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Non-Abelian Debye screening length beyond leading order
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In quantum electrodynamics, static electric fields are screened at nonzero temperatures by charges
in the plasma. The inverse screening length, or Debye mass, may be analyzed in perturbation theory
and is of order eT at relativistic temperatures. An analogous situation occurs when non-Abelian
gauge theories are studied perturbatively, but the perturbative analysis breaks down when correc-
tions of order e T are considered. At this order, the Debye mass depends on the nonperturbative
physics of confinement, and a perturbative "definition" of the Debye mass as the pole of a gluon
propagator does not even make sense. In this work, we show how the Debye mass can be defined
nonperturbatively in a manifestly gauge-invariant manner (in vectorlike gauge theories with zero
chemical potential). In addition, we show how the O(e T) correction could be determined by a
fairly simple, three-dimensional, numerical lattice calculation of the perimeter-law behavior of large,
adjoint-charge Wilson loops.

PACS number(s): 12.38.Mh, 11.10.Wx, 52.60.+h

I. INTRODUCTION

mD = +O(e T)
eT 2

3
(1 2)

Electrically charged particles in a hot plasma react
to electromagnetic fields and cause screening of static
electric fields at large distances. The inverse screening
length, also known as the Debye mass mD, may be com-
puted in @ED by considering the exchange of a single
virtual photon between two static test charges, as de-
picted in Fig. 1. The long distance falloff of the static
potential is determined by the position of the pole in the
photon propagator at zero frequency. This is given by
the solution p = —m& to

p'+ IIoo(O, p) = O,

where II„(po,p) is the self-energy of the photon. In the
ultrarelativistic limit (when particle masses and chemi-
cal potentials are negligible), the leading-order result is
easily computed from the one-loop graph of Fig. 2 and
yields

for a theory with a single fermion of charge e.
Unlike electric fields, magnetic fields are unscreened,

which is rejected by the fact that

Iim II, (O, p) =O,
P~O

ii=123. (1.3)

where

mD = mo + O(g2T),

/N nfl
mo ——
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—+
I

gT
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(1.4a)

(1.4b)

for SU(N) gauge theory with nr Dirac fermions.
For the sake of better understanding the nature and

reliability of perturbation theory at finite temperature,
there has long been an interest in computing the lead-
ing correction to this result [3]. It is known, however,
that this correction cannot be computed perturbatively
in non-Abelian gauge theories [4,5]. As we shall re-
view below, the O(g T) correction to the Debye mass
receives contributions from fundamentally nonperturba-
tive physics associated with the interactions, at high tem-
perature, of magnetic gluons with momenta of order g T.
The best that can be done perturbatively is the extrac-
tion of a logarithm at that order [5,7]:

A similar perturbative calculation carried out in non-
Abelian gauge theories, using the one-loop graphs of
Fig. 3, yields a lowest-order result of

mD=mo+ Ng Tln~ —~+cg T+O(g T).(mo l 3
4'

(I 5)

FIG. 1. A single virtual photon exchanged between two
static test charges. For reviews, see Refs. [1,2].
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II. NONPERTURBATIVE HIGH TEMPERATURE
PHYSICS

FIG. 2. One-loop self-energy of a photon.

The physical picture behind our definition will be
clearer if we first review the source of nonperturbative
effects in hot non-Abelian gauge theories. The prob-
lem is easiest to understand by considering a series of
effective theories corresponding to larger and larger dis-
tance scales in the hot plasma. Since we are interested
in studying the screening of static electric fields, we can
work directly in Euclidean space where nonzero tempera-
ture corresponds to making the Euclidean time direction
periodic with period P = 1/T. So
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FIG. 3. One-loop self-energy of a gluon.

The constant c, however, is not computable by perturba-
tion theory.

Because the physics of the O(g2T) correction is non-
perturbative, it behooves us to formulate a nonperturba-
tive definition of what we mean by the Debye mass in the
first place. Such a definition should be gauge invariant
and preferably implementable in numerical lattice simu-
lations. The definition (1.1) is unfortunate in both these
respects. In particular, the self-energy II~ is not itself
gauge invariant in non-Abelian theories. There are for-
mal proofs that the pole position is gauge invariant order
by order in perturbation theory [8], but this is of limited
use since perturbation theory breaks down beyond lead-
ing order. We should look instead for a definition that is
manifestly gauge invariant.

The purpose of this paper is two fold: (i) to give a
natural nonperturbative definition of the Debye mass,
and (ii) to show how the constant c in the expansion
(1.5) could be extracted from a relatively simple numer-
ical computation of the perimeter-law fall off of large,
adjoint-charge Wilson loops in three-dimensional, zero-
temperature, pure lattice gauge theory. In Sec. II, we
briefly review the source of the breakdown of pertur-
bation theory. In Sec. III, we construct a manifestly
gauge invariant, nonperturbative definition of the Debye
mass. We review why one method sometimes suggested
in the literature, extracting the Debye mass from the
long-distance correlation of Wilson lines, is inadequate.
Our definition works only for vector-coupled gauge the-
ories, such as @CD or @ED, and only at zero chemical
potential. We explain what the difhculties are for axially-
coupled theories or nonzero chemical potentials, and we
outline the problems with making a nonperturbative def-
inition of the Debye mass in those cases. Finally, Sec. IV
contains our derivation of the O(g T) correction to the
Debye mass in terms of three-dimensional Wilson loops.

