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How fast can the wall move'?
A study of the electroweak phase transition dynamics
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We consider the dynamics of bubble growth in the minimal standard model at the electroweak
phase transition and determine the shape and the velocity of the phase boundary, or bubble wall.
We show that in the semiclassical approximation the friction on the wall arises from the deviation of
massive particle populations from thermal equilibrium. We treat these with Boltzmann equations
in a Quid approximation. This approximation is reasonable for the top quarks and the light species
while it underestimates the friction from the infrared W bosons and Higgs particles. We use the
two-loop finite temperature effective potential and find a subsonic bubble wall for the whole range
of Higgs boson masses 0 ( m~ ( 90 GeV. The result is weakly dependent on m~.. the wall velocity
v falls in the range 0.36 ( v ( 0.44, while the wall thickness is in the range 29 ) LT ) 23.
The wall is thicker than the phase equilibrium value because out of equilibrium particles exert more
friction on the back than on the base of a moving wall. We also consider the efFect of an infrared
gauge condensate which may exist in the symmetric phase; modeling it simple mindedly, we find
that the wall may become supersonic, but not ultrarelativistic.

PACS number(s): 12.15.Ji, 11.10.Wx, 11.15.Kc

I. INTRODUCTION

It has gradually become clear that the baryon asym-
metry of the universe may have been created at a first
order electroweak phase transition. The most important
ingredient, baryon number violation, was demonstrated
in the standard model by 't Hooft [1] and was later shown
to proceed rapidly at high temperatures [2,3]. The nec-
essary departure from thermal equilibrium is supplied by
the first order electroweak phase transition [4], which has
recently been the subject of intense investigation [5—11].
There have also been promising developments in under-
standing the mechanisms by which baryogenesis may pro-
ceed.

The general picture is this: at high temperatures, such
as those prevalent in the early universe, thermal effects
prevent the breaking of electroweak symmetry by the
Higgs mechanism. As the universe expands and the tem-
perature falls, the plasma supercools in this "symmetric"
phase until the probability of bubble nucleation is large
enough that bubbles of the lower temperature "asymmet-
ric" phase, in which a Higgs field cond. ensate breaks elec-
troweak symmetry, form. These bubbles are thermody-
namically favorable, so they expand, converting the sym-
metric phase into the asymmetric phase. At the bubble
surfaces, where the phase conversion occurs, the plasma
is thrown out of equilibrium by the motion of the phase
boundary, or bubble wall. Inside the bubbles, baryon
number is approximately conserved; outside it is rapid. ly
violated. If the departure from equilibrium on the bubble
surface biases the rate of baryon number violation in a
CP-violating fashion, this produces a baryon asymmetry.

Specific mechanisms address how the motion of the
bubble wall biases the baryon-number-violating pro-
cesses. The most efFicient mechanisms rely on transport.
The bubble wall separates particles and their antipar-
ticles in a CP-violating fashion. In the thin wall case
this occurs through CP-violating quantum-mechnical re-
flection [12—14], while in the thick wall case the energy
levels of particles and their antiparticles split in the pres-
ence of a CP-violating condensate, leading to a different
perturbation in the population densities of particles and
antiparticles [15—17]. The population difference between
particles and their antiparticles is then transported into
the symmetric phase, where it biases the baryon number
violation rate. The Inodels based on transport, like most,
depend intimately on the details of the bubble wall shape
and its motion. If the bubble wall is very thin, quantum
mechanical reflection is the correct language; if it is very
thick, scatterings are frequent, and the problem should
be viewed semiclassically. Correctly describing the situa-
tion where the wall is thin in comparison to the d.e Broglie
wavelength of some particles, but thick enough that par-
ticles scatter &equently on the wall, is still an open prob-
lem. In the thin wall case the main effect comes &om the
low-momentum particles while in the thick wall case the
effect &om thermal particles dominates. The eKciency of
transport strongly depends on the velocity and thickness
of the wall. For instance, for a slow wall, particles diffuse
far in &ont of the wall, and nonloca} baryogenesis is pos-
sible. For a thin and supersonic wall a typical reflected
particle travels about one diffusion length ahead of the
wall, while for a thick and fast wall no forward transport
is possible. In the latter case only local baryogenesis oc-
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curs; i.e. , CP violation and baryon violation take place
at the same point in space. In any case it is clearly of
crucial importance to know the shape and velocity of the
expanding bubble wall.

While there has been substantial progress on this prob-
lem [18,5,19—21], much remains to be done to compute
the wall velocity and shape reliably. In particular, no
work fully addresses the following issues: (a) infrared bo-
son populations; (b) eff'ects of transport; (c) systematic
treatment of all relevant scattering and decay diagrams
to leading order; (d) change in velocity and temperature
of the plasma due to latent heat release; (e) dynamical
determination of the wall shape (thickness). In a recent
Letter [22] we developed a set of techniques and approx-
imations which address (b), (c), and (e). In this paper
we present the details of that work and extend it to in-
clude (d). The problem of infrared boson populations is
of theoretical interest, since it is related to the in&ared
properties of gauge theories at finite temperature, which
are not well understood. We leave the proper treatment
of this problem to a future work. The fluid approxima-
tion we use probably underestimates the &iction &om
in&ared bosons, so our result could be interpreted as an
upper bound for the wall velocity. Also note that we
work within the minimal standard model, even though
extensions with more CP violation are generally consid-
ered more viable candidates for baryogenesis. We do this
for simplicity, developing the techniques to control the
problem before we attempt to apply them to more com-
plicated and interesting models.

Now let us briefly outline the paper. In Sec. II, we
derive a semiclassical equation of motion for the Higgs
condensate in the presence of out of equilibrium parti-
cle populations. The semiclassical approximation is ac-
curate provided the scale on which the Higgs Geld con-
denses, given by the wall thickness, is large in compar-
ison to the inverse momentum scale of particles which
significantly contribute to &iction. Solving this equation
requires knowledge of the effective potential, the temper-
ature at the wall, and the departure of particle popula-
tions &om equilibrium in the presence of the wall. In
Sec. III we review the state of the art in the effective po-
tential. In Sec. IV, we study the bubble nucleation using
Langer's formalism and the potential of Sec. III. This
formalism was applied to the Geld theory by Coleman
and Callan in [23] and to the electroweak phase transi-
tion in [24,18,5,19,25] and permits the calculation of the
temperature at which the bubbles nucleate.

The liberation of latent heat produces a jump in tem-
perature and velocity across the wall, and changes the
temperature behind the wall with respect to the temper-
ature far from the bubble. We compute this efFect for the
case of an isolated bubble using stress-energy conserva-
tion, as done for example in [24,19,26]. Including this ef-
fect could be important since it may significantly increase
the friction on the wall, especially when the wall velocity
approaches the speed of sound. This is an important im-
provement on our work in [22], where for simplicity we
ignored this effect.

Next, we address the departure of particle populations
&om equilibrium in the presence of the wall. In Sec. V

we solve exactly a particularly simple case of free par-
ticle scatterings ofF the wall (assuming efficient difFusion
so that no piling up occurs in front of the wall). Unfor-
tunately this is a reasonable approximation only for an
unrealistically thin wall. However, it does help us to de-
termine what aspects of the departure &om equilibrium
are most important. For fermions we find that most of
the &iction arises &om thermal energy particles, while for
bosons most arises &om infrared particles. The &iction
depends on a particle's mass as m, so top quarks ap-
pear to be the largest contributors to the friction, even
though they are scattered fairly efBciently. This justi-
fies the development of an approximation for the particle
populations which models thermal particles reasonably
accurately. This is the fluid approximation, which is de-
veloped in some detail in Sec. VI, with a systematic study
of the leading order tree-level processes that restore equi-
librium postponed to Appendix A. Section VII studies
aspects of transport in the fluid equations by Gnding the
response to a b-function source. It is shown that, in con-
trast to a slow wall, no forward transport is possible for
a supersonic wall. The accuracy of and possible improve-
ments to the fluid approximation within the context of a
momentum expansion are discussed in Appendix B.

Finally, we combine the fluid approximation with the
equation of motion for the Higgs Geld and solve for the
bubble velocity and profile. In spite of the nonlinear char-
acter in the equation of motion, this system of equations
can be solved analytically using the Fourier transform
and a two parameter ansatz for the wall shape, as we
show in Sec. VIII. In Sec. IX we describe a numerical
technique which allows a general wall profile. The results
are presented in Sec. X. The numerical work shows that
the ansatz models the wall velocity with good accuracy
(typically within 5%) although it is not as good at model-
ing the wall profile, as illustrated in Fig. 2. We conclude
that the ansatz technique is reasonably accurate for sub-
sonic wall velocities. However, for very supersonic veloci-
ties, which may occur if infrared physics generates gauge
condensates in the symmetric phase, both the ansatz, and
the fluid approximation itself, break down. This is dis-
cussed in Appendix C, where it is shown that the bubble
wall cannot propagate as an ultrarelativistic detonation.

For the impatient reader we suggest a fast track to
reading the paper: Sec. II, the second half of Sec. IV,
Sec. VI, and Secs. VIII—X.

IX. EQUATION OF MOTION

We are interested in the dynamics of an in&ared Higgs
condensate, which we will treat as a classical background
Geld. Prom the terms in the electroweak Lagrangian con-
taining 4,

(17„4)t17"4+p@t4 —A(Ot@) —) y(4tg~gL+OQL, @R)

where the sum is over all massive fermions and y is the
Yukawa coupling, we derive the operator equation of mo-
tion
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4+igA" 0„4+—(8 A)O ——A 4

—@4+2%(@t4)4+) yQRQI, . (2.1)

2 +).y(«) . (2.2)

We assume that 4', i = [0 P/i/2 ]+ (which is the same
as neglecting charge conjugation violating condensates).
Next, we evaluate the thermally averaged operators us-

ing WKB wave functions. This makes sense because the
background field P varies on a scale much longer thanT, which characterizes the reciprocal momenta of par-
ticles in the plasma. In this approximation,

d3k
(A ) = (A„,)+) f(k, x), (2.3)

where the sum is over group indices and spins and f is
the phase space population density, and

d3k
(@R~l) = 2(~@) ~ +). , f(k *) (2.4)

We have suppressed group indicies. Each term containing
A actually appears once for weak isospin and once for
hypercharge.

This operator should annihilate the physical thermal
state. We will shift 4 by a classical part, 4 = 4,~ +
b4, choosing b4 such that (h'4) = 0. We then evaluate
the trace of the operator equation of motion over the
(out of equilibrium) thermal density matrix describing
the propagating bubble wall. We will assume that there
are no charge conjugation violating gauge condensates,
so that (A") = 0. We then find

0 = O, i —p@,i + 2A(oti@,i)4,)

+2A 2 bCtbC @,i+ b4 @ti

where l:(P) = 0~$8&$/2 —V(P) is the Higgs Lagrangian.
The last term represents exchange of stress-energy with
particles; it looks like 1' d kf (k)(—F&)/(2vr) . Here F~ =

0"—E = ( Ot—E, —V'E) is the 4-force a particle feels in
the presence of the wall; the wall feels an equal and op-
posite force. Thus we can recast (2.6) as

d3k
O„T""(P)— f(k)F" = 0, F" = 0"E—. (2.7)

(2') s

The equation of motion for the Higgs Geld in the WKB
approximation splits the total (conserved) stress-energy
tensor T" (system) into Higgs and the fluid parts (sub-
systems) in a natural way, and provides the prescription
for how each is violated.

As an application of (2.7), J [Eq. (2.5)] P'dz is the total
pressure on the wall. If this integral does not vanish, then
the wall accumulates momentum and accelerates; hence
this integral must vanish for a steady state wall. This
fact forms the basis of the analysis of [18,5,19].

