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Infrared e8'ects in a de Sitter background
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We have estimated higher order quantum gravity corrections to de Sitter spacetime. Our results
suggest that, while the classical spacetime metric may be distorted by the graviton self-interactions,
the corrections are relatively weaker than previously thought, possibly growing like a power rather
than exponentially in time.

PACS number(s): 98.80.Hw, 04.60.—m, 04.62.+v

I. INTRODUCTION

As is very well known Einstein field equations permit
an addition of an extra term proportional to the metric
tensor g„„:

Here T„ is the energy-momentum tensor of matter, and
A is the so-called cosmological constant. [We put a bar
over all quantities here to distinguish them from the
rescaled ones. See Eqs. (4), (5).] The last term in Eq. (1)
may be interpreted as the vacuum energy-momentum
tensor. Any natural estimate gives A or p, = A/8irG
much larger (by 50—100 orders of magnitude) than the
observed upper bound in the present day Universe. This
mysterious discrepancy is known as the cosmological con-
stant problem and presents one of the most interesting
challenges in modern physics (for a review see Refs. [1,
2]).

de Sitter spacetime is a solution of the Einstein equa-
tions with a dominant cosmological term. Written in the
Robertson-Walker form for the special case of the spa-
tially fIat section the metric takes the form

ds = dt —a (t)dr (2)

ds = a (w)(dr —dr ).
The conformal time 7. is related to the physical one as
de= —exp( —Ht)dt .and a(r) = 1/Hr. Note that—when
t tends to future infinity, 7 tends to 0—.The de Sitter
metric possesses the same degree of high symmetry as
the Minkowski one and, for this reason, it is the sim-
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where a(t) = exp(Ht) with H = gA/3. The assump-
tion of spatial fIatness is not essential, and the results
obtained below are true also for open and closed geome-
tries. It is convenient to rewrite the metric in terms of
conformal coordinates where, up to an overall scale fac-
tor, it has the Minkowski form

plest nontrivial curved background for a quantum 6eld
theory. Despite its simplicity, it has several very inter-
esting properties and in particular generates an infrared
instability of a massless scalar field P mirnmally coupled
to gravity. It was shown [3, 4] that the vacuum expecta-
tion value (VEV) (P ) is singular at the zero mass limit,
(P2) H4/m2. With the advent of the inflationary sce-
nario, this phenomenon was rediscovered in a number of
papers [5—7], where it was argued that (P ) rises linearly
with time in the zero mass limit. This quantity however
does not have a direct physical meaning and, in particu-
lar, the contribution of the field P to the energy density
does not rise with time. Nevertheless, this infrared in-
stability afBicts the scalar field propagator and needs to
be resolved to make a sensible quantum theory. Note
in passing that this instability is a result of broken con-
formal invariance. To ensure the latter, one needs the
coupling to the curvature scalar, RP /6, which gives rise
to an in&ared cutoff. In fact, any nonzero mass rn@ or
nonminimal coupling (RP with a non-negative coeK-
cient is suKcient for in&ared stability. In any case, this
infrared divergence is a sign that the true vacuum state
is not de Sitter invariant.

Conforrnal invariance is also broken for gravitons [8]
and, for this reason, there should be in&ared instability
of the de Sitter vacuum due to quantum gravity effects.
If this is indeed the case, it suggests that the solution of
the long-standing cosmological constant problem might
be found in this direction. One-loop graviton quantum
corrections to the de Sitter metric were considered in this
connection in Ref. [9] where it was found that they are
time independent. However, it was suggested that higher
loops may show evidence of this infrared instability. In-
deed, it was claimed recently in several papers [10—12]
that higher loop effects are much stronger, giving correc-
tions that rise exponentially with physical time t or as a
power of 1/7 with conformal time. This is a very excit-
ing result and, if confirmed. , would mean that de Sitter
space cannot exist indefinitely, opening a beautiful way
for the solution of the cosmological constant problem in
the framework of the normal quantum gravity without
any drastic assumptions.

Before beginning our development, we note that there
have been various suggestions that de Sitter space is in-
frared unstable. As early as in 1977, Gibbons and Hawk-
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ing [14] pointed out that, in the presence of a scalar field,
a comoving observer in de Sitter background would per-
ceive a bath of thermal radiation. As in the Rindler prob-
lem in Minkowski space [15], this "particle production"
is not to be interpreted as vacuum decay [16]. How-
ever, Mottola [17] has argued that, while this is true
of the Hartle-Hawking (or "Euclidean" ) vacuum, a uni-
verse that evolves from realistic initial conditions would
not be in equilibrium and would in fact decay. Simi-
larly, Mottola [17] argues that general thermodynamic
considerations in de Sitter space, as with black hole de-
cay, would lead to vacuum decay. Subsequently, Mazur
and Mottola [18] and Antoniadis and Mottola [19] an-
alyzed this instability dynamically, arguing that matter
rapidly drives the conformal mode of the gravitation field
away from its classical value. The extension of this, if
possible, to pure gravity has not been made.

The present paper belongs to a long series of papers
where the instability is sought by considering quantum
gravity efFects in de Sitter background. The starting
observation is that the graviton propagator in de Sit-
ter space grows for large spacelike separations [20—22].
This is closely related to the instability of the massless,
minimally coupled scalar field in de Sitter background
[3] for which the equation of motion is the same as for
the physical (transverse-traceless) modes of the graviton
field. Although one should be careful about gauge fix-
ing[21] and, although there are still doubts on whether
an analytical continuation exists &om the I orentz to Eu-
clidean signature [23], the growth of the propagator for
large separations in pure de Sitter space seems well estab-
lished [20,21,24,26,27]. Whether that growth translates
into an in&ared divergence for observables remains a mat-
ter of some debate [24,25], but it seems to us quite likely.
In any case, the origin of this divergence is the supposi-
tion that de Sitter space is eternal. Given a cosmology
in which the vacuum energy dominates only after some
initial time, this divergence disappears, and the graviton
propagator does fall ofF for sufBciently large separations,
as it must for a good quantum field theory [7,28].