(
Z = [17/'DQ17A]exp —— d7 d x Cs, (2.1)

)
where we have suppressed details of ghosts and gauge fix-
ing. Boson (fermion) fields have (anti)periodic boundary
conditions in Euclidean time. At distances large com-
pared to P, the dynamics of the time direction decouples,
and one obtains an effective three-dimensional theory of
the zero-&equency modes of the original fields. Since the
fermionic fields are antiperiodic, only the bosonic degrees
of freedom are relevant in this effective theory. Schemat-
ically,

Zm VA exp — d xZg (2.2)

The effective theory (2.2) is a three-dimensional gauge
field A coupled to a three-dimensional adjoint-charge
scalar corresponding to Ao. One of the effects of in-
tegrating out physics with momenta of order T is that
the adjoint scalar obtains a mass of order gT. As indi-
cated in (2.2), the gauge coupling constant in the three-
dimensional theory is g3 —g T.

Next, consider distances in the three-dimensional the-
ory that are large compared to 1/gT. At these dis-
tances the adjoint scalar decouples, and the new effec-
tive theory is a pure gauge theory in three dimensions.

More details can be found in the discussions and reviews of
Refs. [1,9—11].

Physically, light bosons dominate over light fermions at low
frequency because of the infrared divergence of the Bose dis-
tribution 1/(e~ —1) as Z —+0.

Purists may object to saying that the adjoint scalar in the
effective three-dimensional theory arises from Ao in the four-
dimensional theory, because this statement is gauge depen-
dent. The gauge-independent identification is that the three-
dimensional scalar corresponds to the traceless part of the
path ordered exponential 'P exp(i f Ao(w, x) d~) in the orig-
inal four-dimensional theory. However, we shall continue to
refer to the adjoint scalar simply as Ao.

There can be scalars too if they are part of the fundamental
theory, such as for electroweak theory, and if the temperature
is 6ne tuned to be near a phase transition.
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III. DEFININC THE DEBYE MASS

Begin by considering QED. The Debye mass can sim-

ply be defined by the correlation length of the equal-time
electric Geld correlation function:

(E(x) E(0)) - '"'/ixi as ixi -+ oo, (3.la)

or

mD = — lim ~x~ ln(E(x) . K(0)) .
ix( —+oo

(3.1b)

This is equivalent to the definition (1.1) in terms of the
photon self-energy because the exponential rate of decay
of a propagator at large distance is det;ermined by the lo-
cation of singularities nearest the real axis in momentum
space.

Unfortunately, this is a poor definition in non-Abelian
theories because E is no longer gauge invariant. One
might instead consider a de6nition in terms of the cor-
relation between two static test charges. Speci6cally, a
manifestly gauge-invariant possibility would be to de6ne
the Debye screening length as the correlation length be-
tween Wilson lines (also known as Polyakov loops),

Three-dimensional non-Abelian gauge theories are con-
Gning. Moreover, the only remaining parameter of the
theory is the three-dimensional coupling g T and so, by
dimensional analysis, the confinement radius is of order
1/g T. The physics of magnetic gluons with momenta
of order g~T is therefore nonperturbative, and the phys-
ical states of the three-dimensional effective theory are
glueballs rather than individual gluons. This is unlike
the case in zero-teinperature four-dimensional theories,
where the confinement radius diverges exponentially as
g ~ 0 and nonperturbative contributions are never the
same order as perturbative ones.

It is important to keep in mind that the physics at
large distances is the physics of three-dimensional con-
finement, and that it is this confinement which cuts ofF
infrared divergences encountered in perturbation theory.
Some papers in the literature work under the misappre-
hension that the in&ared physics is instead cut ofF by
some sort of mass of order g T for the gauge 6eld A.
This is as misleading as thinking of con6nement in zero-
teinperature QCD as being described by a gluon mass.
A mass would cause large (fundamental-charge) spatial
Wilson loops in high-temperature gauge theory to have
perimeter-law behavior because it would screen the gauge
force. Instead, such loops will have area-law behavior-
the signal of confinement.

FIG. 4. Power-law interaction between two Wilson lines,
representing static test charges, due to the exchange of a pair
of unscreened, magnetic photons.

(1,(x)L,t(0)) ' e ~" /]x] as ~x] ~ oo, (3 2)

where t;he Wilson line

lf
L(x) = trPexp i Ap(~, x) d7.

~

0
(3 3)

is the trace (in the fundamental representation) of the
path-ordered exponential of the line integral of the gauge
field around the periodic Euclidean space. ('P denotes
path ordering. )

Although this de6nition has occasionally been sug-
gested in the literature, it is wrong. Even in QED,
it fails to isolate the quantity one wants to identify as
the Debye mass. Though Wilson lines couple directly
only to electric Gelds, they couple indirectly to magnetic
fields through interactions, and magnetic 6elds are not
screened. Figure 4 shows how two Wilson lines can ex-
change a pair of magnetic photons in QED, and so, de-
spite the screening of electric fields, the correlation (3.2)
falls off algebraically instead of exponentially. In non-
Abelian gauge theory, the coupling to the spatial gauge
field can be even more direct [4,7], as in Fig. 5. The
non-Abelian case is slightly difFerent from QED, however,
because three-dimensional confinement implies that the
Wilson lines cannot exchange a massless pair of magnetic
gluons; the pair will instead form a glueball with a mass
of order g2T, and so the correlation length of Wilson lines
defined by (3.2) will be of order 1/g2T [4,7]. Regardless,
this is not the physics of electric screening.

Fortunately, there is a simple symmetry which can be
used to exclude the unwanted exchange of a pair of mag-
netic photons or a magnetic glueball: Euclidean time re-
Hection. Euclidean time reHection corresponds to what
in real time is called 7C, or time reversal times charge

The fact that (3.1) specifies coincident times while (1.1)
refers to zero frequency makes no difference. All contribu-
tions from the (discrete) nonzero frequencies to the equal time
correlation function decay as O(e ~"~) or faster; hence the
zero frequency component dominates at large distance.

