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Parton-hadron duality: Resonances and higher tvvists
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We explore the physics of the parton-hadron duality in the nucleon structure functions measured
in lepton-nucleon scattering. We stress that duality allows one to extract the higher-twist matrix
elements from data in the resonance region, or conversely to learn about the properties of resonances
if the matrix elements are known. As an example, we construct the moments of F2(x, q ) for the
low and medium q region, and from which we study the interplay between higher twists and the
resonance contributions.
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I. INTRODUCTION

In electron-nucleon scattering, one probes the sub-
structure of the nucleon with virtual photons of mass
Q2 and energy v. The measured total response is char-
acterized by the nucleon structure functions R'q 2 and
Gq 2, etc. Before the advent of quantum chromodynam-
ics (QCD), Bloom and Gilman [1] discovered an inter-
esting feature in the structure function W2(v, Q ), mea-
sured at SLAC. Simply speaking, when plotted in terms
of the improved scaling variable io' = 1 + W /Q, where
W is the final-state hadron mass, the scaling function
Eq(Q, ~') = vW2/m~ in the resonance region (W ( 2

GeV) roughly averages to (or duals) that in the deep-
inelastic region (W ) 2 GeV). Referring to a similar
phenomenon observed in hadron-hadron scattering, they
called it parton-hadron duality. The occurrence of du-
ality appears to be local, in the sense that it exists for
each interval of u' corresponding to prominent nucleon
resonances. In fact, the assumption of an exact local du-
ality allows a rough estimate of the nucleon's elastic form
factor from the deep-inelastic scaling function.

An explanation of the Bloom-Gilmaii duality in QCD
was first ofFered by Be Rujula, Georgi, and Politzer in
1977 [2]. Following the operator product expansion, they
studied the moments of the scaling function in the Nacht-
mann scaling variable ( = 2x/(1 + gl + 4x2m~2/Q2),
where x = Q2/2m~v. They argued that the nth mo-
ment M (Q2) of E2 has the twist expansion

where Mo2 is a mass scale (400—500 MeV) and
B i, (Q ) depends logarithmically on Q2 and is roughly
on the order of B o. According to Eq. (1), there exists a
region of n and Q (n ( Q /Mo) where the higher-twist
contribution is neither large nor negligible, and where the
dominant contribution to the moments comes from the
low-lying resonances. The phenomenon of local duality
reflects the very existence of this region. A recent work

on duality can be found in Ref. [3].
While these original studies of the parton-hadron dual-

ity were largely qualitative, enormous progress has been
made in understanding QCD in the past twenty years.
The radiative corrections have been evaluated to the
next-to-leading order for the twist-two part of the scaling
function [4]; the structure of the higher-twist expansion
has been clarified to the order of 1/Q and some at the
order of 1/Q4 [5]. The physics of the parton-hadron du-
ality has been exploited ingeniously in the vacuum cor-
relation functions, &om which a useful technique for cal-
culating hadron properties, the QCD sum rule method,
has emerged [6]. Experimentally, a large body of lepton-
nucleon scattering data has been collected in the past 25
years [7]. With the Continuous Electron Beam Accelera-
tor Facility (CEBAF) becoming available for making sys-
tematic, high-precision measurements in the resonance
region, it is timely to reexamine duality in its original
context, and further explore the physics content of this
important concept.

In this paper we seek to sharpen the explanation of
the duality offered by the authors in Ref. [2], with a few
crucial differences. First, we choose to work with the
moments of Cornwall and Norton, instead of those of
Nachtmann, thereby avoiding the unphysical region of
( ) ((x = 1). Second, we look for a way to describe
more clearly the contribution of the resonances to the
moments. Finally, we emphasize a thorough exploitation
of the consequences of duality. We furnish our discussions
with the example of E2, for which the abundant data
allow an accurate construction of its moments in the low
and medium Q2 region. These moments offer a unique
opportunity for studying the efFects of higher-twists and
the resonance contributions.

