2M
—+ 61n +8 +

~

181n +481n +52+
~

e +O(e ),2 I P 25~2&

12 )
M~bp, b~, bI„ T3M

~&~ K'(P'+M')(Q'+M')[(K+P)'+M'][(K+Q)'+M'] (4~)'



52 FREE ENERGY OF HOT GAUGE THEORIES %ITH FERMIONS. . . 7243

T M 1 3 p, 1—+ —1n —— + O(e),
(4m)s 8e 4 2M 4

M'b„, h~, hI„ TsM
K (P'+M )(Q +M~)(K+P) (K+Q) (4~)s

M2bp, bq, bI„ T M7r

~/~ (K&+M&) (P&+M&) (Q&+M&) (K+P)~(K+.Q) & (4~)s 12

M48„,b~, by, TsM (~ 11
~/~ (K~+M~) (P +M~)(Q +M~)(K+P) (K+Q)~ (47r) (24 4)

M4h„, b~, bi„
~ ~ K'(P'+M')(Q~+M')[(K+P)'+ M'][(K+Q)'+M']
TsM 6 1 ln2)
(47r) 24 12

M'h„, b~, bg,

~g~ K~(Ps+M )[(K+P)~+M ]Q~(K+Q)~
M4bp, bq, bA,,

y q~ (P~+M~)[(P+K) +M ](Q +M )[(Q+K) +M ]K (P+Q+K)~
TsM (1 1n2)
(47r)s q4 4 j

h„,hq, bI„(P Q) TsM fear~ 1)
(K +M ) (P +M ) (Q +M ) (K+P) (K+Q) (47r) 1 12 4 )

APPENDIX C: EVALUATION OF BASIC INTEGRALS

Here we will first evaluate Jq, J3, and J3g and then express all other three-dimensional integrals appearing in the
diagrams (a)—(r) in terms of these three.

Jz may be evaluated as

2 6 P 1

(2m)s ~' p~ + M2 ™
T~ ~ g8 8-312+~ -8

M 0

1+2 ln +1 e+ 2

p Q p ( 2+~)

TM (M~ )
(4vr)s~~ (4vrp~)

1n +41n +4+ —
~

e + O(e ).2M 2M 4) (Cl)

In dimensional regularization, we have

2 Jgo RD8 J

Js —2&ss = 4. PO

~ ((P'+ M )[(P+K)'+ M ] P'(P+ K)'y (C2)

We are now going to evaluate this difference using a method similar to the one applied in the appendix. of the second
reference of [10].

Since J3 —2J3g is both in&ared and ultraviolet 6nite, we can go to three-dimensional coordinate space to get

~
—2M'

Jg —2J3g ——T d r (C3)

where we have used the Fourier transformQpc+6™
(27r) p + m, 47rr

for m = M and m = 0. Integrating by parts and using the identity

(C4)
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f 1 b
dr —(e ' —e ) =ln—

0 7 a

gives

T3M
Js —2Jss = 4 ln 2 + 0(e) .

4m

(C5)

(C6)

J3g may be evaluated as

p 6e Q3 2~@ d3 2~q 1 d3 2'lt" 1J —T M
M 2K 3—2e 27) 3—2eq2 q+p 2 2K 3—2e k2+1 A+@ 2+1

1

=T M — do. o. 1—o. p / ' d 1— p+1
0 0

OO

T3M 0' (2 ) k2 ' 2 ) dP d 2( 2) —2e P(1 P) 2+1 /

M (4~)'—"(4~) /2- r (-', —&)

p s r(-,'+e) B(-',—e, —,
' —e)

M 4vr s—2' 4~ s/2 —r
z'M / M2 q

-' r (,+,) r (,—,)'r (—,'+3,) r(2, )
(4~) /' q4~p'p r (-', —.) r(4.)