The potential between arbitrarily heavy test charges,
V(x) = —P ln (L(x)It(0)), decreases as ~x~, refiecting a
magnetic Van der Waals interaction between the two electron-
positron clouds screening the test charges. An analogous case
of algebraic screening in nonrelativistic theories at finite den-
sity is discussed in Ref. [6].
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FIG. 5. An exchange of magnetic gluons between two Wil-
son lines.

conjugation, and the crucial property is that Ao is in-
trinsically odd under this symmetry while the spatial
gauge field A is even. The Euclidean description is more
convenient for our purposes, and we shall &equently re-
fer to the syinmetry simply as "time reflection. " (The
reader should note that in Euclidean functional integrals
time reHection is no more subtle a symmetry than spatial
reHection; there is no extra complication associated with
antiunitarity. ) Euclidean time reflection is a useful sym-
metry because, in the e8'ective three-dimensional theory,
the only efI'ect it has is to negate the adjoint scalar Ao.

If one considers the correlation of a pair of time-
reHection odd operators, instead of the Wilson lines, then
the zero-&equency magnetic contributions of the type de-
picted in Figs. 4 and 5 will be eliminated. The lightest
intermediate states which can contribute will be those
containing a single Ao (plus surrounding glue), so that
the correlation length will be mo + O(g T). Any local,
gauge-invariant, time-reHection odd operator can be con-
sidered as a replacement for the Wilson line, leading to
a general definition of the Debye mass:

Definition. Consider the correlation lengths defined
by the fall ofI', at large spatial separation, of the corre-
lation (A(x)B(0)) between operators A and B that are
local (in three-space), gauge invariant, and odd under
Euclidean time reflection (i.e. , real time 7 C). The in-
verse Debye screening mass I/mD is the largest such cor-
relation length.

We are thus able to de6ne the Debye mass directly in
terms of the long-distance fall ofI' of certain correlation
functions. This de6nition will only work, however, in the-
ories where real time 7 C is a good symmetry; otherwise,
there is nothing to prevent states with a single Ao from
mixing with A glueballs, and all of our inverse correlation
lengths will again be O(g2T) instead of O(gT) and will
be unrelated to the physics of electric screening. The re-
striction to 7 C-conserving theories means that the Debye
mass cannot be rigorously defined by the long-distance

fall ofI' of correlation functions in theories with axial cou-
plings, such as electroweak theory, or in the presence of a
nonzero chemical potential. We shall comment again on
these cases later, but for now our discussion will be re-
stricted to vector-coupled theories, such as @CD, at zero
chemical potential.

Before proceeding further, it will be convenient to
rephrase our de6nition in alternative language. Suppose
that the separation x of our operators is in the z di-
rection. In Euclidean space, there is nothing that dis-
tinguishes the time dimension as fundamentally different
&om the spatial ones. One may turn one's head on the
side and interchange the labels z and t, as depicted in
Fig. 6. One then interprets the original four-dimensional
Beld theory as a zero-temperature theory with one peri-
odic spatial dimension, instead of a finite-temperature
6eld theory with all spatial dimensions infinite. Our
correlation functions are now correlation functions with
large separations in "time, " and their exponential fall oK
is determined by the energies of the physical states in
this zero-temperature, spatially-periodic Beld theory. So
the following is an exactly equivalent definition.

Alternative definition. Recast the theory as a (3+1)-
dimensional field theory at zero temperature, where one
of the spatial dimensions call it z is periodic with pe-
riod P. Then, in a Hilbert space interpretation, the De-
bye mass is the energy of the lightest state that is odd
under z reHection.

For future reference, we should clarify that we will al-
ways use the notation Ao to denote the component of
the gauge field in the periodic direction, regardless of
whether we are interpreting Euclidean "time" according
to the original definition or the alternative.

In addition to their behavior under z reHection, hence-
forth denoted 'R;, eigenstates of the spatially-periodic
(3+I)-dimensional theory may also be classified accord-
ing to their behavior under other space-time symmetries.
Specifically, excitations at rest (p = p& ——0) can be as-
signed quantum numbers J, ~p;~, and R; where J is the
angular momentum in the xy plane, C is charge conju-
gation, p- is the momentum in the periodic direction z,
and B; is the sign acquired under z reHection. For J = 0,

Z

X J

r=0

A mnemonic for this fact: In real time, C7 7 must be a
symmetry of any Lorentz invariant (and unitary) theory. In
Euclidean space, 7 X, , where 7Z. denotes Euclidean time re-
Qection, is a pure rotation and must be a symmetry of any
Euclidean invariant theory. So X, must correspond to 7C,
since 7 is time independent.

(b)

FIG. 6. Interpreting Euclidean time as a periodic spatial
direction, by relabeling coordinates (7., z) as (z, r).
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TABLE I. Examples of gauge-invariant Euclidean
time-reflection (or 7Z-) odd operators which couple to spe-
cific J sectors. Here, i = I, 2 is a (2+1)-dimensional
spatial index and 0 = 'P exp(f Ao d3: ) denotes the un-
traced Wilson line or Polyakov loop. Im0 is shorthand for
the anti-Hermitian part, Im 0 = (0 —0")/2.
Jc(a)
0 +
O+—

0
+t

1+

R- odd operators
tr (Im 0)—:ImL or
tr (Im 0 F12) or
tr(Im 0 [F12, (F,3) ]) or
tr(ImQ [E12 (F13 F23)]) or
tr (Im 0 F,3) or
tr (Im 0 (F12, F,3j) or

tr(F03 (F12)')
tr (F03 F12)
tr(FO3 [F12, (F,3) ])
tl (F03 [F12 [F13 F23]])
tr (Fp3 F,3)
fl (FQ3 (F12 F3'))'

The representations of O(2) = Z(2) x SO(2) are (i) two
dimensional representations for each nonzero value of J,
and (ii) two one-dimensional representations, distinguished
by their Z(2) charge, for J = 0.