If we write the population density f as the equilibrium
population fo plus a deviation, f = fo + hf, then the
vacuum contribution V'(P) and the contribution from fo
combine to give the finite temperature effective potential
V&(P). Thus we have

dm2
O P+ V' (P) +), b f (p, ) = 0 . (2.8)

If the system were in phase equilibrium we would have ex-
pected P+VY, , we see that the frictive force (dissipation)
arises due to the departure from thermal equilibrium 0f
(fluctuation). Our goal will be to solve this equation for
a stationary wall, i.e. , after the wall has reached a steady
shape and velocity. To do so we need to know the effec-
tive potential Vz and the temperature T, and we need a
way to calculate bf

where the sum is over group and Dirac indices.
The equation of motion becomes III. EFFECTIVE POTENTIAL

dm dk
P+ V'(P)+) „,f(k, x) = 0, (2.5) The high temperature expansion of the one loop effec-

tive potential, ignoring scalar loops, is [5]

where V is the renormalized vacuum potential, and the
sum includes all massive physical degrees of keedom, in-
cluding the high frequency parts of the Higgs field. Note
the condensed notation: m = y P /2 for quarks and lep-
tons, g2 gP/4 for the gauge fields, 3AQ2 —p+(thermal) for
the Higgs bosons, and AP —p+(thermal) for the pseudo-
Goldstone modes. This equation has also been derived
by diagrammatic techniques in [19].

This equation has a nice physical interpretation. Mul-
tiplying it by 0~$, we find

dsk
0 = UQO"P+ 0"V+

(2vr) s2E f(k)8"(m ) . (2.6)

The first term can be recast as 8~8~$0"P
B~(B"$8"P) —0 (8~$0~//2), so that when taken to-
gether the Grst two terms are the divergence of the stress-
energy of the Higgs field T~ (P) = O~QB"P —gl""l:(P),

V(p, T) = D(T —To)$ —ETgP + A~ 4

Here

D =
2 (2m' + m& + 2m') 0.169,

8vp2

1
(2m~+mz) -10 '

4vrv p3

To —— (m~ —8Bvo),4D

3 ( ~ m~~
2m~~ ln

16~'vo4 ( ~ a~T2
m2 m2

a~T2 ' a~T2 )

(3.1)

(3.2)
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where ln a~ ——2 ln 4' —2p 3.91, ln a~ ——2 ln m —2p
1.14, and

a = (2mw+ ~z —4~~) .
647l vo

w' z + (3 + 31.5)A1.5
12vr ( vps ) ' (3.3)

where the A~ dependent term comes &om including ring
improved scalar loops. The other correction is that qual-
itatively new terms g P T ln(m/T) appear. Here m
stands for sums of masses of particles. In the approxi-
mation that the Higgs masses are small in the symmetric
phase (which should be good near the transition temper-
ature) we may treat m gP; the log of g is absorbed into
D, and the new term becomes CgPT2in(P—/T). Using
sin O~ = 0.23, the value of the coefficient is [7]

The value of P in the broken phase at equilibrium is
easily evaluated to be 2ET/Az. If we take AY paramet-
rically g, which is natural from the renormalization
structure of the standard model, we find P gT, which
is small enough that the perturbation series may not
be well behaved [27]. We should therefore include the
two loop contribution, which has recently been computed
by [6] and [7]. The two loop expression contains terms

g4P~T2, with a coefficient including constants and logs
of the temperature over the renormalization scale, which
slightly corrects D. We will drop this term as it has no
inQuence on the behavior of the phase transition. Two
more important corrections do occur, however. One is
that the longitudinal components of the gauge bosons
acquire large plasma masses [28,5] and do not contribute
to the strength of the transition. Following [5] we drop
them &om the E term in the effective potential, giving

such a contribution to parametrize our ignorance of the
effective potential in the symmetric phase. We choose
Pit=sech(P/o. gr) because it is simple, but our results do
not depend strongly on the functional form or the ex-
act rate of exponential decay, as long as that decay is
rapid. We treat the value of A~ as an unknown param-
eter; there is some lattice evidence for its value but it is
still preliminary [9,11].

Our Anal form for the effective potential is then

Vz (P) = D(T —Tp)P —CT P ln ——ET/

Az 4 Apg+ sech
4 12 o~ (3.5)

IV. NUCLEATION AND HYDRODYNAMICS

We must next determine what T is at the bubble wall.
Following [24,18] we do this in two steps; first we calcu-
late the temperature in the universe when most bubble
nucleation events occur, and then we calculate the tem-
perature correction due to the release of latent heat by
the bubble as it expands.

The process of bubble nucleation at Gnite temperature
was worked out by I inde [29] and applied to the elec-
troweak phase transition in [24,18,5,30,19,25]. The basic
idea is that small bubbles are thermodynamically unfa-
vorable because of positive surface &ee energies; to be-
come large enough not to recontract a bubble must pass
over a &ee energy barrier. The lowest route over the bar-
rier goes through a saddle point con6guration of the ef-
fective action called the critical bubble. It is a spherically
symmetric solution to the classical equilibrium equation
of motion

1
2 (1 42g + 4.8g Az —6Az ),16+2 (3.4)

V' P(r) = Vz (P), P'(r = 0) = 0, Q(oo) = 0 .

The &ee energy of such a solution is

(4.1)

where we have again left out contributions &om trans-
verse gauge bosons. Including this term, the value of
P in the broken phase at equilibriuin becomes P/T =
E/Az + g(E/Az )2 + 2C/Az, which indicates that the
new term strengthens the transition and contributes at
the same parametric order as the one loop term E, al-
though for the parameters we will be interested in its
contribution is smaller.

Because the two loop result is of the same paramet-
ric order as the one loop result we might worry that
perturbation theory cannot establish the strength of the
transition reliably. In fact we expect that the perturba-
tive computation of the effective potential should break
down in the symmetric phase. This means that the value
of V~(0) may be shifted somewhat from zero. Shaposh-
nikov has suggested that such a shift may arise due to the
formation of gauge condensates in the symmetric phase
[8]. He advocates adding a term —Apg /12 s Pit(P)
to the effective potential to account for such an effect.
Here the function Pit describes the P dependence of the
strength of such a condensate, and is smooth at P = 0
but falls as exp( —P/g2) at larger P. We will include

~crit = d x 2 7 +V@' (4.2)

There are analytic formulas for S„;tonly in special cases;
in general it must be determined numerically.

The nucleation rate per unit volume per unit time is

(4.3)

Carrington and Kapusta have recently computed the
prefactor [25]. Numerically evaluating the expressions
in their paper we find, roughly, ln(Ip) —14. The exact
value depends on the parameters of the effective poten-
tial and (weakly) on temperature, but as we will see we
only need a rough estimate.

We can now compute the action of the critical bubble
at the time when most of the universe changes phase by
following the technique of [30]. If bubbles expand at a
velocity v which depends only weakly on temperature,
then the &action of space remaining in the symmetric
phase at time t is roughly
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exp ~— (t ) I — (')/ (4 4) ( )
dVT(p )

where the exponential accounts for bubble overlap [31].
Expanding the bubble action about the point when the
above integral is 1, S = S(T„„,) + (t —t')dS/dt and using
d/dt = (dT/dt)d/dT and (1/T)dT/dt = H the Hubble
constant, we And that most of space has changed phase
when

3
g(~ )(T 8~v Ip

(HTdS/dT) 4 (4 5)

A reasonable estimate for TdS/dT is the thin wall value
2ST/(T, ~ T) —10, which roughly agrees with the value
we find by numerically evaluating S/T at closely spaced
values of T. The value of H follows &om the Friedmann
equation

l' ATD—P (T2+T2)+
~

—B
~

P4 2D—Q2T2 .

(4.7)

d(l/T4) 4Dy T d(y/T)
dT T dT

(4.8)

We can determine Td(P/T)/dT in the broken phase as
follows: the value of P is determined by V&(P) = 0, and
since nonperturbative eKects are tiny in the broken phase
we can use the two loop expression, which gives

Note that l/p 0.01 « 1, and similarly we find (T,~—
T)/T 0.01 « 1, so it is reasonable to expand to lowest
order in these quantites. However, l turns out to be quite
a strong function of temperature,

8vrG vr'g. T4

3 30
(4.6)

(0=2D ~1 — '
~

-2Cin ——C —3E—+A~T T2

(4.9)

where the second factor is the energy density of the
plasma and g, = 106.75[1 + O(n, )] in the symmetric
phase [the O(a., ) arises from thermal masses and other
interaction effects]. The value of v is to be determined,
but since a subsonic bubble is preceded by a hydrody-
namic front traveling at the speed of sound which raises
the temperature of the Quid and prevents nucleations, it
is sensible to choose the speed of sound v, = 1/v 3.

Putting all the expressions together and using T 100
Ge~, we find S/T = 97. In Ref. [30] a slightly higher
value was found because of the value for Ip we use. We
may now determine the temperature at which most nu-
cleations occur by solving (4.1) for various values of T
until we find one which gives S„;q ——97.

This gives the temperature around the bubble at the
time that it nucleates, but we are really interested in the
temperature at the bubble wall while it is expanding.
This will be elevated &om T„„,because of the liberation
of latent heat as the symmetric phase is converted into
the asymmetric phase.

In [18,5,19] it is argued that the elevation of tempera-
ture at the bubble wall is not important in determining
its velocity. This is true when the change in tempera-
ture, which is l/(dp/dT) (where l is the latent heat),
is small compared to the supercooling, T z

—T„„,. Refer-
ences [18,19] show explicitly that for the effective poten-
tial they consider, (T,„—T„„,)(dpjdT) is about 5 times
/. However, that analysis is based on a small assumed
value of mq., the latent heat depends on D oc m~, and the
supercooling T,~ —T oc 1/D; sa far mq 174 GeV, the
temperature increase probably is important.

To compute the temperature at the wall we need to
solve the temperature profile around an expanding bub-
ble wall. The equation of state in the symmetric phase
is p, = (7r2g, /30)T4, p, = p, /3, and in the broken phase

. it is p = p, + l(T), p = p, —VT (P(T)). Here l is the
latent heat and is given by

Since this equals zero, its total derivative with respect
to T, 8/BT+ d(P/T)/dT 0/B(P/T), should vanish. This
gives

d(P/T) 4DT P/T—
dT 2Az P2 —3EQT —2CT2 ' (4.10)

and hence

d(l/T4) 4DQ 4DTO p/T—
dT T 2AT $2 —3EQT —2CT2

For typical values of Az = 0.03, P = 0.8, we find
Td(l/T )/dT 18, which is about half as large as

p/T . This rather surprising result occurs because P
is strongly temperature dependent in the broken phase
near the transition, and because the top quark is so mas-
sive; around the transition temperature the number of
top quarks is rapidly &eezing out. Because p turns out
to have this extra temperature dependence, the speed of
saund in the broken phase, dp/dp = (dp/dT)/(dp/dT), is
around 15'Fo smaller than in the symmetric phase. Thus
it is reasonable to expand to linear order in l/p and
(T —T,~)/T, and hence in bT and v, but not ta neglect
dl/dT.

Now let us explore the fl.uid temperature and ve-
locity in the vicinity of an isolated spherical bubble.
From Eq. (4.4) and the argument which follows, we
And that the typical bubble grows to a radius of
1/(HTdS/dT) 10 /T, while the distance it takes for
a bubble to accelerate to a steady velocity is around the
ratio of the surface tension to the &ee energy density dif-
ference of the two phases, which is of order 50/T. On the
scale of the bubble radius, then, we can treat the plasma
as a perfect Quid and expect the temperature and ve-
locity to be functions of r/t = z only, where time t is
measured &om the time of nucleation. Conservation of
the stress energy tensor gives the equations
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0 = O„T" = 0„((p+p)u"u" —pg"")
= u"u . B(p + p) + (p + p) (u 0 . u + u oiu") —oi"p,

(4.12)

which to linear order in v and bT (which are linear in
I/p) give

(p-+ p-)v —v p- = —v-p. (T-.),
—- (p- + p-) + p- = p. (T-.)

which give

(4.18)

(4.19)

f2 dv) dp dT

gx dx) dT dx

Gap ALT

8T Jx
Qv= (p+S)x& (4.13)

The 2v/x arises &om taking a divergence in spherical co-
ordinates and is the only di6'erence between the spherical
geometry and the planar geometry studied by [24,19].