T3M 1 257r

24ms e
(C7)

For step two above, we have used the result

d3 —26 1

(2m) ' (p2+ m )[(p+ q) + m ]

r(- + )
(4~)'—" dn[n(1 —n)p'+ m'] (C8)

obtained by Feynman parametrization, for m = 0, 1. For step three, the identity

1
dxx (1 —x) i = B(a, b),

0

where B(a, b) is the P function

r(a)r(b)
I'(a+ b)

'

(Cg)

(Clo)

as well as the surface area of the d-dimensional unit sphere, 2vr+2/r(d/2), have been used. For step four, we used the
identity

f
OO x

dx = B(a, b) .1+x +s

Combining the results (C6) and (C7) gives the value for Js

(C11)

3. Identities for three-dimensional integrals

Here are some identities for (3 —2e)-dimensional integrals. It is easy to derive them and we will give a sample proof
in the following subsection.

d —3 J~2

2(d —4) M2'
1

J2c =
d —6

d —4
2
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J3, ——

J36

J3f

1
[(3d —ll) Js —4(d —3)Jg J2 ],4(d —5)

3d —11
J3b —2Jia J2b)

d —3
1

4(d —4)
[(3d —11)Jsb —2(d —3)Jg~ J2~],

1

2(2d —9)
[(3d —13)Js, —2(d —3)Jg~ J2g],

1J, = [
—(3d —13)J, +4(d —3)J, J„],

3d —ll
4(2d —9)

1J„= „[(3d—13)(2J,.—J,.) + 4J„],4 d —5

=1 J~
J3j Jsb + Jsd 4Jse 2Jla(2 J2a J2b) (C12)

d —3 J
2(d —4) M2'

d —3 J~2

4(d —6) M"
d —3J

4 M2'
1 2(d —3)2 Js

+

3d —11
J3b 2J&a J2by

d —3
3d —11 (d —3)2 Js
4(d —4) 4(d —4) M '

(3d —13)(3d —11) (d —3) (d —5) Ji
8(d —4)(2d —9) 8(d —4)2 M2 '

(3d —13)(3d —11) (d —3) 3d —13 2 Ji
16(d —5)(d —7) 8(d —7) (d —4)(d —5) d —6 M2

3d —11
4(2d —9)

J3b y

(Bd —13)(3d —11) 1 4 (d —3) (5d —23) Jis

16(d —5) d —5 2d —9 8(d —4)(d —5)' M"
d —10d+ 23 1 J3

4(d —4)(d —3)
'

4(d —4)' M2

J3

J3g

J3h =-

J3;

Putting all of them together lets one express all three-dimensional integrals in terms of Jz, J2b, J3, and J3b.'

(C13)

Since in the diagrams, J2b and J3p only appear through J3z and therefore only in the combination J3p+ 2J~~J2b ——

(Bd —ll) Jsb/(d —3) [see Appendix A and Eq. (C12)], we have not bothered to write down the evaluation of J2b,
although it is easy and can be done in general dimension.

4. Proof of identities for J3 and J~~

As an example, here is the proof of the identity for Js, in (C12). The proofs of all the other identities proceed along
the same lines with the exception of that for J3~, which is presented below.

Using the shorthand

(C14)
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we can write

M2
Q2 p2+M2 q2+M2 k + p 2+M2

M2 t9 M2
k,.

j & Qk k2 (.pz+M2) (q2+M2) [(k + p) 2+M2] [(k + q) 2+M2]

M2 4k. (k+ p) 1

(k+ p)'+M' k'(p'+M') (q'+M&) [(k + p)2+M&] [(k + q) 2+Mz]

2 1», (p'+M')(q'+M ) [(k+ p) +M ]z[(k+ q)z+M2]
4J3 + 2M

1

k'(q'+M') [(k + p)'+M']'[(k + q)'+Mz]
( 1,orJs,M~

5 4 BMz BM2

3d —ll d —3
Js + Jg J2 (c15)

where for the second equality we have used the identity (Ok;/elk;) = d —1 and integrated by parts and where for the
last step it has been used that by dimensional considerations Jq~ (x. M " ~ and Jq~ oc M"

Finally, here is the proof of the identity for J3~. Noting that

(p'+M')(k + p)' (c16)

is parallel to k, we have

p v„„,k'+M p+M ~2+M2 I +p ~ k+& 2

(k p)(k . q)
k2 Q2+M2 p2+M2 q2+M2 k + p 2 Q + q

2

1
Jst, +. Jsg —4Js, —2Jg (2J2 —J2g)— (c17)
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