These comments also apply to the p-=0 sector of SU(2)
theories coupled to fermions (but not complex scalars), since
the fermions are irrelevant. In addition, they apply to any
group which, like SU(2), has only real (or pseudoreal) repre-
sentations.

there is also one additional quantum number: the sign P
of the state under two-dimensional rejections. The low-
est energy states will have p- = 0, and our definition of
the Debye mass restricts us to R- = —;so the states of
interest can be summarized. by J & ~. It is not clear a
priori which J ~ ~ sector will contain the lightest B- odd
state.

Gauge-invariant operators which couple to specific A;
odd symmetry channels may be easily constructed. For
example, under 'R- reHection Ao ~ —Ao and L ~ Lt.
Hence, the time-reHection odd part of the Wilson line is
just the imaginary part. ImL is also odd under charge
conjugation, but is even under x or y reHections, so
the imaginary part of the Wilson line probes the 0 +
sector. Table I illustrates some of the possible gauge-
invariant operators which can be used to probe vari-
ous symmetry channels. In the language of the e8'ective
three-dimensional theory [now to be regarded as (2+1)-
dimensional], each of these operators creates an Ao ac-
companied, because of confinement, by a neutralizing
cloud of glue. The lowest mass state in each of these
channels will have a mass of mo + O(g T). In a direct
lattice d.etermination of the Debye mass, one should in
principle check these, and perhaps other, channels in or-
der to find the lightest state. (Alternatively, one could
consider correlations of operators with less symmetry. )

In pure SU(2) gauge theory, the operation of charge
conjugation is in fact an element of the gauge group
(namely io2). Hence, in this theory, any gauge-invariant
state must have C even, and so the possible sectors are
restricted to the J+(+) channels. [Note that the charge-

conjugation odd operators shown in Table I vanish iden-
tically for SU(2), as they must. ]

A. VFilsan lines in pure gauge theories

In pure gauge SU(N) theories (that is, gauge theories
without matter fleldsii) there is one additional subtlety
which occurs with the Wilson line ImI, or with more
complicated operators containing a Wilson line wrapping
around the periodic w direction. A Euclidean pure gauge
theory at nonzero temperature is invariant not only un-
der periodic gauge transformations; it is also invariant
under nonperiodic gauge transformations that globally
multiply the fundamental representation Wilson line L
by an element of the center of the gauge group. 2 For
SU(N), the center is Z(N), the Nth roots of unity. This
Z(N) symmetry is spontaneously broken at high tem-
perature, and there are N difFerent (pure phase) equi-
librium states distinguished by the phase of the Wilson
line, arg(L) = 27rk/N, k = 0, . . . , N —l. Only one of the
equilibrium states (the one in which (L) —I) is invari-
ant under the naive definition of time reflection. [Each
of the other N —1 equilibrium states is invariant under
a redefined time reHection which combines the original
reflection with a nontrivial Z(N) gauge transformation. ]

In order for ImL to probe the Debye mass, one must
work in the single pure phase equilibrium state which is
invariant under (the chosen definition of) time reflection.
Otherwise, time reHection will fail to select the charge-
screening excitations of interest. However, a gauge the-
ory functional integral which is invariant under the Z(N)
center symmetry necessarily averages over all N sponta-
neously broken phases. Because of this, the Im L correla-
tion length, computed with a Z(N)-invariant functional
integral, will be O(g T) and have nothing to do with
the real Debye mass. This can be seen directly from
the fact that the (LL) and (LtLt) correlations vanish by
Z(N) symmetry, and so Im L and Re L will have identical
O(g T) correlation lengths.

This difIiculty does not reHect any inconsistency in our
definition of the Debye mass, because ImL is not actu-
ally gauge invariant under the full gauge group of pure
gauge theories [which includes Z(N) center transforma-
tions]. Hence, in pure gauge theories, it does not meet
the requirements stated in the definition.

Nevertheless, one may avoid this diKculty in pure
gauge theories, and obtain an O(gT) correlation length
for ImL, in either of two ways: change the operator, or
change the theory. Fixing the operator is easy: simply
replace the fundamental representation trace in the defi-
nition of the Wilson line by the trace in some other com-

Or more generally, theories whose gauge group has a non-
trivial center but all of whose fields transform trivially under
the center.

For a review of this symmetry and its role at high temper-
ature, see Ref. [9].
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plex representation F which is invariant under the center
of the group. For example, in an SU(N) theory the sym-
metric tensor product of N fundamental representations
is suitable [i.e., the 10 of SU(3)]. Then

ImL~ = Imtr'Pexp i dr Ao (v., x) Tg (3.4)

is invariant under Z(K) transformations and is com-
pletely unaffected by the spontaneous breaking of the
Z(K) center symmetry. Or, one may use a local operator
(of the same symmetry) which does not involve a Wilson
line at all, such as tr(Eos(Ei2) ).

Alternatively, one may restrict expectation values to
include only the single equilibrium state with (L)-1 by
adding an infinitesimal source to the Lagrangian that bi-
ases the system toward the desired Z(%) sector,

Z, = [17@17@17A] exp

+e d xL (3.5)

and then send e to zero after the infinite volume limit.
Therefore, the Im L correlation length ( may be given by

lim lim hm ~x~ ln (Im L(x)Im L(0)), & .
)x) —+oo ego+ V—+~

(3.6)

Adding the source term explicitly breaks the Z(N) cen-
ter symmetry, thereby reducing the full gauge symme-
try of the theory so that L is now fully gauge invariant.
Of more practical use for numerical simulations, one can
simply run simulations in a large enough volume that one
Ands no jumping between the different Z(N) equilibrium
states, as measured by (L). One would need to take data
generated by a run in a single pure phase where L:(trL)—
is nonzero, and then measure the long-distance fall ofF of

problem manifests as follows: the lightest state with a
single Ao is no longer stable against decay into an A
glueball. Nevertheless, there is still a singularity in the
complex momentum plane associated with this Ao "res-
onance. " The situation is depicted in Fig. 7, where we
have considered a generic correlation of Euclidean time-
reHection odd operators and sketched some features of
its singularity structure in the complex p plane. We
have assumed p~ = 0 for simplicity. The case for a 7 C-
conserving theory is shown in Fig. 7(a), where the loca-
tion of the singularity closest to the real axis is our Debye
inass. Introducing a small amount of 7 C violation will
mix in A glueball states, changing the analytic structure
to that of Fig. 7(b). The Debye singularity from Fig. 7(a)
is still present but has moved slightly oK the axis onto
the second sheet.