Because the equation of state for the symmetric phase
is simple we can solve the above equations for the case
that the wall velocity is less than the speed of sound in
the broken phase (in which case T is constant and v is
zero inside the bubble). The equations become

dv din T ( xz) dvx- 2v+x
i

1 ——
i

—=0,
fix 8x v2p dx

which give

(4.14)

1. T
Tnuc

v=4 1+—'

= 2Av, 1 ——Tnuc

Tnuc
(4.15)

(Ps + Ps) V Vm Ps Vm Pa (Tinside)

Vm(Ps + Ps)V + Ps = Pa(Tinside) (4.16)

which, at 6xed v, allows us to solve for the temperature
in &ont of and behind the wall. Defining y = v /v„we
find

T8 Tnuc

Tnuc

Ta Tnuc

Tnuc

y't(T-)
2(1 + y) (1 —y)

'

y'~(T-)
4(l + y)2

(4.17)

Note the dependence of l on T the temperature inside
the bubble, which makes these equations transcendental.

When the wall velocity exceeds v„ the only causal so-
lution to (4.14) outside the bubble is v = 0, T = T„„,.
We may 6nd the temperature just inside the bubble wall
directly &om the boundary conditions

Here A is an undetermined parameter and v, = I/~3. It
is interesting to note that, in this approximation (linear
order in I/p), the temperature and velocity are actually
continuous at x = v„although the erst derivative is
discontinuous. This holds to all perturbative orders in
I/p. The shock &ont is exponentially weak, as found in
[26].

Since the wall does not accumulate energy or momen-
tum, Eq. (4.13) also provides us with boundary condi-
tions at the bubble wall, by replacing the derivatives
with difFerences. Because the wall is thin compared to
the bubble radius the term 2v/x is negligible and we get

V. FREE PARTICLE APPROXIMATION

Let us proceed to computing the wall velocity. First
we will discuss a simple limit, the case where mean free
paths are enormously longer than the wall. This limit
has been treated thoroughly by [5,19] and we will only
discuss it brieHy to illuminate a few points about which
particles provide most of the friction.

In the WEB (semiclassical) approximation particles
should obey a Boltzmann equation:

4f+* ~ f+s" ~pf =-&[f] . — (5.1)

Here p = zBE/Bz = (I/2E)d—m2/dx, Oq f = +v 0,f
(where we choose the broken phase at z = +oo so the
wall moves to the left), and t [f] is the collision inte-
gral. The &ee particle approximation consists of drop-
ping C[f]. Since collisions are what drive f to equilib-
rium, we must insert equilibrium by hand as a bound-
ary condition for i~coming particles. We will use this
approximation (though we should note that some of the
departure &om equilibrium may reBect back onto the wall

[21]). In this case the Boltzmann equations can be solved
exactly:

In both cases the temperature is elevated on one or both
sides of the bubble. The elevation has a 1/(y —1) be-
havior, which diverges near v, . This divergence means
that our expansion in small v and T —Tnuc must break
down very near v, ; but there is still a very large elevation
in temperature when v v, . As the symmetric phase
becomes more favorable at higher temperatures this pre-
vents the wall &om propagating close to the speed of
sound.

We have not treated the case where v lies between
v, and the speed of sound in the broken phase; this case
is much more complicated because the Quid velocity is
nonzero on both sides of the wall and we need three con-
ditions to determine all unknowns. Fortunately, in this
case the temperature would be elevated enough that the
wall probably cannot propagate at this speed; so we will
not treat this case. We will also not treat the efFect of
latent heat released by other bubbles, although as the
phase transition progresses and bubbles begin to collide,
one bubble's wall will &equently be in the hydrodynamic
wave initiated by another bubble. These efFects make the
later phases of the transition quite complicated, and the
wall velocity we compute here should be an upper bound
on the velocity in this epoch [26]. This effect should
be important especially when the wall velocity is much
smaller than the speed of sound. In this case bubbles
would expand most of the time in the background of a
sound wave of another bubble. This eKect may signifi-
cantly enhance baryon production, as argued in [26].
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—1 E+v p= exp
( (1 —v2 )T

/E+v p, pv r'(p+v E)'
=exp

~ +
~(1 —v2)T T ( 1 —v' +m —mo [ [

+1, p, & — mo —m2.

1

pv ((p + v E)'
+m +1, p, ) — m20 —m2

T ( 1 —v~ r r

(5.2)

Here mo is the mass in the broken phase and + is + for fermions and —for bosons. Determining jdsp/[(27')s2E]f
the term in Eq. (2.8), for this expression appears hopeless, but we can expand to lowest order in v, which gives

(2') 2E (2x)s2E (e@&T + 1)2 —gp2 + m2 —m2 —p, p, & gm~ m2

We can perform the integration over pg.

f d'p« ~ fo(gp' + m')
(2m)22E (ea/2' ~ 1)2 4~ (5.4)

p~dp~ 1 2 E
4' E 4 2T

Integrating this expression times mm' over the wall yields
the velocity dependent part of the pressure; the result
agrees with the integral found by Dine et al [5], w.ho
have evaluated it to order m .

Let us examine the integral over p~ more carefully. For
bosons, the integral is

ing incidence. Their result then contains a logarithmic
enhancement, which can be traced to these glancing in-
cidence particles.

We will now show that no such log occurs in a re-
laxation time approximation when the relaxation time
is short compared to the thickness of the wall. Writ-
ing f = fo + 8f and working to lowest order in bf, and
treating the wall as stationary so b f = bf (z + v t), the
Boltzmann equations become

p, , (m')' exp(E/T)"-'E '' []="- E [-.(E/T)+ ]

(5 5)

At small E, csch (E/2T) 4T /E and the inte-
gral has a linear small momentum divergence, cut oK by
gp2 + m2; the dominant contribution is infrared. The
resulting integral over p is also linearly IR divergent, as
both f and gp2 + m2 —p, behave as 1/E above mo.
Thus, the &iction &om TV bosons arises primarily &om
very infrared (E m) particles. This is because the Bose
distribution function has a pole at E = 0, and because
a particle's contribution to the Higgs equation of motion
goes as 1/E.

Fermions have much more mild infrared behavior; the
integral over transverse momenta is

f p~dp~ 1 2 E
4+E 4 2T

and at small E the function sech (E/2T) behaves as
1; the integral is well behaved in the infrared, even for
gp2 + m~ = 0, and the dominant contribution is from
particles with p«(1 —2)T. However, the integral over
p, is small p, divergent, though only logarimically; so
the dominant contribution &om top quarks comes &om
particles with small transverse momenta, but thermal en-
ergies, i.e., &om particles at glancing incidence. This is a
combined eBect of the large phase space in such particles
and their long time on the wall.

Now let us examine the analysis of Dine et aL [5]. They
propose to treat the particles in a relaxation time ap-
proximation. However, they compute the particle pop-
ulation at a point as having come oK of a sheet a Gxed
z away &om the point of interest. A particle's lifetime
then actually goes as wp/p, = mal + (p«/p )2, so the
relaxation time is longer for particles traveling at glanc-

The relaxation time approximation is C[f] = 8f/~, with
w independent of momentum. If 7 « L (with L the wall
thickness) then to lowest order in 7/L the deriv. ative term
may be dropped, giving

(m2)' exp(E/T)
2E [exp(E/T) + 1]2

(5.6)

The &iction on the wall &om one species in the relax-
ation time approximation is then

f , dm2 dsk (m2)' exp(E/T)
dP (2~)s2E 2E [exp(E/T) + 1]2 '

which, at lowest order in an expansion in m, integrates
to

f'TV~
m (m') dz fermions,

4+2

m (m') dz bosons,
8m

(5 7)

which for a tanh wall shape give 7.v m4o/40vr L and
7 v mo/48mL, respectively. The top quark contribution
is isotropic, dominated by thermal particles, and has no
log. The log will be recovered when w &) L and the
derivative terms in Eq. (5.5) become important.

We do not expect this approximation to be very good;
in particular we should include the derivative terms and
model C[f] more accurately. This is the goal of the re-
mainder of the paper.
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VI. FLUID APPROXIMATION

In this section we will present a method for calculating
the deviation from equilibrium population density bf in
(2.8) in the presence of a moving wall. Our starting point
is the Boltzmann equation

dgf:—Ot f + z8, f + p, Bp, f = C—[f], (6.1)

where C[f] represents the scattering integral, E = (p +
m2) ~~2 is the particle energy, and

z=v, = E= —,p = — E= — (62)
g p, . 0 (m2)'

gp E '
Oz 2E

are the velocity and the force on the particle, respectively.
The Boltzmann equation is the semiclassical approxima-
tion to the quantum Louville equation. To be valid the
background field must vary slowly enough that particles
satisfy the WKB condition

1
p )&

Since we expect a rather thick wall, I )) 1/T, this rela-
tion is satisfied in abundance for all but the most infrared
particles. We will assume that very infrared TV bosons
are scattered up to energies O(gT) quite readily, so W
bosons with E gT or larger are responsible for more
&iction than very in&ared R bosons. We will use this
assumption again and again in what follows. It may be
wrong, in which case we need to extend our analysis
with a special treatment of very in&ared bosons. This
extension must model the dynamics of the strongly cou-
pled in&ared sector of the thermal field theory, which we
are not able to do at this time. We will also neglect any
&iction &om the condensate responsible for A~ (if such
a condensate exists) for similar reasons. It is our belief
that this problem and the problem of determining the
friction arising from thermal and O(gT) particles may
be treated independently, so our analysis may be simply
extended once the in&ared sector is understood.

The Boltzmann treatment also requires that scatter-
ings with the plasma are not too &equent so that parti-
cles can be to a good approximation considered on-shell
for all times. To quantify this we write the Heisenberg
energy-time relation LE p where p is the appropriate
damping rate which is of order g2T [33]. Since we can
only treat particles with E,p & gT this uncertainty can
be ignored.

The Boltzmann equations are nonlinear partial
integro-differential relations and as such are analytically
intractable. To evade this difficulty we will model each
distribution function with a several parameter ansatz
called the Quid approximation. The Boltzmann equations
will then yield a set of ordinary differential equations for
the parameters which will be tractable analytically. The
ansatz is f = exp(E/T —EbT/T —p, /T —p, v/'T) + 1,

The analysis of [19],which neglects transport but attempts
to treat the energy dependence of 8f more carefully, appar-
ently supports our assumption, but their analysis neglects
thermal corrections to the infrared boson propagator.

the form for a perfect Quid. We should use different pa-
rameters for each species in the plasma, but we will make
an additional approximation that all light degrees of free-
dom (that is, all but top quarks, W bosons, and Higgs
bosons) are in equilibrium at a common (space depen-
dent) temperature T + bTba and velocity vba. We will
also give tops and antitops of both helicity the same dis-
tribution function. In the minimal standard model this
is reasonable as there is almost no |P violation, and the
difference in transport properties arises only at the sub-
leading level of weak scatterings. In two doublet models
we might need to be more careful. Similarly, we will treat
W bosons and Z bosons as a single species (henceforth
"W bosons") whose mass squared is a weighted average
of the mass squared for the TV and the Z. This ensures
that the effective potential parameter D is correct.

For the heavy degrees of &eedom we take the distribu-
tion function to be

1
e(z+h)/T y 1

b = — p+ pba+ (bT+bTba)+p, (v+ vga) . (6.3)g

We track three perturbations with respect to the back-
ground; chemical potential p, temperature bT, and ve-

locity v. This ansatz is a truncation of an expansion in
powers of momentum; it gives a reasonable description
for the thermal particles' populations when the wall back-
ground varies slowly on the scale of the diffusion length.
For top quarks this should be sufficient as the diffusion
length is short and the influence of in&ared particles is
phase space suppressed. We discuss its validity at some
length in Appendix B: suffice it to say that it appears
quite reasonable for top quarks, and quite naive for W
bosons.