II. PARTON-HADRON DUALITY REVISITED

The Cornwall-Norton moments of a scaling function
I" (x, Q2) are defined as
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M„(Q ) = dxx" I'(x, Q2),
0

(2)
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where the upper limit includes the elastic contribution.
According to the operator product expansion [8], the mo-
ments can be expanded in powers of 1/Q2,

0 10 15

0.6

c 0.4

0.2

0.0
0 10 20

where E k are dimensionless coefBcient functions, which
can be calculated perturbatively as a power series in the
strong coupling constant n, (p2),

FIG. 1. (a) Three regions of difFering importance to
higher-twists: Region A, negligible higher-twists; Region R,
perturbative higher twists; and region C, the twist-expansion
breaks down. (b) Kinematic regions corresponding to the
resonance and deep-inelastic scattering.

i=0

and M ~(p ) are the nucleon matrix elements of higher-
twist operators composed of quark and gluon Gelds. The
renormalization scale (p2) dependence cancels in the
product of E A, and M A, ,'however, when we talk about
them separately, p is implicitly chosen at the hadron
mass scale. The terms beyond the first in Eq. (3) are
called the higher-twist corrections, which include both
the target mass corrections and the true higher-twist ef-
fects, which physically represent initial and final state
interactions between the struck quark and the remnants
of the target.

The double expansions in Eq. (3) are asymptotic at
best. Nonperturbative effects can invalidate both expan-
sions at higher orders, and can mix the two, rendering
the separation of radiative and power corrections am-
biguous [9]. In the following discussion, however, we as-
sume that in the Q region of our interest the size of
the twist-four term (1/Q2) is significantly larger than
the smallest term in the asymptotic expansion for E 0,
beyond which the evaluation of E 0 cannot be improved
by including higher-order terms, and so the ambiguity
in defining the higher-twist corrections can be neglected.
We shaH henceforth focus only on the structure of the
twist expansion.

Following Ref. [2], we assume the ratio of the twist-
four to the leading twist term in the nth moment is
roughly nMO, where Mo is on the order of quark trans-
verse momentum in the nucleon. We further assume that
the twist expansion is an asymptotic series in parameter
nMo2/Q2. According to these assumptions, we can clas-
sify the higher-twist contributions to the moments. Con-
sider the n-Q2 plane as shown in Fig. 1(a), which is sep-
arated into three regions by two solid lines. Region A is
defined by nMo « Q2 where the higher-twist effects are
negligible. Region B is where the higher-twist corrections
become important but stay perturbative, and thus only
the Grst few terms in the twist expansion are of practical
importance. Physically, this means the scattering in this
region can be described by few-parton processes. Region

is where the higher-twist effects become nonperturba-
tive and the power-expansion diverges. In this region of
many-parton coherent scattering, the dominating mech-
anism for resonance production requires infinitely-many
power terms kept in the expansion.

Now let us consider the resonance contribution to the

Cornwall-Norton moments by examining the x-Q2 plane
shown in Fig. 1(b), on which the resonance region lies
roughly above the curve TV = 2 GeV. For a large, fixed
Q2 (say 15 GeV2), the resonance contribution to the
lowest few moments is essentially negligible. When n
increases, the resonance contribution weights more and
more and finally becomes significant. We draw a dashed
line, as Q varies, in the n-Q plane to indicate the tran-
sition between the two regions. The dashed line cer-
tainly cannot be in region A, because the nonresonance
experimental data have already shown the higher-twist
effects [12]. If the dashed line is in the region C, then
the perturbative higher-twist effects, i.e. , the few-parton
process, have nothing to do with resonance physics. The
more interesting possibility is when the dashed line lies in
the region B, in which case one can study the interplay
between resonances and higher twists.

When the dashed line is located in region B, then to
the left of the line in the region the following statements
are true: (1) the higher-twist corrections are perturba-
tive, so the moments are not too difFerent &om those at
larger Q2, and (2) the resonance contributions to the mo-
ments are significant. Thus in this region the resonances
must organize themselves to follow the deep-inelastic con-
tribution apart &om a perturbative higher-twist correc-
tion, or conversely the structure of the higher-twist ex-
pansion constrains the behavior of the resonance contri-
bution. It appears that the physics in this region can be
described in terms of either resonance production or scat-
tering of a few partons. Both languages dual each other.
The degree of duality is determined by the size of the
region: the larger the region, the more the moments are
constrained, and the more local the duality will become.