One can still iinagine, in principle, defining a (complex)
Debye mass based on the location of the pole. This is,
in fact, what one does every day when talking about the
mass of an unstable particle such as the Z boson or the
vr . There is an important di8'erence, however, which is
that the z direction is not really a time direction and can
be considered one only by analytic continuation. In the
real world, one can reach the Z resonance experimentally
by making —p&+ p close to —M&. In contrast, one can-
not experimentally study the static (pp = 0) properties
of the plasma by taking p close to —mD. And because
the introduction of finite temperature breaks Lorentz in-
variance, studying po g 0 instead is not equivalent: the
physics of the dynamics of real plasma excitations is not
the same as the physics of electric screening. The moral
is that defining the Debye mass by the location of the
relevant singularity in Fig. 7(b) would be somewhat ab-
stract.

Another possible method for defining an electric
screening length is in terms of carefully chosen moments
of particular correlation functions. For the purpose of
illustration, assume we had a correlation function that
behaved like

(Im [L(x)Lt] Im [L(0)Lt])

in lieu of (Im L(x) Im L(0)).

(3.7)

B. Axial theories and chemical potentials

As mentioned earlier, our definition of the Debye mass
does not work for theories in which real time 7 C is not
a symmetry. Hence, it cannot be applied to gauge theo-
ries with axial couplings, or in the presence of a nonzero
chemical potential. In the language of our alternative
definition, where the z direction is viewed as "time, " the

Im p,

ITld+mG &~

md &~

(a)

Rep, Rep,

The Z(K) center symmetry is explicitly broken in theories
with fundamental representation matter fields; hence in such
theories no explicit symmetry-breaking perturbation need be
added.

FIG. 7. The singularity structure, in the complex p plane,
of a correlation of Euclidean time-re8ection odd operators in
a theory where real time 7 C (a) is, or (b) is not, a good
symmetry. mo is O(g T) and stands for the lightest glueball
mass in the theory when the z direction is regarded as time.
For simplicity, we have suppressed all singularities associated
with excited glueball or excited Debye states.
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G( )
ag—Tr + —bg Tr

r r
small. In particular, it is not useful if the mixing r is
simply some power g of the coupling.

The first term is the behavior we would have in a 7 C-
invariant theory; the second term represents the mixing
with glueball states due to interactions breaking 7 C, with
c the amplitude of that mixing. Now consider defining a
correlation length by the ratio of moments

I r2 G(r) dr

I r G(r) dr
(3.9)

This will yield

&o = (a») '[1+O(s/~')]. (3.10)

( ) ~ ) O(1)
—[agT+O(g T)jr

r

1 —O T+—) O(s') e + (other junk) .

As long as c is small compared to g, this will give a
correlation length of order 1/gT that, at leading order,
matches what we want to call the inverse Debye mass.
So one could simply define what one means by the Debye
mass to be precisely 1/(G. The problem with a definition
of this form is that it is completely convention dependent;
the resulting value depends on exactly which correlation
function and which moments are used in the definition.
In contrast, lengths characterizing the exponential long-
distance decay of correlations, as in our original definition
for 7 C-invariant theories, do not generically depend on
the details of the operators used, other than their sym-
metries.

If the Debye mass is so difFicult to define at finite
chemical potential, what about the case of nonrelativis-
tic @ED? Why do physicists generally have few qualms
about discussing exponential screening in such plasmas7
The reason is a matter of scale and what one means by
"long distance. " Reference [6] gives a calculation of the
charge-charge correlation in such plasmas and finds that
it does fall algebraically at very large distance. However,
as one increases the distance in a variety of physical appli-
cations, the correlation first falls exponentially for many
e foldings before finally tapering off in algebraic behav-
ior, and so the concept of exponential screening is useful
in practice.

Now consider the case of relativistic gauge theories and
our toy example (3.8) of a correlation G(r) The numbe. r
of e foldings over which the first term dominates is only
order ln(1/s). Unlike our toy correlation G(r), a real cor-
relation will have additional contributions from excited
time-refiection odd states, with energies of mD+O(g2T):

IV. THE O(g~T) CORRECTION TO THE DEBYE
MASS

mD = mpert + &m, (4.1)

We return now to vectorially-coupled theories at zero
chemical potential. If one is interested only in the O(g T)
correction to the Debye mass, then it is possible to reduce
the computation of the Debye mass to a much simpler
problem than the extraction of correlation lengths in a
four-dimensional theory with a small periodic dimension
and dynamical fermions. This simplification will emerge
from the successive reduction to equivalent effective the-
ories describing longer distance scales, as discussed in
Sec. II. The philosophy is similar to that applied by
Braaten and Nieto [10] to the expansion of the &ee en-
ergy in powers of g. (With more work, it could be ex-
tended to handle even higher order corrections to the
Debye mass. ) The result, to be derived momentarily,
expresses the O(g T) part of the Debye mass in terms
of the perimeter-law coefFicient of adjoint-representation
Wilson loops in a three-dimensional pure gauge theory.
This relation is particularly nice in that it holds regard-
less of which symmetry channel of the (2+1)-dimensional
theory has the lowest mass time-reHection (or 'R;) odd
excitations.