We now outline the main steps in the derivation of the
fluid equations. First we expand

deaf

to linear order in
perturbations

exp(E/T)
[exp(E/T) + l]2

dqh —— Bq+ —t9, P+ Pbg +P~ v+ vbgE
a + —Bz T+ bTbg (6.4)

This equation is written in the Quid 6.arne so that a par-
ticle's energy is not conserved in the presence of a moving
wall. The term which perturbs the population densities
away &om equilibrium is

0 m
(6.5)

Note that this term is proportional to m . This is the
reason it is sensible to expand to linear order in perturba-
tions. First note that m &( T. For thermal particles with
E T, fo fo and t—he source for bf/f is O(m /ET)
which is small. For in&ared fermions, fo —fo/2 and-
the source is O(m2/ET) which is also small. For in-
frared bosons the situation is a little less rosy; at small
energy fo foT/E —and the perturbation is O(m2/E2).
Again, we will assume that these particles are scattered
efficiently and postpone a more careful treatment.
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The Boltzmann equations have now become

(—fo) E [~.(V+ Vbg)+ T~.(»+»~, )

+p~t9~(v + vbg)] + Ot, (p+ pbg) + Ot,—(bT + bTbg)

+p &t(v+vbg) i +C(p, 8T, v) = ( fo—)
, a, (m')

2E

(6.6)
I

The collision term depends on the deviations of all par-
ticle species &om the common background temperature
and velocity. We discuss it in some detail in Appendix
A.

The three parameters are determined. uniquely by tak-
ing three integrals of the Boltzmann equation; since our
perturbations are Lagrange multipliers for particle num-

ber, energy, and momentum, the appropriate choice is

f d p/(2m), IE d p/(27r), and J'p, d p/(2vr) . The re-
sulting equations are

—&.(y+ pbg) + 0, (ST—+8Tbg) + ' 0,(v+ vb, ) +

c2~g (p + pbg) + c38t (bT + bTbg) + 0, (v + vbg) + C[f]

c4T Edsp
csA(p+ pbg) + c4&t(bT + hTbg) + 0, (v + vbg) + - C[f]

pal p
(2 ),T, C[f]

cy

2T
Ogm

C2

2T
0&m

(6.7)

The constants c, are de6ned by

d pZn+i — Ei—2( f1) (2~)

For fermions they are cia = ln 2/2a, c;f = (1—
2i ') i!(;/2n2, i & 1. For bosons they are cib
1n(2/m)/2vr, c;b = i!(;/2vr . Here and throughout, (;
is the Riemann zeta function evaluated. at i. We have
worked to lowest order in m/T here, but only cib and c2b
possess O(m/T) corrections, and these are small.

For a stationary wall all quantities are functions of x =
z + v t and the stationary Quid equations are obtained
by a simple substitution

Bg8, -+ v 8,', B,b; —+ b,
' . (6 8)

The collision integral f C[f] depends on p, hT, and v

of all heavy species, which couples the Quid equations.
However, for the top quarks the collisions which con-
tribute to order o.~ arise only Rom collisions with light
quarks and gluons, and for R' bosons the contributions
at order 0.,0,~ and 0,2 are primarily with light quarks
(the top quark making up only 1/6 of the population of
quarks). Hence it is reasonable to ignore direct collisions
between top quarks and R bosons. If we included them
then the problem would become more complex. , as these
interactions mix top and bottom quarks, and distinguish
between top helicities. To treat them properly we would
need to introduce separate Quid equations for left-handed
bottom quarks and for each top quark handedness. Be-
cause the effect is 10%, we will neglect it and treat
all R' boson collisions with quarks as being with light
quar ks.

The Higgs boson interacts predominantly with the top
quark via its Yukawa coupling, but since this interaction
is quite efficient [O(nqn, ln 1/n, )] and the Higgs boson
has oiily one degree of freedom (and is lighter than the
TV boson if the phase transition is to be strong enough for
baryon number to be conserved after its completion) we

cL p C[f] = pr„if + bTrz if,
I'„gy ——0.00899T,

p, ,Ec[f] = &r„»+sTr», ,

I'„gy ——0.01752T,
"'p

p, C[f] = vTr„f,
I' f ——0.03499T .

I' f ——0.01752T,

I'~gy ——0.06906T,

(6.9)

We use the subscript f (fermion) for top quarks and b

(boson) for W bosons, but we suppress them when no
confusion will occur.

For lV bosons we get

f d p
(2 )sT2C[f]

I'~gb ——0.00521T

3 3EC

I'„„=0.01012T
d p

( ), , J.C[f]

I'„b ——0.01614T.

= PI p]b+ BTI z']b

I'~gb ——0.01012T,

= PI'„gb+ ~T~z2b,

I z'2b = 0.03686T,

= vTI „b,

(6.10)

will ignore Higgs particles altogether. Hence the collision
terms in the Quid equations may be treated as arising
entirely through interactions with the background of light
particles.

We have computed the collision integrals appearing in
(6.7), including all diagrams which contribute to order
n21n1/n, for top quarks and to order n ln1/n for W
bosons, in Append. ix A. All diagrams are evaluated in
the leading-log approximation. This means that only t-
channel processes (which are logarithmically divergent in
the limit of the zero exchange particle mass) are calcu-
lated. The result for top quarks is
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The fluid equations then become

v c2(p'+ pb ) + v cs(bT'+ bTb ) + (v'+ vb ) + pI'„, + bTrzg —— '(m )',
3 2T

v c,(p'+ p,
'

) +v c (bT'+ bT,' )+ (v'+ vb )+ pr„, + bTrT = (m')',
3 2T

—'(p, '+ p'bg) + (bT—'+ bT'g) + - (v'+ v,g) + vTI „=0, (6.11)

where for top quarks one should use cf and I'f and for W bosons one should use cb and I'b.
We caution the reader not to interpret the I' simply as rates for processes, without including the coefficients which

appear in the derivative terms of the Huid equations. For instance, the rate at which a chemical potential for top
quarks decays is not r„qf T/110, but roughly r„q f/c 2f T/9, corresponding to a typical lifetime for a top
quark before it annihilates with an antitop of 18/T (the factor of two is because each annihilation destroys two top
type particles). Similarly, the time it takes for successive small angle collisions to randomize a particle s velocity is
roughly c4/3I'„11/T for top quarks.

Collisions between massive species and light species appear in the Quid equations of the light species with opposite
sign. Since the light species are treated as being at a common temperature and velocity, no bTbgrT or vbgr„appears
(see Appendix A). (If we treated the background species separately, terms order u, ln 1/n, would damp the difference
between background species temperatures, velocities, and chemical potentials, efficiently forcing them to equal. )
The background chemical potential is damped, but only by inelastic processes which enter at O(n, ln1/n, ). The
background Quid equations are

Tvb )) p' + ) ~

bT' +
I
+ Nb I'„b pb = N (pfI f + bTfrT„) + N~(pbr„b+ bTbrT b),)(, Tvb) pb +. ) I

bTb +
I

= N, (pfI f + bTfrT f) + Ngi'(pbr„„+ bTbr»b),
3

C3 / 4 / /

3 3p + (bT +v Tv ) =NvfTI f+N UTI„' (6.12)

T™&r„„+Nb, r„„) (6.14)

We see that pb~ is important when NqI'„q ) Nb~I'~bg, or
I

which simply state that the particle number, energy, and
momentum lost to the massive species via collisions are
taken up by the light species. Here g c4 ——78c4f +
19c4b = (87.25)4' /30, which is the heat capacity of the
light degrees of freedom, and Nq ——12 and N~ ——9 are
the number of degrees of freedom of top quarks and TV

bosons. The collision rate I"„b~ is the average over all
background species of the particle number destruction
rate.

Let us estimate the importance of pb~', consider a very
thick wall so that all derivatives may be dropped, and for
simplicity ignore R' bosons and bT and v. Then there
are two Huid equations to consider,

c]
Nb I'„b pb = Ngpgr„, r„gpss ——v (m ) . (6.13)

2T

The &iction on the wall depends on the chemical poten-
tial of the top quark, which is pq + pbg. In this approxi-
mation, it is

when the total rate at which background particles con-
vert into top quarks exceeds the total rate at which they
annihilate via inelastic processes. If these inelastic pro-
cesses were very inefEcient, the &iction on the wall could
be significantly enhanced. Unfortunately it is quite hard
to compute I'„b~, as there are many diagrams, all with
five particles. The diagrams involving several gluons in-
terfere and are not separately gauge invariant. While
the diagrams are at a high perturbative order, they gain
in&ared log enhancements when there is a t channel ex-
change and one incoming gluon is soft. The diagrams in-
volving gluons have very large color factors because the
gluons are in the adjoint representation, and Bose statis-
tics also make these diagrams large. We have made a
crude estimate of these rates and find that Nb~I'bg is sig-
nificantly larger than %&I'pg f, so we will neglect the back-
ground species chemical potential in what follows. (This
conclusion sounds like an invalidation of the perturbative
expansion in o.„but this is not so: Nbg is several times
larger than Nq, and this makes up for the diagrams being
at a higher perturbative order. )

In this approximation the background Quid equations
become rather simple:

f, Tvb) I
bTb +

~

—N (pfI f + bTfrT f) + N~(pbI'„b + bTbI'7 b))
(bTb + v Tvb ) —N vfTr f + NR'vbTr b pb (6.15)
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Integrating these expressions, together with Eq. (6.11), reproduces Eq. (4.16). The derivative term on the left-
hand side is exactly what appears in the Quid equations for the perturbed species, which allows us to eliminate the
background perturbations in the fluid equations by direct substitution. The Anal form of the Quid equations for the
top quarks is

I C3f T
v c fPf + v c ft9Tf + vf + @fr ff + BTfr T1ff + @br 1fb+ STbIT1fb = E1f

3
f C4f T

c3fPf + v c4fTf + vf + @fr 2ff + ~TfrT2f f + @br 2fb + ~TbI T2fb +2f
3
C3f I C4f ] V~C4f T
3 3Pf + 6Tf +

3 f+ fTr ff+ bTI fb=0, (6.16)

where

Ngc3f
1ff 1f + r f~ C4

Ngc4f )r„„f= l1+ lr„„,'4 )

VmC1f
(~e)

2
Wgcsfrriff =rrif+ rT2f,

C4

( Ngc4f )r, ff =11+
l
rT,f,

c4

( Ngc4f )rff=l1+ lrf'4 J

V~ C2f
E2f = (m, )2

Nwc3f
1fb = r b~ C4

Nwc4f
rp2 fb = ~ rp2b )~ C4

N C4f
rvfb = ~ rvb ~~ C4

N~csf
rT&fb

C4

N~C4 frT2fa = rz2s,
C4

The W Quid equations look the same with the replacements b 4-+ f, Ngr ~ Nt. The collision terms have become
(weakly) coupled between the heavy species, now indirectly through their in8uence on the background.

We also extract the behavior of the background temperature for future use:

N, (pfr„ f + bTfrT2f) + N~(@sr„2g + bTgrT2t, )
Pc4(1j3 —v )

(6.17)

We see that the resistance to the wall's movement &om
the heating of the plasma becomes important as the wall
approaches the speed of sound. The divergent behav-
ior at the speed of sound signi6es the breakdown of our
linearization of perturbations.

b =) ny;exp( —Ax), x = z+v

where o.i are coeKcients, A; are the solutions to

Det[—AA + rj = 0,

(7.2)

(7.3)

VII. 8-FUNCTION RESPONSE

In order to gain some intuition for the Quid equations
we study the response to a b-function source. Consider
the fluid equations for the top quark, ignoring for the
moment the change in the background so there is no cou-
pling to the R' boson. We can write the Quid equations
in a matrix form:

and gi ls the vectox ann1hllated by hi+ + r
To solve the problem with a b-function source, we write

a general solution to the homogeneous equations on each
side of the source and apply boundary and matching con-
ditions. Because b should go to 0 at large distances, only
the positive values of A can have nonzero coefficients in
&ont of the source and only the negative values can have
nonzero coeKcients behind. We write

(7.1)
g& &o n, y; exp( —Ax),

, n, y; exp( —Ax))
x&0,
x&0, (7.4)

where and determine n; Rom Ab(0+) —Ab(0 ) = E, the match-
ing condition across the delta function. This gives

&0) ) sgn(A, )n, Ay; = E, (7.5)

C2V~

C3V~
C3V~
C4V~

C4
3

C4
3

c4vt4

(r„, r, 0)
I'„2 rT2 0

(o o r„)
Since the Quid equation is linear it suKcies to study the
solution when the source is a b function times some col-
umn vector E. To solve this we need the homogeneous
solution

which is solved by expanding A E in the eigenvalues y.
We see that the solution consists of several tails, some

in &ont of the source and some behind it. These tails
model the transport of the perturbation around the
source due to particle flow.