Why should duality occur at all in QCD? On one hand,
the quark transverse momentum in the nucleon, which
governs the magnitude of the higher twists, is about 400
MeV. This makes the higher-twist corrections pertur-
bative down to very small Q . On the other hand, the
resonance contribution to the moments are already sig-
nificant at Q 5 GeV for low n. Thus the occurrence
of the duality seems unavoidable, unless QCD had two
widely different scales.

The consequences of duality, like duality itself, are two-
fold. If one knows data in the resonance region, one can
extract the matrix elements of the higher-twist operators.
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The extraction, of course, is limited by our ability to
calculate higher-order radiative corrections. On the other
hand, if one knows the higher-twist matrix elements &om
other sources, such as lattice @CD calculations, one can
utilize them to extract the properties of the resonances.
This second use of duality has been pursued vigorously
in the @CD sum rule calculations, &om which a large
number of interesting results have been obtained [6]. In
the present case, however, the number of higher-twist
matrix elements is large, and they are diKcult to estimate
in general. This severely limits our ability to check, for
example, the internal consistency of duality predictions.

III. TWIST-FOUR MATRIX ELEMENTS FROM
5's(x, qs)

We make the above discussion more concrete and quan-
titative by using the example of the F2 scaling function,
for which rich data exist in a large kinematic region. Most
of the low Q2 data were taken in the late 1960s and early
1970s at SI.AC and DESY, and they nearly cover the
whole resonance region at large x. The data were Btted
by Brasse et al. [10] to a function with three parameters
for each fixed W. In Ref. [11],Bodek et al. have made a
more extensive but difFerent fit, covering higher Q reso-
nance data. The deep-inelastic data were systematically
taken by SI AC, BCDMS, the European Muon Collabo-
ration (EMC), and other collaborations during the 1970s

and 1980s, and they have recently been shown to be con-
sistent with each other [12]. New ineasurements from
the New Gluon Collaboration (NMC) at CERN have ex-
tended these data to lower Q and x [14]. In Fig. 2, we
have shown the I"2 data as a function of Bjorken x at Q2
= 0.5, 1.0, 2.0, 4.0, 8.0, and 16.0 GeV &om the two Bts
[11,14] made in complementary kinematic regions.

The salient features of the data can be summarized as
follows. At high Q2, the data are almost entirely deep in-
elastic except for a small resonance contribution at large
x. The scaling function near x = 0 shows a rise due to
perturbative @CD efFects. As Q2 decreases, small bumps
become visible and slide toward low x. These prominent
excitations are believed to be the A(1232), Sii(1535) or
Dis(1520), and Eis(1680) resonances. The resonance ex-
citations become strong near Q = 2 GeV and clearly
dominate I"2 in the large z region below Q = 1 GeV2.
As Q2 ~ 0 the data are compressed toward z = 0 due
to simple kinematic reason. At Q = 0, the whole pho-
toproduction physics is shrunk to x = 0. Of course, one
should not forget about the elastic contribution, which
contributes a b function at x = 1 and is not shown in the

figure.

We construct the experimental moments by integrat-
ing the fitted I'2(z, Q2) according to Eq. (2). As usual,
assumptions are needed to extrapolate the data beyond
the experimentally measured region. However, for the
moments we are considering, the contribution from the
small x region is quite small due to the phase space sup-
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FIG. 2. Scaling function obtained from the fits to experimental data in Refs. [11,14].
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Aqco and unknown higher-order terms in the coeFicient

functions. In our work, we take AcD ——260 + 50 GeV
from a global fit for n, [16]. The target mass corrections
are further subtracted kom the moments according to
the formula in Ref. [17]. In Fig. 4(a), we show the exper-
imental moments as a function of Q2 (data points) and
also the twist-two part plus the target mass corrections
(solid lines). The residual moments, which are our defini-
tion of higher twist contributions, are shown in Fig. 4(b)
as functions of 1/Q2.