First, reduce the problem to an effective three-
dimensional theory by integrating out modes with
nonzero &equency in the periodic direction. If we re-
label the z axis as "time, " we want to know the energy
of an Ao, together with its cloud of glue, propagating for-
ward in time in (2+1)-dimensions. Next, make a further
reduction to an effective theory for distances large com-
pared to 1/gT, so that the bare Ao can now be considered
heavy. The resulting effective theory is simply a 2+1 di-
mensional pure gauge theory (plus irrelevant corrections
suppressed by powers of g). The nonperturbative con-
tribution of the cloud of glue surrounding the Ao is not
sensitive to whether the Ao is merely heavy or is infinitely
heavy. The propagation of the bare Ao can then be re-
placed by an adjoint-charge Wilson line, exactly anal-
ogous to the way in which extremely heavy quarks in
zero-temperature @CD can be replaced by fundamental-
charge Wilson lines. The nonperturbative piece of the
Debye mass is given by the energy of the glue required
to screen an infinitely heavy adjoint charge, which can
be extracted from a numerical lattice calculation of the
perimeter-law behavior of large Wilson loops. Schemati-
cally,

In the range where the glueball contributions are small,
r is still too small to suppress these excited states unless
g ln(1/s) )) 1. Therefore, an approximate definition of
the Debye mass, in terms of the intermediate-range fall
off of correlation functions, is not useful beyond leading
order unless the amount of 7 C violation is extraordinarily

tr7 exp
~

i dx A gj ~

exp[ —Am length(C)],

for large loops C, (4 2)

where mp, t is a perturbative contribution to the mass
and where Lm is extracted from
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in the three-dimensional gauge theory. Note that
fermions are completely absent from the calculation of
Lm because they decoupled in the three-dimensional
limit. Figure 8 illustrates the various stages leading to
the relation (4.1), which will be discussed in more detail
below.

At each stage in the reduction, it is necessary to match
carefully the effective theories onto the original four-
dimensional theory, in order to keep track of the per-
turbative piece m~„t of (4.1) correctly. Fortunately, at
the order of interest, the matching is fairly simple and
straightforward.

Before we dive into the details of matching, notice that
this picture of the Debye mass makes the presence of
the logarithmic O(g2T in(mp/g2T)) correction found in
(1.5), as well as its coefficient, trivial to understaiid. Con-
sider the self-energy of a static, infinitely heavy charge
in 2+1 dimensions. If we were discussing QED coupled
to such a charge, then the electric field surrounding the
charge would be 8 = e/2m'r, and the energy of that elec-
tric field would be

(4.3)

which is logarithmically divergent in both the infrared
and the ultraviolet. This same picture holds for a non-
Abelian gauge theory at distances small compared to the
confinement scale, since then gluon self-interactions are
small. The confinement scale, however, provides an in-
frared cutoff at r g T. The mass of the charged parti-
cle, which is order mo and not actually infinite, provides
the ultraviolet cutoff. Finally, since the heavy particle is
an adjoint charge, e should be replaced by C~ g32, where
C~ is the quadratic Casimir number for the adjoint repre-
sentation, or N for SU(K). Equation (4.3) then precisely
reproduces the logarithm of (1.5).

We now turn to Aeshing out the details of the split up
(4.1) and matching of the sequence of efFective theories.
At each stage, an effective theory will describe the same
long-distance physics as its shorter-distance predecessor,
provided its parameters are carefully matched to the pa-
rameters of its predecessor. One can achieve this match-
ing by computing and equating a set of long-distance
quantities in both theories. The required matching re-
Hects the different treatment of short-distance physics
in the two theories; it does not depend in detail on the
physics at long distances, which in our case is nonpertur-
bative. Hence, if one temporarily modifies the theories by
introducing a long-distance cutoff, and one uses the same
cutoff for both theories, then the matching of the in&ared
cutoff theories will also provide the correct matching for
the theories when the in&ared cutoff is removed. The
temporary introduction of an infrared cutoff is merely a
convenience which allows one to compute the matching
perturbatively.

A. Step 1: reduction to three dimensions

Z

X J
(b)

FIG. 8. Various stages in the reduction relating the O(g T)
correction to the Debye mass to the perimeter-law coefBcient
of three-dimensional adjoint-representation Wilson loops. (a)
The correlation of some pair I" and G of K- odd operators
at large separation. A three-dimensional reduction is per-
formed and only the p- = 0 modes are relevant to what fol-
lows. (b) The Ap field is integrated out, generating an Ap

propagator connecting modified insertions E' BE/BAp and
G' BG/BAD Since Ap is .heavy, its propagator may be
replaced by a straight, adjoint-representation, Wilson line.
The long-distance fall o8' of the correlation measures the en-
ergy of glue needed to screen a heavy adjoint charge. (c) If
one makes the 7. direction periodic with an arbitrarily large
period 0, then the minimal screening energy of an adjoint
charge is determined by the fall off of an adjoint Wilson line
wrapping around the v direction. (This is not to be confused
with the original Polyakov loop I, which wraps around the
small z direction. ) (d) The fall off of the long adjoint line
with increasing length is the same as the perimeter-law fall
off of any large, adjoint Wilson loop. (The loop depicted in
the figure is meant to be large in x~ as well as in 7.)