It is interesting to know how far the particles spread
and how asymmetric the spreading is, so we will very



52 HOW FAST CAN THE WALL MOVE? A STUDY OF THE. . . 7193

briefly investigate the roots to Eq. (7.3). This equation
is a polynomial in A. The coefIicients are very messy, but
much of what we want to know is in the coefIicient for
A3,

starters it would be useful to see how much progress we

can make analytically. We have done so in an earlier pa-
per [22]; here we will improve that analysis by including
the background temperature.

Let us restrict the shape of the wall to an ansatz
—V~ C2C4 —C3

and the coeKcient for A,
P(z, t) = —

~
1+ tanh4o ( z+v t)

2 L
(8 2)

Their ratio gives the product of the A' s, and its sign tells
us how many of the tails precede the source and how
many follow it, as a function of v . We immediately see
that, for a subsonic wall, one tail precedes the source
and two follow it; but the sign of the coeKcient for A

changes at v = v, = 1/~3, and all three roots then trail
the source. No diffusion occurs in &ont of a supersonic
wall, at least within the fIuid approximation. It is thus
quite important to the study of baryogenesis to know
whether the bubble wall is subsonic or supersonic.

We will also comment that, in the special case that
v = 0 and the particle decay rate is very much slower
than the scattering rate (so rl 2, r )) I ~j I g i I p2),
the root equation for A simplifies; it is approximately

2
——I»A +I.I~,I„,=0c3 2

9
(7.6)

with roots A ~ oo (a nonpropagating disturbance) and
A = 9I'„I„i/c2s, which are decay tails. The length of
the tail is cs/(3/r„r„i). By finding the small v limit
of the coefricient for A and comparing the tails to the
result of the difFusion equation we And that the difFusion
length is D = cs2/(Qc2r„) [16],which for our value of I'„ is
D = 2.9/T for top quarks and D = 5.5/T for W bosons.

Prom the collision rates presented in the last section,
we find the length of the tails at v = 0 is 7.8/T for top
quarks and 18/T for W bosons. Top quarks do not spread
very far, but W bosons do. However, both lengths are
larger than the diffusion lengths of the species, so much
of the distance traveled is after the first scattering.

where v and L are parameters to be optimized.
If Eq. (8.1) were derived &om a free energy F
we would know how to proceed: we would solve
OF/BL = f [Eq. (8 1)]B.p/BL = 0 and BF/Ov
J[Eq. (8.1)]BQ/Ov = 0 simultaneously. Since our equa-
tion of motion is dissipative, there is no &ee energy which
generates it; however, these constraints still have the
right physical content. Noting that B$/BL = —(z +
v t)P'/L and BP/Bv = tP', we guess that a good pair
of constraints should be

Indeed, these have sensible physical interpretations.
From Eq. (2.6), we see that the first of these constraints
is that the total pressure on the wall should be zero; if the
total pressure were nonzero then the wall would acceler-
ate, changing v . The second equation is an asymmetry
in the total pressure between the &ont and back of the
wall. If it were not zero there would be a net compressive
or stretching force on the wall, changing I.

Next we must deal with the variation of temperature
across the wall. Write the temperature in the broken
phase as T (which is T in the language of Sec. IV) and
the temPerature at a Position z as T(z) = T + hTbs(z)
We will solve for bTbg using Eq. (6.17) and the boundary
condition hTbs(z + oo) = 0 and correct (8.1) to linear or-
der in bTbg. The correction is hTbgdV&/dT 4DQThTbg.

The integrals (8.3) for the constant temperature, equi-
librium part of (8.1) can be performed; they give

VIII. WALL VELOCITY WITH A WALL SHAPE
ANSATZ

[l:l&+VT'(&)]L&'= 6L",
' —2[&&~+=-] (85)

In the fluid approximation the equation of motion of
the Higgs field, Eq. (2.8), becomes

F sT—gy2(q 1)T2 0

2

5AT (g
24

—(1—v~)P +V@,(P, T)+ ' (cijpt+c2ybTt)

K~T dm~
(cibpb+ c2b6'Tb) = 0 . (8.1)

2

This, together with the Quid equations and the equa-
tion for the background temperature, constitute a well
posed set of equations for the shape of the wall. They are
velocity dependent; we expect them to have a solution at
a discrete set of velocities (hopefully one). However, they
are nonlinear, so their solution must be numerical. For

~

2.79+ —l
12 ( 2 Tp

(8.6)

4DT STD dz 4DT bTgg dz (8 7)

for the background temperature,

Note that the P term acts to stretch the wall (increase
L) while VT acts to accelerate and compress the wall. The
coeKcient 2.79 in the last term is the only place where
our choice for the function Pit enters our computation.

Next we must evaluate the integrals
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y
2

Ni(ciyljy + czybTy) P—P'(z)dz,
2

maximum. The fluid equations are then easy to Fourier
transform, becoming

f y z
Ni(cif pf + c2fbTf) — pg—'(z)dz

2 L (8 8)
ikb;+ (A ');~I'~fbi, = (A );~E,PP',

i kbTbg
'——R;b; .

(8.12)

(8.13)

f y — dk
Ni [cigar y (k) + c2gbTy (k)]—PP'( —k) —,

2 27r
' (8 9)

et cetera. One complication is that crab is weakly z depen-
dent; we approximate it at its value where PP' is inaxi-
mum. Evaluating PgV by a contour integration, we find

(8.10)

for quarks, and similarly for W bosons; to do this we
Fourier transform the integrals to Now denote the eigenvalues of (A I') as A;, and write

the matrix whose columns are the eigenvectors of (A I )
as y, so that

(A 'I')', x, i = X'~Ai (8.14)

(with no sum on k) . Also define a, = (y );~ h~

g; = (y i), (A iF)~, which are the deviation from equi-
librium and the source in the basis of eigenvectors. Mul-
tiplying the fluid equations on the left by y, we 6nd

zing'(k) . ding'

L d(kI )

A +,k~~'k)

i kbTsg ——R,y,, ' . PP'(k) .

(8.15)

(s.16)

We determine P, and bT f'rom the fluid equations; they
can be written in a matrix form by writing b

[pf bTf v f pQ bTs, vg]; the fluid equations become

A;~b' + I';, b~ = F;PP', bTi', = R,b; . (s.11)

The coeKcient matrices A and I' and the source vector
F can be read off from Eq. (6.16), and the form of R can
be read off &om Eq. (6.17).

F; has one term crab which is weakly position depen-
dent; again we approximate it as its value where PP' is

I

The equation for hTs~ only determines its value up to
a constant of integration, which in Fourier space is a b

function; the coeKcient of the b function is determined
by the boundary condition for bTb~. We And

bTsg ——R;y,, ~
. — b(k)

~
PP'(k), (8.17)' "

haik A, +ik A,.

where b(k) is the Dirac delta function.
The contributions to Eq. (8.3) in this notation are

and

b (k)
~

PqV (k)PP'( —k)
A~

(8.18)

f;y;~ ' +4DTR, y,~ ~

. — b(k)
~

PP'(k)zing'( k) . —
2~L ' "A, +ik (8.19)

The vector f above, which gives the force on the field from b, can be read off from Eq. (8.1).
How does transport enter these integrals? The A, are the inverses of the lengths of exponential tails. The no

transport limit is the limit in which the A; are large. In this limit the ik in the denoininator is irrelevant. Since
PP'(k)PP'( —k) is real, the ik reduces the value of Eq. (8.18); transport, by spreading out the perturbation, has
reduced the &iction on the wall.

Equations (8.18) and (8.19) may be solved using the following integrals:

(s.20)

dk 1
gyes (k) y~, ( k) P() ( (AL) ' AL

l~ fALIBI).
2nLA+ik 16 E 2 2 ) ( 2 )

(AL)21 (ALvr) 1

E 4 & &2)
—1 P~ /' (AL) ) (ALvr i AL

(s.21)

(s.22)
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~ ~2~Lik(A+ik) A 16 q 2 2 ) (, 2 )
(&I,)'& (&I,~') 1 5y',

4 ) 2) 6 96 (8.23)

where we have defined the integrals
I

lation for P. We begin with Eq. (8.12), but including the
position dependence of F, so we must Fourier transform
FPP' as a unit. Now write

xscsch xcothx
I2 a x

X +G

Evaluating these by contours gives

(8.24)
S; =—(y );.(A '); E PgV .

We quickly find

(9.1)

I, (a) =

I2(a) =

ma n(2vra) 2

A7r —G

7rG cos G 3a + (nest)'—1 + 2A7r G
sin G n7r G2 3

(8.25)

(9 2)

which can be inverse transformed into a convolution,

~'(~) =xv f~~a'4 —*)(x '& '&)'(u)04'(v)

G~(x) = sgn(A~)8[xsgn(A~)]exp( —A~x) . (9.3)

~ . (—)"+'(2n)!((2n)
(2a) 2n

n=1

) (—)"+'(2n + I)!((2n)
(2a)'" (8.26)

At small values of a it is useful to rearrange the infinite
series into Taylor expansions,

7rG G 2

Ii(a) =
2

—2 —4 ) n — (,'(2n+. 1),
sin G 7rn=1

"(.) =- '.- -~+&.-(-+~)(-')'
n=1

l(3as
x ~, g(3+ 2n) + ((1+2n) ~, (8.27)

Numerically, these expressions suer &om cancelling
divergences near G = n7r.

For large values of G the integrals possess useful asymp-
totic series

Here G is the Green's function for Quid perturbations.
Now given a spatial configuration for P, say on a lattice
of points, we may integrate numerically to find b and inte-
grate again to find Tbz. This gives us the full equation of
motion (8.1). If the equation of motion had been derived
&om a &ee energy, then we know that changing P in the
direction dictated by the equation of motion reduces the
&ee energy, and is guaranteed to approach a minimum if
one exists. We may hope that evolving P in the direction
dictated by the equation of motion will lead us towards a
solution of the equations of motion, but we must be a lit-
tle careful because there is only a solution at select values
of v, and because the wall has a zero mode. The naive
way to evolve v towards its correct value is to move it in
the direction dictated by the total pressure on the wall,
J[Eq. (8.1)]P'dz. We then subtract a quantity propor-
tional to P' &om the equation of motion when we correct

which have radius of convergence 7r.
This completes the evaluation of Eq. (8.3). These two

constraint equations determine curves in the space of v
L and their intersections are self-consistent solutions for
the wall shape and velocity within our ansatz and ap-
proximations. These curves are illustrated in Fig. 1.

~ I

~so
~so

~0 ~so
~so

~so
~so

~so

IX. SOLVING THE EQUATIONS OF MOTION

It is also possible to solve (8.1) and the fluid equations
numerically for a general wall shape. Although they con-
stitute a nonlinear system of equations, they are linear in
h; we can therefore solve for h as (nonlocal) functions of P
and reduce the system to a single integro-differential re-

I

0. 6
I

0. 8

FIG. 1. Plot of the solutions of Eq. (8.3) for the case
AT ——0.03, A~ ——0. Horizontal is v and vertical is 1. The
solid line is the velocity constraint and the dotted line is the
thickness constraint.
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P, as otherwise part of the correction we implement will
just be a shift in the wall position. This approach should
work below the speed of sound, but above the speed of
sound the pressure may decrease with velocity (as the
temperature elevation reduces) .

We have implemented this procedure numerically, and
find that the wall does approach a solution of the equa-
tion of motion for subsonic starting velocity. Since the
lattice on which P is defined need only be one dimensional
(as the wall is planar) it is easy to make the stepsize small
enough that the results are robust; our results agree to
0.2% when we change stepsize from 1/T to 2/T. We And
that the wall is somewhat deformed from a tanh, appear-
ing steeper on the side facing the symmetric phase and
shallower on the side facing the broken phase. Part of
this is due to the two loop terms in the effective poten-
tial, but it also turns out to be true when we use just
the one loop potential, which produces a symmetric wall
at equilibrium. We can understand this deformation as
follows: the source for excess particles goes as P&j&', which
peaks above P = Po/2. The excess particles are on aver-
age swept further up the wall towards large P because of
the motion of the wall with respect to the plasma. Hence
most of the frictive force on the wall occurs at large P,
and stretches out the upper part of the wall.