We choose to fit the Q evolution of the residual mo-
ments with a pure twist-four contribution,

(5)

where we have included phenomenologically the leading-
log eR'ects with an adjustable exponent. The fitted p
represents an average of the anomalous dimensions of the
spin-n, twist-four operators, weighted by the size of indi-
vidual matrix elements. The coeFicient a is the sum of
the twist-four matrix elements at the scale p = 1 GeV .
Inclusion of a twist-six term creates strong correlations
among the parameters and renders the fits indeterminate.
Thus we have neglected such a term by restricting the fit
to the Q ) n GeV region, where according to Eq. (1)
the twist-six contribution is presumably suppressed by a
factor of (0.4—0.5) .

The result of our fit is shown in Table I. I et us discuss
in some detail the correction to the n = 2 moment, which
is the well-known momentum sum rule. With the twist-
four and target mass corrections, the sum rule reads

1 A 2 MA4( ) M

(6)

where the summation extends over three light flavors and

APf(Q ) is the momentum fraction of the nucleon car-
ried by the quark fiavor f The matrix. element A4 arises
&om the target mass correction and is defined by

(P(vgp("'i D"'i D"'i D"' Q vP]P)

= 2A (p )P("'P"'P"'P"') . (7)

The twist-four correction is summarized by the matrix
element a2(p2) [5]:

(Pl ,'g'-0 ~(.~st.Q~4 ~.)~st. Q~

+ g—Qp(„t Q Qgp )t Q

+ ,', gf—iD(,+ ) v vs Q'0l P)

= 2a2(IJ, )(P„P„—M g„ /4), (8)

where (pv) means symmetrization of the indices and sub-
traction of the trace and Q is the quark charge ma-
trix. For Q = 2 GeV2, the leading-twist contribution
in Eq. (6) is 0.187. The target mass correction con-
tributes 0.007. From the fitted parameter in Table I, we
find that the twist-four contribution is 0.015, about 10%
of the leading twist. This level of twist-four eKect is also
expected in the Bjorken sum rule for the spin-dependent
structure function gi(x, Q ) measured at SLAC [13].

Table I shows that the exponent p„of the leading-log
corrections increases gradually with n, in accord with
general expectations. The uniform errors on p are the
result of our fits, not Rom any constraint. The con-
stant magnitude of the twist-four matrix elements a
as n increases is in sharp contrast to the diminishing
leading-twist contribution. It reHects, though, the fact
that the higher-twist contribution becomes more impor-
tant for higher moments at a fixed Q2, and is a precursor
for onset of the resonance region. In @CD, this can be
explained by an increasing number of twist-four opera-
tors compensated by a decrease in strength of individual
matrix element. The pattern of a indicates a twist-four
distribution negative at small x, positive at large x and
peaked near x = 1, qualitatively consistent with the fits
in Ref. [12], where the resonance data were entirely ig-
nored.

Finally, we test the assumption for the higher-twist
matrix elements shown in Eq. (1). We have shown in the
fourth column of Table I the ratios of the higher-twist
matrix elements to the leading-twist ones. From this, we
extract an effective Mo, the characteristic scale for higher
twists, by dividing the ratios by n and taking a square
root. The result is shown in the fifth column and is ap-
proximately n independent, though there is a slight hint
of Mo getting larger for larger n. However, this should
not be taken too seriously because of the errors and lim-
ited number of moments. The twist-expansion shall be-
come nonperturbative when 50% of the moments come
&om the twist-four corrections. According to this pre-
scription, we can find a characteristic Q for each moment
where this transition takes place. For n = 2, this hap-

TABLE I. Extracted twist-four matrix elements a, effective anomalous dimension p, ratio to
the leading twist contribution, and the effective mass scale Mq.

2

6
8
10

a (GeV )
0.030 + 0.003
0.042 + 0.013
0.047 + 0.021
0.038 + 0.018
0.052 + 0.025

'Yn

1.0 + 0.5
1.5 + 0.5
2.5 + 0.5
2.5 + 0.5
3.5 + 0.5

a„/(E„pM„p)
0.14
1.00
2.47
3.45
4.73

Mp (GeV)
0.26 + 0.02
0 50 + 0 08
0.64 + 0.17
0.66 + 0.19
0.69 + 0.19
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pens at 0.3 GeV, and for higher moments at roughly
n —1 GeV . The solid line which separates regions B
and C in Fig. 1 marks this transition.