This reduction has been extensively treated in the lit-
erature [10,12—15]. At the order we are interested in, the
matching is very simple. Integrating out the nonstatic
(pp P 0) components of the fields generates a mass term
for Ao through diagrams such as Fig. 3. The effective
theory is of the form

d x 4F,,F,, + 2(D g;Ap)

+—mpAp + (higher order ) (4.4)

The "higher order" term denotes marginal and irrelevant
operators in the effective theory which are suppressed by
explicit powers of g and whose effect can be ignored at
the order of interest. The dimensionless coupling g is
related to the original four-dimensional coupling by

y' = g'(T) + O(g ), (4.5)

where evaluating the four-dimensional coupling g at a
renormalization scale of order T eliminates large loga-
rithms &om the higher order corrections to this matching
condition. The mass mp is just, up to O(g T) corrections
&om two loop diagrams that do not concern us, the mass
(1.4) we introduced in the introduction:
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m', = — C„+) t~ g'T'+ O(g4T') .
)

(4.6)
e—mo IxI

b, ,(x)-
4m ix)

for ~x~
—+ oo. (4.1i)

We have been slightly more general than the SU(N) case
of (1.4); CA is the quadratic Casimir for the adjoint repre-
sentation and t~ is the normalization of each irreducible
fermion representation E:

gab facdf bed tp b = tr (T~T~) . (47)
We have not yet specified an ultraviolet renormaliza-

tion scheme for the efFective theory (4.4), because it is
irrelevant in this step at the order shown above. How-
ever, we will need a specific scheme in the next step, so
let us pick one. We will use dimensional regularization in
d = 3 —2e dimensions for our effective theory, with the
minimal subtraction scheme and a renormalization scale
p = T.

B. Step 2: replacing Ao by a Wilson line

Now we want to integrate out Ao and move to an effec-
tive theory for momenta small compared to mo. But our
goal is to describe the propagation of an Ao itself, which
we might probe by the long-distance behavior of some
gauge-invariant correlation in the three-dimensional the-
ory. For example, consider the three-dimensional ana-
logue of the first 0+ operator listed in Table I;

21(40512)'(2 )
22 (AOF12)(P 2) ) (4.8)

Imagine evaluating this correlation by first doing the path
integral over Ao and only later doing the path integral
over A. The integral over Ao will replace the Ao's ap-
pearing in the integrand by a propagator of the Ao field
in the background of A, which is the solution to

—D,- 'D, '+mo L, ~x = x . (4 0)

Now, suppose that A has only low-momentum compo-
nents and is smooth on the scale of 1/mo. The solution
to (4.9) can then be expressed as an expansion in powers
of derivatives of A and gives

3C

a~„A(x) = a, (x) pexp
~

i dx. A.st l
+O(~&)

(4.io)

where the integration path is a straight line from the
origin to X., and where A, is the free scalar propagator
which behaves as

This is true in the approximation that we ignore quar-
tic and higher order interactions among Ao in the effective
Lagrangian (4.4). As mentioned before, such terms are sup-
pressed by explicit powers of the coupling and do not con-
tribute to the Debye mass at the order we are interested. To
go to higher orders, one would have to include these terms
and treat them as perturbations.

Hence, the net effect of integrating out Ao will be to
replace the pair of Ao's in a correlation such as (4.8)
by an adjoint-representation path-ordered exponential,
times an overall factor:

(go(x)~o(0). . .) ~ e
—~~1~1

x exp x cL3c Aa gj

Q~

e ' tr P exp i df. . A~gj
0

(4.i3)

In the Hilbert space interpretation, this corresponds
to a trace over all states containing a single adjoint-
representation external charge. (And includes a sum over
all J+i+l sectors. ) The exponential fall ofF of this expres-
sion with the period 0 will be determined by the energy
of the lightest such state, which is precisely our definition
of the Debye mass.

Finally, as indicated in Fig. 8(d), the same coefficient
for the fall off of the correlation with contour length may
instead be obtained by considering a large, topologically
trivial, adjoint loop:

e ' tr 'Pexp i dx A~g; (4.14)

The exponential fall off of this expression with contour
length ~C~ will yield the Debye screening length through
O(g T). The perimeter-law decay of the Wilson loop
gives the energy of the glue surrounding the heavy adjoint
charge, while mi above is the mass of the bare charge.

There is just one complication: the substitution (4.10)
is only a good approximation in the presence of gauge
fields A with small momentum. Our two effective theo-
ries, the one with Ao and the one where we' ve replaced it
by a Wilson loop, differ in how they treat large momen-
tum efFects. As usual, this means we need to carefully
adjust parameters in order to make the two theories de-
scribe the same long-distance physics. In particular, the
correct choice of mi in (4.14) is not necessarily mo, it
must be determined by matching. This is done by per-
turbatively computing the long-distance fall off of the Ao
correlation functions in both theories, which we will only
need to do at one-loop order. Dimensional regularization
will be used as our infrared cutoff.

(4.12)

This corresponds to Fig. 8(b), and naively mi is just mo.
The substitution (4.12) will be valid for separations large
compared to the inverse Debye mass.

But, as sketched in Fig. 8(c), once one introduces the
adjoint-representation line, one may dispense with the
details of the operator insertions in the original correla-
tion function by considering the 7' direction [the (2+1)-
dimensional "time"j to be periodic with an arbitrar-
ily large period 8 and computing the expectation of a
straight adjoint Wilson line wrapping around the 7 di-
rection:



52 NON-ABELIAN DEBYE SCREENING LENGTH BEYOND. . . 7217

ds "q 1 (1 —2e)

(2vr) —" q' + m' q'+

2(mo2 —p2)

q2[(p+ q)'+ m2o]

2 ~ -2 1+2mmo= Ag p

2
—1 2 2 q +2@ q+(( )(p + o) 4(( )2 J'=—m'

(4.15)

which yields1, 1 (m2o)
~mo= —C'~g p, + nl I+p 1 (4M)8~ e q7rp2 j

We have worked in covariant gauge with gauge parameter

In the original three-dimensional efFective theory, the
fall ofF of the Ao propagator is determined by the position
of the pole. The shift in the pole position due to the one-
loop self energy can be computed &om the diagrams of
Fig. 9 and gives a contribution to the Debye mass of

FIG. 10. The one-loop self-energy for a Wilson line.