X. RESULTS AND CONCLUSIONS

The wall velocity computed from the tanh ansatz and
numerically are tabulated for several effective potential
parameters in Table I and the wall shape they give is
compared in Figs. 2 and 3. We see that the ansatz returns
the velocity accurately, although at large A~ it gives a
wrong wall shape. The column Po/T is the Higgs VEV
after the phase transition has completed, accounting for
the heating of the plasma due to the release of latent heat

in the transition.
There is always a subsonic solution within the approx-

imations that we have made, because as one approaches
the speed of sound &om below the temperature is ele-
vated by more and more. In all cases in the table with
A~ ——0, the only solution is subsonic. This is because
the liberated latent heat raises the temperature of the
plasma, which inhibits the motion of the wall. Neglect-
ing the background temperature, as we did in [22], pro-
duces a supersonic wall, so the effect is quite important.
The result that the wall is subsonic is robust in the sense
that, if we have underestimated all collision rates by a
factor of 2, we still find only a subsonic solution. Also
note that the velocity is quite weakly dependent on the
Higgs boson mass; in the range 0 ( mH ( 90 GeV,
0.36 ( v & 0.44. Recall that this result ignores the
Higgs particle contribution to friction and may underes-
timate the contribution of in&ared TV bosons, which can
only make the wall velocity lower. However, top quarks
were typically responsible for about 60% of the friction
and 65%%uo of the liberated latent heat, so we do not an-
ticipate that in&ared particles will change our results a
great deal.

Including the background temperature has also re-
duced the dramatic stretching of the wall found in [22].
This stretching arose because the force on the wall from
6f is predominantly far back on the wall. In the hmit
where decay rates are fast compared to the wall passage
time, 8f PP', which peaks well above P = Po/2. The
force on the wall from bf depends on b fPP', which peaks
even more strongly on the upper part of the wall. Trans-
port compounds this effect as particles sweep up the wall
because of its movement. The result is that most of the
force from Sf is far back on the wall, stretching it out.
However, bTbs is largest (for subsonic walls) in front of
the wall in the symmetric phase, so it tends to exert more
force on the front of the wall, which compresses it. This

TABLE I. Wall velocity and thickness and Higgs VEV after transition at several effective poten-
tial parameters. The second entries in the ansatz velocity and length columns for some entries are
detonation solutions; in some cases the ansatz predicts runaway.

AT

0.0204
0.023
0.03
0.04
0.05
0.06
0.03
0.04
0.05
0.03
0.04
0.05
0.06
0.04
0.05
0.06
0.07

fA Il
0

34
50
70
81
91
50
70
81
50
70
81
91
70
81
91
98

A~
0
0
0
0
0
0

0.1
0.1
0.1
0.2
0.2
0.2
0.2
0.3
0.3
0.3
0.3

ansatz v

0.351
0.356
0.365
0.377
0.390
0.401

0.481, run
0.497, 0.97
0.508, 0.91
0.499, run
0.513, run
0.522, 0.98
0.528, 0.96
0.519, run
0.527, run
0.534, run
0.538, run

ansatz L
29
28
26
25
24
23
18

15, 14
13 11

15
12

11 77
9.6, 6.2

11
9.4
8.5
7.8

Numerical v

0.365
0.374
0.392
0.412
0.428
0.441
0.496
0.513
0.524
0.510
0.524
0.533
0.539
0.530
0.537
0.543
0.546

A/T
0.987
0 ~ 907
0.757
0.635
0,562
0.516
0.998
0.861
0.777
1.12

0.971
0.878
0.814
1.05

0.952
0.882
0.831
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0. 6

0. 5

0.4

0. 3

Appendix C.
In conclusion, if there is a gauge boson condensate in

the symmetric phase, and if neither this condensate nor
in&ared bosons impart substantial &iction, then the wall
becomes supersonic. On the other hand, if there is no
gauge boson condensate in the symmetric phase, the wall
is definitely subsonic just due to &iction &om thermal
particles and the release of latent heat.

0. 2

0. 1 ACKNOWLEDGMENTS

FIG. 2. Wall shape for A~ ——0.03, A~ = 0. The solid line is
the numerical value, the dotted line is the tanh ansatz shape.

I ' ' ' ' ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~

~ ~
g ~

~ ~ ~

40

FIG. 3. Wall shape for AT ——0.04, A~ ——0.1. The scale
is different from the previous 6gure; the wall is taller and
narrower.

partially compensates the stretching we found in [22].
We should comment that we have only treated isolated

bubbles, although in the later stages of the phase transi-
tion, as bubbles collide, the wall will often propagate in
the hydrodynamical wave of another bubble as well as its
own. This elevates the local temperature and reduces the
velocity; the v we calculated serves as an upper bound
during this epoch, but the velocity in some places may be
considerably lower. However, in all cases we have consid-
ered there is at most half enough latent heat to elevate
all of the plasma to the equilibrium point, so it seems
unlikely that the velocity should ever be lower than our
estimate by more than a factor of about 2.

In all cases in the table in which A~ g 0, the ansatz
technique tells us that there is a supersonic solution;
this is always very relativistic and sometimes accelerates
without limit. We consider these results very prelimi-
nary and probably unreliable, because they neglect &ic-
tion caused by the condensate. Still, it is possible that
the wall does become supersonic in these cases. However,
the fluid approximation is not valid in these conditions,
because the &ont part of the wall becomes quite thin.
A more careful analysis shows that the compression of
the &ont of the wall greatly increases the &iction and
prevents ultrarelativistic motion. This is discussed in

We thank the Sir Isaac Newton Institute for Math-
ematical Sciences, Cambridge, England, for hospitality
during the early part of this work. We are very grateful
to Misha Shaposhnikov, Andrew Heckler, Michael 3oyce,
and Neil Took for enlightening conversations. We would
also like to thank Marco Moriconi for reminding us how
to do partial &actions. G.M. acknowledges support &om
the NSF and T.P. support &om PPARC.

APPENDIX A: SCATTERING RATES

In this appendix we discuss the computation of col-
lision integrals. The collision integral appearing in the
Boltzmann equation is, to second order in o.,

1 d k d p' d k'

(
x(2m. ) h4(p ~ k —p' —k')'P[f, ], (A1)

&[f'] = fif~(1 + fs) (1+ f4) —fsf4(1+ fi) (1+f2),

where the sum is over all four leg diagrams, p refers to
the incoming particle, k is the particle it hits, and p'
and k' are the outgoing particles; the legs are labeled as
1, 2, 3, 4 respectively. M is the scattering amplitude for
the process. The f's are population factors; the positive
expression represents a particle being removed from the
state with momentum p by a collision and is weighted by
the population of particles in that state and of the state
it collides with. The negative term in P[f;] accounts for
particles scattering into the state. The factors 1 + f for
the outgoing particles arise &om particle statistics; the
6 is a —for fermions (corresponding to Pauli blocking)
and a + for bosons (for stimulated emission). Weldon has
given an excellent derivation of this expression from the
discontinuity on the real time axis of the self-energy of
the propagator [32]. Extending his technique to include
gauge particles in a general covariant gauge proves to in-
troduce difBculties. The structure of the collision integral
arises &om the poles of propagators in a self-energy di-
agram, and the propagator D„= (g~„—(k~k„/k )/k
has extra on shell divergences for ( g 0. Such infrared
problems have been discussed by Braaten and Pisarski
[33], who have shown that it is suKcient to work in the
gauge ( = 0.

Let us begin by analyzing the population factors.
Without loss of generality we may write f; = 1/(exp a; +
1), and noting that (1 + f;) = f; exp a; we find
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g[f] (ebs+~4 e~i+oi) f f f f
The equilibrium value of a; is p(E, —v p, )/T with a
common v and T for all species .In this case, C[f] = 0
by energy and momentum conservation. This holds for
higher order graphs as well. In the Boltzmann approxi-
mation the collision integral is local, so it also holds for
a common spatially varying temperature and velocity.

Now let a, = p(E; —p; vbs)/Tbs —6;, with b; small;
then

exp(aq + a2) = exp ) p(E, —J7, v)/Tbs
)

x exp( —bq —b2)

= exp ) p(E; —J7; v)/Tbs

x (1 —8g —82)

to linear order in b, and hence

P]f.] = () b) fifa(1 + fa)(1 + f4),

where the sum on b is over incoming minus outgoing legs.
Now let us compute the O(n2) collision rates for top

quarks. All t-channel diagrams which contribute at order
o., are shown in the erst two columns of Fig. 4. There
are also 8-channel processes. These diagrams interfere,
but luckily the cross amplitudes are all O(m2/T2) and
can be neglected. Top quarks can also decay directly,
with a matrix element O(g ), but this process is time
dilated and phase space suppressed, which reduces its
importance by O(m /ET). It therefore contributes at
order o.~o.„and can be neglected.

When we compute the cross sections of these diagrams
using free particle propagators, we 6nd that the t-channel

processes lead to logarithmic infrared divergences. At fi-
nite temperature these divergences are cut off by the in-
teraction of the exchange particle with the plasma, so the
t-channel diagrams contribute at order n2in 1/c], The
exact thermal propagators are quite complicated, but if
we are willing to make an error in the leading constant
(but get the coefficient of the log right) we can make
a simple approximation which renders the computation
more tractable. For an exchanged (top) quark, the cor-
rect dispersion relation is very similar to that of a massive
particle with m2 = g2T2/6 [34]. This correction is of or-
der the (space dependent) contribution &om the physical
mass, m~ = y~ P /2, which we will therefore neglect, mak-
ing the collision integral P independent. For the bosons
the dispersion relations are quite complex. For space-like
momenta, such as occur for t-channel gluon or PV boson
exchange, the longitudinal components of the propaga-
tor are Debye screened, and the transverse parts Landau
damped, below the plasma mass, which is m = 2g, T
for gluons and m~ ——(5/3)g T for W bosons [35]. To
approximate this effect we modify the denominator of the
propagator, making it t —m, where m is the appropriate
plasma mass of the exchange particle. This approxima-
tion is quite rough; it should yield the correct leading log
coeKcient, but not the correct leading constant. Hence
we can only work to leading log accuracy. We therefore
drop 8 channel processes, which do not produce loga-
rithms, set u = —s (which is legitimate in the leading
log approximation), and keep only the st/t2 dependence
of annihilation and absorption-reemission processes and
the s2/t2 dependence of scattering processes.

We will also systematically drop terms of order m/T,
which allows us to treat the outgoing lines as approxi-
mately massless. In all cases the collision rates are dom-
inated by thermal particles, and the infrared log diver-
gence arises primarily when the exchange momentum is
between T and m, so this approximation is justified.

1. Top quark annihilation rates

Now we will compute a simple annihilation diagram,
quarks go to gluons with matrix element (in the lead-
ing log approximation) —(64/9)g4st/(t —m2)2. The
collision integral, integrated over dsp/(2vr)sT2, is

64g, d pd k

9 (2vr) sTs4Ep Eg

8T
x 2p, + (E~ + Eg) + (p, + k, )vP T

xf„f„(1+f„,)(1+ f„,) . (A2)

FIG. 4. All t channel diagrams considered in the text. The
first column are those which annihilate quarks, the second
scatter quarks, the third annihilate W's, and the last scatter
W's.