To illustrate the converse use of duality, one could,
for instance, use the higher-twist contribution extracted
from the pure deep-inelastic region (as done in [12]), or
&om some theoretical calculations, to determine the nu-
cleon's elastic form factor. However, we feel that the
higher-twist matrix elements have not been determined
in these methods to a sufficient accuracy to allow a quan-
titative extraction of the resonance properties. Quali-
tatively, however, knowing the higher-twist contribution
will surely improve the nucleon form factor extracted in
Ref. [2], which showed a systematic deviation &om the
directly measured GM, a clear indication of higher-twist
effects.

To sum up, we explored in this work the physics of
the parton-hadron duality. We emphasized that the exis-
tence of duality allows one to determine the higher-twist

matrix elements Rom data in the resonance region, or
alternatively knowing the matrix elements enables one
to determine the properties of the resonances. We stud-
ied the duality picture offered by the E2 scaling function,
and extracted the matrix elements of the lowest few spin,
twist-four operators. Clearly, this study can be applied
straightforwardly to the spin-dependent structure func-
tion Gq once more data become available.

ACKNOWLEDGMENTS

We thank A. Bodek, J. Morfin, and P. Stoler for infor-
mation on the experimental data and the CETQ2 parton
distributions. P.U. acknowledges the support of NSERC
Canada. This work was supported in part by funds pro-
vided by the U.S. Department of Energy (DOE) under
Cooperative Agreement No. DF-FC02-94ER40818.

[1] E. D. Bloom and F. 3. Gilman, Phys. Rev. D 4, 2901
(1971).

[2] A. De Rujula, H; Georgi, and H. D. Politzer, Ann. Phys.
(N.Y.) 103, 315 (1977).

[3] C. E. Carlson and N. C. Mukhopadhyay, Phys. Rev. D
47, R1737 (1993).

[4] A. J. Buras, Rev. Mod. Phys. 52, 199 (1980).
[5] E. V. Shuryak and A. I. Vainshtein, Nucl. Phys. B 199,

451 (1982); R. L. Jaffe and M. Soldate, Phys. Rev. D 26,
49 (1982); R. R. Ellis, W. Furmanski, and R. Petronzio,
Nucl. Phys. B212, 29 (1983).

[6] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov,
Nucl. Phys. B147, 385 (1979); B147, 447 (1979).

[7] M. Virchaux, in QCD 20 years late—r, Proceedings of
the Workshop, Aachen, Germany, 1992, edited by P. M.
Zerwas and H. A. Kastrup (World Scientific, Singapore,
1993).

[8) F. J. Yndurain Quantum Chromodynamics (Spring-

Verlag, New York, 1983).
[9] A. Mueller, Phys. Lett. B 808, 355 (1993).

[10] F. W. Brasse et al. , Nucl. Phys. B110,413 (1976).
[11] A. Bodek et al. , Phys. Rev. D 20, 1471 (1979).
[12] M. Virchaux and A. Milsztajn, Phys. Lett. B 274, 221

(1992).
[13] See, for instance, E143 Collaboration, K. Abe et al. ,

Phys. Rev. Lett. 74, 346 (1995).
[14] The New Muon Collaboration, P. Amaudruz et al. , Phys.

Lett. B 295, 159 (1992).
[15] H. L. Lai, J. Botts, 3. Huston, J. G. Morfin, 3. F.

Owens, J. W. Qiu, W. K. Tung, and H. Weerts, "Global
+CD Analysis and the CTRL Parton Distributions, "
hep-ph/9410404, 1994 (unpublished).

[16] Particle Data Group, K. Hikasa et al. , Phys. Rev. D 45,
Sl (1992); G. Altarelli, in QCD 20 years later—[7].

[17] H. Georgi and H. D. Politzer, Phys. Rev. D 14, 1829
(1976).