Correspondingly, to obtain the fall oQ' of an adjoint-
charge Wilson line we need to compute the one-loop self-
energy correction for a static source, as shown in Fig. 10.
Locally, we can treat a very large Wilson loop as straight.
Alternatively, we can con6ne the system to a very large
but finite volume and let a straight Wilson line wrap
periodically around the space, as in Fig. 8(c). In any
case, taking the line to be in the z direction, Fig. 10
gives

Bmoc
——CA g p

—2 dz A„(z, O) = 0, (4.17)

(4.18)

where 4;~(z, x~) is the A propagator and the integral
vanishes in dimensional regularization.

Matching requires that mo+bmo ——mi +bmq. Putting
(4.16) and (4.17) together, and continuing to choose our
renormalization scale in each e8'ective theory to be p =
T, gives

r'm', )mj =mo+ —CAg T ——+lnl l+p~ —18' e (7rT2)

nontrivial beyond leading order won't enter into our re-
sults at the order of interest.

C. Step 3: from the continuum to the lattice

To measure the perimeter-law behavior of large adjoint
Wilson loops numerically, one will put the system on a
lattice. The ultraviolet will be regulated by the lattice
spacing instead of by dimensional regularization, and so
we need to modify our matching condition (4.18) appro-
priately. We will do this by again matching the one-loop
self-energy, now between an adjoint line in the contin-
uum and one on the lattice. However, dimensional regu-
larization is no longer a good choice for our temporary,
common, infrared cut-oK in the two theories. Instead, we
shall consider two, opposite, parallel Wilson lines running
in the z direction and separated by a large distance B in
x. This provides an in&ared cutofF because the lines neu-
tralize each other when viewed from large x~ ——(x, y).
The one-loop contribution to the energy of these lines is
shown in Fig. 11.

In the continuum, the result is

The coupling g here still represents the coupling g(T) in
the original four-dimensional theory. The fact that the
matching of couplings between efFective theories becomes

b' =C g p+'
1

Ag P
2 1+2m

2

dz [A„(z,0) —A„(z,K)]

(2~) 2—2e 2 (

A0

1 2 1= —C~g p —+ln(~p R )+p +O(e).2 2

8'
(4.19)

Ao ~ g~ Ao

~Wrgg3&

A

Ap Ao

FIG. 9. The one-loop self-energy for Ao in the
three-dimensional theory.

If the lattice theory is defined with link variables U in
some representation (typically the fundamental representa-
tion), then the adjoint Wilson loop is given by the path-
ordered product of U~gj over the links of the loop, where U~&~

is t~ tr(T UT Ut) for each link.
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b, i q(p~) = — sin —+ sin~ 2~ 2~9
4 2 2

(4.21)

The R && a limit of the integral is extracted in the ap-
pendix and gives

1
Sm~~i -+ —C~g a ln 8B /a + 2p~8' (4.22)

FIG. 11. The one-loop self-energy for two opposing Wilson
lines, separated by a distance R. To match the theories, we must pick a = p = T to

make the coupling constant definition match up, and then
require m] g+ bm] g

——my + b'm], or

In lattice perturbation theory, the result is similar but
we get lattice propagators instead of continuum ones:

1, (m2o )
m) i = mo+ —CAg2T ln

I I

—1
8vr (8T') (4.23)

2

hm(~i ———CA g a
2 Bi~i(p~) 1 —e

12 i dPL i@ R/a
2 27r 2

(4.20)

where a is the lattice spacing; p~ is in lattice units and
restricted to the Brillouin zone Ip I, Ip„I ( 7r; and

The remaining contribution to the Debye mass is now
the quantity extracted &om the perimeter-law fall oK of
large adjoint Wilson loops on the lattice. Since we want
specifically to extract the coefficient of the O(g2T) contri-
bution to the Debye mass, we only need the leading-order
result for the perimeter-law exponent in the limit that g
is small. Formally, this is

Lm g T lim lim
0~0 ~C~ —+oo

1
te trPexp(t dx. et e;))g2 C

(4.24)

and ICI is the perimeter of the loop in lattice units. The
limit, however, diverges logarithmically as g —+0 because
of the physics behind the logarithm in (1.5) and (4.3).
To cure the problem, we simply need to extract this log-
arithm explicitly and combine it with the perturbative
contribution m~ q.
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2 CA (mrr=me+g T fr+ te~,
~

—t )8~ ),8g4T')

+O(g T), (4.25)

APPENDIX

To do the integral in (4.20), first do the p„ integral,
which is straightforward and gives

where

1
o. = lim lim — ln tr7 exp i dx. A d;o~o Icl~~ g'ICI C 1 i 1 —cos(2rq)

o sin

qual

+ sin q
' (A1)

" ln (g4) (4.26) where q = p /2. Now split the integral into two pieces:

This is our final result for the O(g T) contribution to
the Debye mass expressed in terms of the perimeter-law
coefBcient for large adjoint-representation Wilson loops
in three-dimensional pure lattice gauge theory. All that
is needed to obtain a numerical result is for someone to
compute the value of o. on the lattice for gauge theories
of interest [namely SU(3) and SU(2)].

m/2

Itr) = —f 1
dq

sin

qual

+ sin q

1
[1 —cos(2rq)]

(A2)
1 / d+ —[1 —cos(2rq)] .

2K 0 q

When r ~ oo, the fj.rst term can be replaced by
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1 1 1 1 (1 —gl —sin ql—ln
sinqgl + sin q q 2ir 4 (1+ V 1 —sin q)

1 3—lnvr + —ln22' 2

The second integral in (A2) is straightforward, and the final result is

—lnq

m/2

q=o

(A3)

I(r) —ln(8r ) + 2ps4vr-
as r —+ oo. (A4)
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