In the leading log approximation the energy transfer is
small, so we may approximate

f fI, (1 + f„ )(1 + fI, ) f fg(1 + f )(1 + fg),
where the 1+f use the Bose population function and the
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1 2p ~ k—ln
8x m2 (A3)

to leading log accuracy. We now perform the remaining
integrals in the plasma kame. The argument of the log
contains the only dependence on p or k; 2p k =

2lpl l kl(1—
cos 8) + O(m ), with 8 the plasma frame angle between

p and k. The remaining integrals are

64g4 1 p2dpdO„k2dkdyd cos 0
9Ts 8m (2vr) s2Ep (2n) s2Ek

x [2p+ (E„+Ek)bT/T + (p, + k, )v] (A4)

2pk(1 —cos 8)x f„fI, (1 + f„)(1 + f), ) ln
mq

The integral over (p, + k, )v vanishes when we integrate
over dO„, although (only) it will contribute when we
integrate over p, dsp/T . The integral over 8 gives ap-
proximately 2 ln(4pk/m ), again dropping a constant and
keeping only the leading log. The remaining angular in-
tegrals are all trivial. The energy integrals are dominated
by thermal energies where we are justified in approximat-
ing p = E„,and we get

g hT 4pk
pk 2)u+ (p+ k) ln

18vr573 T m2

x f„fI,(1+f„)(1+fI,)dpdk .

f use the Fermi population function. In this approxima-
tion, 7 is independent of p' and k' and the integrals over
p' and k' are Lorentz invariant and may be calculated in
the center-of-mass kame. The integral over k' performs
the three spatial b functions, so that k' = —p'. The in-
tegral over p', making a small mass approximation for t,
is

f p' dp'dO„(2p . k) 2pp'(1 —cos 8')
(2~) 4E„~El,i " " [2pp'(1 —cos8') + m ]2

Using the approximation

p 1n —fn(1 p fn)dp —ln(n+ f) f p fn(l + fn)dp,T u

(A6)

which is justified asymptotically and is reasonably ac-
curate already at small values of n, we calculate these
integrals and get

8o., ( 9(,'2 9T2 3(2 7(s 15T~
2)u ln +2hT ln T . A7

9vrs q 16 m2 4 4 m2 )
The integrals over E„d p and p d p are performed simi-
larly and introduce no further complications.

2. Scat tex ing processes

Scattering diagrams are somewhat more complicated
because the sum over chemical potentials and energies
involves both incoming and outgoing particles. Con-
sider the t channel gluon exchange diagrams. The am-
plitude squared and summed over outgoing states is

32g, s /t for a top quark scattering off a gluon [36] and
= (5/6)32g4(s +u2)/t2 (160/3)g4s2/t2 for a top quark
scattering off a quark (when it scatters from another top
quark, P h = 0 as the other top is at the same temper-
ature and velocity). We have replaced u -+ —s which
is legitimate in the leading log approximation. The sum
over perturbations g h' = Op+ (E„—E„)hT+ (p, —p,') v

so these diagrams do not damp chemical potential. Also,
the integration measure is symmetric under p ++ p' and
k ++ k', but the integrand is antisymmetric, so the dia-
grams do not contribute to the first Quid equation. Also,
the integral p d p gets no contribution from bT because
the integrand is invariant under parity (p, ~ —p; with

p; = (p, k, p', k')), and the integral over Ezd p similarly
gets no contribution from v. Hence we need only two
integrals,

, (2~)'h(p+k — ' —k') f f (1 —f„)(1+f„)(2m)~2E„E),Ep EI, T4 (t —m2)~ " " P (P* P )
(A8)

where 4 = 32g, for the scattering o8' a gluon and
A = (160/3)g4 for the scattering off a quark, and of
course the correct population densities for bosons and
fermions ought to be chosen. We use the symmetry of
the integration measure and 'P[f] under p ++ p' to rewrite
E„(E„—E„)-+ (E„—E„)2/2 and write it in a Lorentz
invariant form as [u. (p —p')]2/2, where u~ is the unit vec-
tor in the time direction of the plasma frame. Similarly,.( ~ — '. ) —t/6+ [ . ( — ')]'/6.

Writing the center-of-mass frame angle between u and
p as P, the integrals over p' and k' give, in the center-of-
mass kame,

A quick calculation gives

lulc. m. lplc. m. cos P u pc.m.

u (p —k) (E~ —E) )~~-
2 2

and

(A10)

Ip+ kl~~-
2

(A11)

so, in terms of the plasma kame angle 8 between p and

k, (A9) is

(lul lpl sinP)21n
— I(lul lpl sinP) + 2p2 ln

(A9)

A E&E),(1 + cos 8) ln[2E&Eg(1 —cos 8)/m ],
16~ sE„E),(3 —cos8) ln[2E&EI, (1 —cos8)/m ] .

(A12)
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Recall that A = 32g, [A = (160/3)g, ] for scattering oK a
gluon (quark). We can now do the remaining integrations
as above, using the same leading log approximation as in
the previous section. The result is

for scattering off a gluon and a quark, respectively. Bose
statistics have made scattering kom a gluon more impor-
tant than &om a quark, even though the matrix element
squared is smaller.

tribution to the decay rate of left-handed top quarks is
comparable to that &om the annihilation processes we
have considered. However, it only affects left-handed top
quarks, and even if the rate were infinite it would just
share their chemical potential equally with left-handed
bottom quarks, reducing the friction on the wall by 3/4.
(The rate at which thermal top quarks rotate between
right and left handed on the wall is smaller than the an-
nihilation rate. ) We will neglect this fairly minor effect
here.

4. W boson diagrams

3. Results for top quark diagrams

We now tabulate the contributions of the collision in-
tegrals to the decay constants 1 for the top quarks.

The contributions of two annihilation diagrams, both
with matrix elements —(64/9) st/(t —m ), suin to

'
(9/22/16) ln(9T2/m2),
(21(2(s/16) ln(15T /m ),

32n, (21/2(s/16) ln(15T2/m ),
9~s (135(2(4/64) ln(21T /m )

+(49','/32) ln(25T'/m'),
(45(2(4/64) ln(21T /m ),

(A14)

The scattering diagrams when summed yield

22o., (22 ln(25T /m2), I'T2,
g ln(25T2/m ), I'„. (A15)

'
135(2(4 ln(21T2/m )—98(s ln(25T2/m ),
90/2(4 ln(21T2/m )—98gs/31n(25T /m2), I„.

T2 ) (A16)

These collision integrals were evaluated in analogous
manner to the gluon exchange scatterings; after integrat-
ing over p' and k' one obtains (16g, /9m)(pvpcos P)
(16g2/9m) (1/4) [(p—k') u]2 for the contribution to bT and
(16g,'/27vr)[(pvpcosP) + p ] -+ (16g, /27~)(1/4)([(p-
a') u]2 + 2p k) for the contribution to v.

Evaluating (A14) — (A16) numerically, using n,
0.12, m2 = 2g2T2, and m = g, T /6, we find

f —0 ~ 008993T I f —0 01752T TrT& f r+2f
p.p69p6T, and I'„t ——0.03499T [37]. By compa~i~g the
contributions &om various diagrams one finds that scat-
terings dominate I'„, but rT2 arises mainly &om annihi-
lations.

We should comment that we have left out one poten-
tially important diagram, weak Qavor changing scatter-
ing, which converts left-handed top quarks to bottom
quarks. Because of the linear Coulomb singularity, cut
off by Debye screening, this diagram contributes at or-
der o. , and numerical evaluation shows that its con-

Absorption and reemission of a gluon, with matrix el-
ement —(64/9) st/(t —m ), contributes

'
(9$~~/16) ln(9T2/m2), I'„, ,

(21(2Q/16) ln(15T /m ), I'„2,
a,n T ( (21—(ques/16) ln(15T /m ), I'2.i, (A17)

(135(,(,/32) ln(21T'/m', ), I ~, ,

(45( ( /32) ln(21T2/m ), I'„.
For doubly weak annihilation, we find

' (9Q/16) ln(9T2/(m2)),
(21(2(s/16) ln(15T2/(m2)),
(21(2(s/16) ln(15T /(m )),
(135(2(4/64) ln(21T2/(m2) )
+ (49(s2/32) ln(25T2/(m2) ),

, (45(2(4/64) ln(21T2/(m2) ),

r„g,
1„2,

(A18)

where ln((m )) = 31n(m )/4+ ln(m& )/4.
For collisions from quarks and leptons, we find

15 2 2(2 ln(25T /mL-) I z'2

2(,' ln(25T'/mi2), ), I'„, (A19)

For the W bosons the dominant annihilation processes
are t channel conversion to a gluon by a quark and W
—gluon fusion to a quark-antiquark pair. Summing over
generations, faavors, colors, and particle-antiparticle, we
find the matrix element is —24g, g st/(t —m ) for
each process. (Again we only consider the leading log
so s —u. ) We will also include order n processes,
which are double W fusion to fermions, with matrix ele-
ment = —18st/(t —m ), W scattering from a fermion,
with matrix element 120g s /(t —m~), and absorption
reemission, with matrix element —18g st/(t —m )
Scattering &om another W boson does not contribute to
the decay rates we consider because the sum of parti-
cle number, E, and p over all particles is zero. These
processes do contribute to the damping of higher order
perturbations, however, which may help to thermalize
infrared W bosons.

We will neglect annihilation to and scattering &om the
Higgs doublet because the matrix elements are more com-
plicated, because the diagrams introduce inIrared prob-
lems, and. finally and most importantly because there is
only one doublet, so its contribution is much smaller than
the 12 fermion doublets.

The collision integrals are completely analogous to
those discussed above, so we will only present the results.
For semistrong annihilation, we find
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and just as in the case of quarks, scattering diagrams
contribute equally to the I'~2 and I' . For absorption
and reemission &om fermions, we find

The fluid approximation gives

' (135(2gs/32) ln(21T2/(m ))—(49$& /16) ln(25T2/(m2) ), I'~2,
4ms (45(2'/16) ln(21T2/(m2) )

, —(49$s/48) ln(25T2/(m2)), I'„.
The thermal mass of a left-handed lepton is m&~

3g2T2/32 plus a small hypercharge correction which we
neglect. The results, using n = 1/30, are I'~q
0.00521T, I'„2 ——0.01012T = I ra I'r2 = 0.03686T, and
I'„=0.01614T. Annihilations dominate even 1

APPENDIX B: CRITIQUE DF THE FLUID
APPROXIMATION

Is the fluid approximation any goodY
The discussion can be broken into two parts: does the

fluid approximation model properly the energy depen-
dence of bf; and does it oversimplify the anisotropy of
$f'7

We begin with the energy dependence, using the tools
developed in Appendix A. Note first that top quarks de-
cay fairly quickly (we have seen that the tails around a
source have a length of about 5/T), so a particle excess
decays before it is transported off the wall. Hence the
friction from one excess particle is roughly its force on
the Higgs fieM at the point where it was created times
its lifetime, oc ~/E. We must determine the behavior of

The annihilation rate of one particle can be computed
by putting a bump in the population function f at a
specific energy and examining the collision integral. The
contribution to b due to the bump is —1/fo times the
bump, and fo = —fo(l —fo) so the population factor
in the collision integral is f2(1 + fs)(1 + f4)/(1 —fq)
times the bump. The full energy dependence of the col-
lision integral is this expression, the energy conserving b
function. , and the 1/E„prefactor. The argument is that
1 —fq is quite weakly energy dependent (going from 1/2
at E = 0 to 1 at large E where most of the particles
are) and for thermal outgoing particles the integral over
outgoing states depends on E only through ln(2p k/m ),
a weak dependence. The dominant dependence is then
the 1/E prefactor, which cancels the 1/E strength of the
particle's influence on the Higgs fi.eld. Hence it is not
too important to get the energy dependence of b f right,
as long as we get the number of particles right. The ar-
gument is strongest for thermal particles, but as they
dominate the total &iction from top quarks, this should
sufi' ce.

Let us check the performance of the fluid approxima-
tion for top quarks by neglecting spatial derivatives (i.e.,
assuming the particles really do not leave the wall) and
comparing the &iction &om the fluid equations to the
friction we would find if we had only included a p term.
Including only a p term, we find

pI „a ——v t"amm', &iction = capmm' .

friction = (egg+ c,bT)mm' .

Plugging in the values for the I"s, the &iction is v m m'

times 0.137 in the first case and 0.143 in the second case;
using the full fluid approximation has only changed our
estimate of the friction by about 4%%uo. (If the relaxation
time approximation were valid the value would have been
different by 27%%uo, so the argument must have some valid-

ity. ) Since we have difBculty trusting our evaluation of
the collision integrals to better than 50%%uo, and since the
fluid equations we use should account reasonably well for
transport, there seems little reason to improve the fluid
approximation for top quarks, except by improving the
precision of our evaluation of the collision integrals.

The argument for the fluid approximation also works
for thermal W bosons, where 1 + f 1; but for soft
W bosons, the population term in the collision integral
is f2(1 6 fs)(1 6 f4)/(1+ fq) f2(1 6 fs)(1+ f4)E/T,
which cancels the 1/E in front of the 8uid equations; ap-
parently, the decay rate does not rise as we lower the
energy. Evaluating the annihilation and scattering rates
of the in&ared W bosons is further confused by the ap-
pearance of loop diagrams (hard thermal loops) which
enter at the same parametric order as tree level effects.
Also we should include W boson scattering from other W
bosons, which does not contribute to the decay rates we

have computed but does contribute to the rate at which
infrared particles are thermalized. We will not attempt
to treat this problem here, but will only remark that the
fluid approximation appears to be a very naive treatment
of the R" bosons.

Next, we will discuss whether it is acceptable to treat
the anisotropy of the distribution keeping only the low-

est term, v . p = pv; Yj, (p), rather than including higher
angular moments p Yj (p), where Yj is a spherical har-
monic. The source of bf is isotropic, so v only arises out
of spatial gradients of bf The decay . of v is character-
ized by the diffusion length D 2.9/T for quarks (and
5.5/T for W bosons), which is generally smaller than the
thickness of the wall. Relative to the other perturbations
its amplitude is down by D/L. We expect perturbations
at high angular moments to be down by (D/L)~; as long
as D is suKciently less than I, we expect them to be less
important than v. To confirm this we can extend our
treatment beyond the fluid approximation to account for
rank two tensor deviations. Setting T = 1 for simplicity
(we can restore it by dimension counting) and writing

f = exp(E —b) + 1,

b = p, + EbT+ p;v,

+«+ Ep'e'+
I p.p&—-

)
we find extended fluid equations:
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C3—O.p3
C4—0 p3

c5 (—
I

8;v, +Ojv;—
15 q

yp —I TybT —I

I p2p ~T'zbT —I g2&,

= —I'„p —I' bT —I', &,

05—jj I

= —F„iv —F„ie;,
2-O;... I

= —F„, —F„.„,,

2b,j l cs (.
3 15('~kek

I
+ —

I 5'j + ej'—2b,,
3 jekk

I

= Feij 5ij

C3 C4
cgp, + c3bT + c4~ + —0;vi + —B,ei —comm

C4 C5
c3p + c4bT + C5~ + —O, vi + —19,~i —c2mm

C5 C6
4P + C5bT + c6~ + =ivi + ici c3mm

C4 C5 C4 . C5 . C5+ 0;b—T+ —0;5+ —v;+ —e;+ —
I
0 5, +0 e.;—

3 3 3 15''
C5 c6 c5 . c6 .+ —0 bT+'—0'5+ —v + —6 + —

I
05 +pe

3 l2 ~2 2 2~

2b;, l cs (
3 15

Bkvk I+ I
~'5 +&~'—

(B2)

(B3)

(B4)

(B5)

(B6)

(B7)

The matrix of I"s is block diagonal in angular moments
and symmetric. It contains 10 distinct nonzero terms; its
evaluation is the main impediment to including higher
tensor moments.

Only the isotropic moments p, , bT, and 5 are di-
rectly sourced, since only their time derivatives appear
in the equations with the source terms cmm. The vec-
tor moments vi and ei are sourced by gradients in the
isotropic moments. We expect their amplitudes to be

p, '/I' pD/L. Similarly, the traceless tensor mo-
ment e,~ is sourced by gradients in the vector moments,
0;v~. Although we have not calculated I'„~, we antici-
pate that it will be at least as large as the damping rates
for the vector moments, because a particle's contribution
to e;~ is erased by deflecting the particle by 45, while it
must be deflected by 90 to erase its contribution to v;.
Hence, 5;~ should be v;D/L pD2/L . We conclude
that as long as L )) D, the neglect of high order angu-
lar moments should be justified. (In the opposite limit,
D )) L, we know that, for quarks, the high order mo-
ments are very important and lead to a log enhancement
of the &iction; so L )) D is not only a sufBcient condition
to neglect high angular moments, but a necessary one. )
In our case, D 2.9/T for top quarks, and we are in
good shape. (Even for W bosons, where D 5.5/T, we
are in fairly good shape. )

We wish to note that this conclusion relies on the fact
that we are interested in the motion of one Quid against
another, and not in the dissipation of the motion of a fluid
as a whole, or of a Quid of one species. Let us explore
this case briefly, to understand the physics of the ex-
tended Quid equations. When tracking a one component

2b,,
kvk)

—c5 (
I

8;vj + Bjv;15 eij
—1

(csvi + c50ibT + c419ip)
C'4 2

—1 ( c3c5)
C4 OiP ~3F„, g

—1 c5
ivi + c5bT + C4p, )

E3
(88)

all plus O(b"/I' ). Here we have used Eq. (B5) in the
equation for 5, . We can also use Eqs. (B2) and (83) to
simplify the relation for e, but here we should note that
the coeFicients on 0;vi and bT only equal in the massless
limit. If the mass is zero, then e = 0; otherwise it is
—O(m') 0;v;/F, 3.

Substituting these three quantities into the Quid equa-
tions for the undamped species, we And

i

Quid, or the average over species of a several component
fluid, energy and momentum conservation ensure that
I'„g, I T2, I'~g ——I'„2, I' 2 ——I'„g, and I'T3 ——I',2 van-
ish identically, so bT and vi are not directly dissipated.
If in addition there is a nonzero conserved charge den-
sity for which p is the chemical potential, then I'„z and
I„=rg3 also vanish, and p is not directly dissipated.
It is still true that 5;j v;D/L, but now its presence is
important, as it is the main source of dissipation in the
system. Indeed, if the perturbations are slowly varying,
then we can neglect i;~ compared to 0;v~, etc. , and solve
for the high order perturbations in terms of the lower
order ones. We 6nd

~ c3c2p+ c3bT + —O, vi

~ C4
c3p, + c4bT + —6;vi

C3 C4 C4—8;p+ —O,bT+ —vi =3'3'3
c —cc 2 0~m~2 (

czmm+ 0 p+ riviI'.3
c42c5 —csc52 2 O(m2)

C2mm+ 0 p+ Bv;,
9C4 -2 I',3

c4c5 c3c5 . O(m2) 2c5 (
Dip, + BiBjvj + Bj I

Bivj + Bjvi-
C4 .i2 .3

2b;,
3

which are the linearized relativistic Navier-Stokes equa-
tions. The perturbations e, ei, and e,.~ have caused bulk
viscosity, thermal resistivity, and shear viscosity, respec-
tively. The bulk viscosity vanishes in the ultrarelativistic

I

(m, « T) limit; the thermal resistivity vanishes in. the
absence of a nonzero conserved charge density. (In this
case heat flow is only resisted by higher derivative terms. )
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APPENDIX C: RUNAWAY WALL

According to the tanh ansatz, the wall is capable of
becoming ultrarelativistic without contracting to a small
plasma &arne thickness. We will explore how this arises
and why it is unphysical.

First consider the equation of motion in the tanh
ansatz, Eq. (8.3) and particularly Eq. (8.5). We see that
the derivative term P stretches the wall, but that it
becomes ineffective at large velocity. One would expect,
then, that the wall becomes extremely compressed. But
the &ictive term Eq. (8.19) stretches the wall. For a thin
wall, where the particles have little time to decay, and at
large velocity, where they simply sweep backwards up the
wall, we find p oc gP and the ratio of stretching to &ic-
tion is ll/12. When = ( 5AV7 /6, then if there is enough
&iction to stop the wall &om accelerating then there is
enough to prevent it &om contracting to the regime where
we can neglect particle decay, so the wall cannot become
thinner than about L 6/T. When A~ g 0, the system
tends to supercool quite heavily and:- tends to be small
compared to LVz, the wall is then suceptible to runaway,
according to the tanh ansatz.

Note that most of the frictive force on the wall comes
on the upper part near the symmetric phase. The friction
tends to make this part of the wall very thick, as we see
explicitly when we solve for the wall shape. What the
tanh ansatz does is force the front part of the wall to be
as thick as the back, which is unphysical.

Let us attempt an analysis without a wall shape ansatz.
Consider the wall propagating at a steady, very relativis-
tic speed, say pv & 10. To determine how abrupt the
wall is, we will integrate the equation of motion times
P', starting in the symmetric phase and going up to the
point P = Pq, if the wall is in a steady state,

z:/=pi
2 (&')'

[V~(P(z))+ &iction]P' dz = (1 —v )

(CI)
Because 1 —v is very small, the wall is rising very

rapidly where P = Pq unless Vz (Pq) + J (&iction)P' dz is
almost zero. Let us examine whether this condition is
ever satis6ed.

First note that the &iction is never negative anywhere
for a monotonic wall. Now V7 is positive at small P, as
otherwise the phase transition would have already pro-
ceeded by spinodal decomposition. So there will be a
section at the &ont of the wall where P' is large, i.e. , a
section which is very abrupt. To determine where this
section ends, we need to find f (&iction)gV dz on this sec-
tion of wall.

This is easy in the fluid approximation. As the wall is
thin, we can neglect decays, and the fluid equations can
be integrated. The &iction is, in the notation of Sec. VIII,
f;(A );zFzPz/8 Add. ing this to the effective potential,
we get a curve whose second minimum lies above 0 for
the effective potential parameters in Table I with A~ ——

0.1 or 0.2, but whose second minimum is below 0 for
A~ ——0.3. In the former case, the whole wall is abrupt
and feels a net backwards force; the wall will then slow
down until it is not abrupt and no runaway occurs. In
the latter case, a section of the wall feels a net forward
pressure, and accelerates without limit. According to the
fluid approximation, the wall will run away in these cases.

When the wall becomes this thin, the fluid approxima-
tion is definitely inaccurate as we have argued, it only
makes sense when the wall is thicker than the diffusion
length. The &ee particle approximation should be appro-
priate, however, and for an ultrarelativistic wall we can
make an accurate expansion in large p.

The total pressure on this section of wall from one
species is, in the &ee particle, one loop approximation
[5,19],

f 1

(2~)' gp2+ ' exp[A(» —vp. )] +1
m 2 1dp, d p~ p~

2~ (2vr)2 gp2 +.p2 exp[Pp(p —vp, )] 6 1

1
+ "(-p.+v'p'. + ')

(2~)' gp'+ p~+ m' exp[A(Qp'+ m'+ vp. )1 +1

where m is the particle mass when P = Pq.
Taking p &) T/m so that exp( —pm/T) (( m /T, we

find the pressure is

m2T2 m Tln2 m T fm pT t+
48 12vr2p 192' ( p2 m j

&om a fermion degree of &eedom and

m T m T ( 5 ln(2pT/m) ~
!+ !

———0.1347 +
24 4vr'p g 18 3

m2T2

48

m' / 7rT
!

ln —p~+ 0 75!,32~2 q m )'
m3T
12'

(C5)

gives the &iction &om particles on the abrupt part of the

I

&om a boson. Subtracting &om these the corresponding
one loop contributions to the effective potential,

96p2 (p2 m) (C4)
0.1347097 is the numerical value of I (x —xgx~ —1—

1

1/2) ln x dx = —g I'(n —1/2)/[I'( —1/2)I'(n+1)(2n —3) ).
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wall, at one loop. This &iction is much larger than the
prediction of the Quid approximation. Adding this ex-
pression to VT produces a function which is positive for
all Pq ) 0, for all values of the effective potential param-
eters we have considered; in fact it comes quite far from
having a second zero. This means that there is no value
of P where the abrupt part of the wall can end; it always
has a net backwards force on it, even when Pq ——Po. It
is simply impossible to have an ultrarelativistic, steady

state solution to the wall shape. As the wall becomes
very fast, the front of the wall always compresses and
sustains enough friction to prevent further acceleration.
We cannot determine the velocity of the wall, but we
can say that it must be slow enough that the free parti-
cle approximation is inaccurate, which ensures that pv
cannot be much greater than 1. Note that it was not
necessary for the condensate responsible for A~ to exert
any friction for this to be true.
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