In any case, the consideration of propagators is but
a preliminary step, and eventually one concentrates on
quantum corrections to physical quantities. There have
been other interesting suggestions as to how quantum
gravity might quench the cosmological constant [29].
However, these proposals do not work at the level of
one-loop efFective potential [30, 31]. As is claimed in
Refs. [10—12], the two-loop corrections. do result in varia-
tion of the cosmological constant which grows with time,
although its origin appears to be somewhat difFerent Rom
infrared problems previously discussed. Our present pa-
per is motivated by these claims.

Here we have reconsidered results of papers [10—12]
using a difFerent formalism and have found. that such a

strong instability does not set in. The corrections at most
behave as a power of log ]v] t.

II. EQUATIONS OF MOTION

For the conformally flat background metric we intro-
duce the quantum graviton field h„ in the usual way:

1 d4

4 2 a a~
d xa ~g~ B+6 ' +2Aa

K a2 (5)

with K = 16m/mp&. This implies the equations of motion

1 2 4a~a~
R~~ — gp~R Aa g~~ +

2 a
a a

+g,- I a a2

2a p~

(6)

where tensor indices are raised and lowered with the new
metric g„„. To zeroth order in h„„, we get the usual
equation for the scale factor of the classical background
metric, with solution a(w) = 1/II& [se—e the notation
after Eq. (3)].

It is of course well-known that this is a nonrenormal-
izable quantum field theory, but we regard the Einstein
action as the first two terms in an infinite series of local
operators of increasing dimension. This is an efFective
field theory, presumed valid on scales below mp~, and is
renormalizable in the sense that all divergences involv-

ing these vertices may be absorbed in a renormalization
of one of the infinite number of coefIicients of these lo-
cal operators. While we have not written such terms
explicitly, they should be understood to be present. In
the following, we will deal exclusively with renormalized
couplings and operators, with the tacit understanding
that the counterterms are included in our interaction. To
quantize the theory consistently, we must add a gauge-
fixing term C~F and the corresponding Faddeev-Popov

g„= a (7-)g„=—a (7.)(rl„+6„).
The issue is whether, taking into account loop correc-
tions, the VEV (h„„) is nonzero and, in particular,
whether it is time dependent. This would suggest that
the background de Sitter metric is not self-consistent,
although it must then be shown that this is a physi-
cal effect by calculating, for example, the curvature for
the modified metric. Even then, it is important to as-
certain whether the inconsistency involves strong cou-
pling or whether it is an essentially negligible effect. The
Einstein action (with nonzero cosmological constant) in
terms of the new metric g„„can be rewritten as

The description of this mechanism in coordinates in which
there is no Hawking radiation initially has not to our knowl-
edge been developed.

We understand that these authors, using an in-in formalism
in contrast with the in-out formalism employed earlier, also
do not get power law singularity but only powers of loge [R.
Woodard, (private communication), and Ref. [13].]
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(FP) ghosts EFp. We choose l:GF = —2F„F„rl" as in
Refs. [10, 11], with

+ = a(T) I
h",.——h, + 2b (7)

The ghost Lagrangian l:Fp may be found in Ref. [12].
Here and subsequently, when we consider perturbation
theory in h„, the indices are raised with the Minkowski
tensor q„. With these gauge conditions, the linear part
of the equation of motion for h„„has a very simple form:

tt„„——h„o+ —(b„ho +. b ho„) ——rl„boo ——0.

This is the same equation which is satisfied by a mass-
less minimally coupled scalar field. The solutions with
definite momenta can be written as

QI, (T, z) = H
~

T ——
~
exp(ik . z —ikT). (10)

These nonconformal modes dier from the conformal
modes by the presence of the i/k term.

The conventionally normalized Heisenberg field opera-
tor for quantum Huctuations of the gravitational field is
defined as g„„:—h„„/r This may .be expressed in the
standard way in terms of creation-annihilation operators
a„„(k) by the decompositions

gi, (T, x)a„„(k)+ g*(T,x)a „(k)
(2m.)' 2k-

with a and at satisfying the commutation relations

a~„(k), a „(qQ = (2') b (k —q)

(not summed on p„v). (12)

All other commutators are zero. For the nonconformal
modes, the wave function @i,(T, z) is given by Eq. (10),
while for the conformal modes, they are plane waves
H7 exp(ik x —ikT). Respectively, the propagator for a
conformal field {for example for the field ho, see above)
is proportional to that in Bat space. It means that the

See, e.g. , Ref. [16] for further details.

One can easily verify that time components ho„(p, =
0, 1, 2, 3) are conformally invariant in the sense that the
rescaled functions yo„——a(T)ho„satisfy the free field
equations of motion, t9 yp„——0.

More interesting are the space-space components of
metric h, ;~. The equations of motion are not diagonal
for them, but after a simple linear redefinition f;z
hz&

—
h~& hpp they are diagonalized and have the form

evolution of hp is trivial and in particular the corre-
sponding Green's functions are obtained from the ones
for the Bat spacetime by the rescaling

@fla (+
Gds(x zI) ( I ) H2TT(GBat(z

av a7'

sin(kAT) (14)

where Lv = v —7'. If we calculate the Fourier transform
of (14) then it is logarithmically divergent at small k and
undefined. However, derivatives of it are well defined.

It might also worth mentioning that in a de Sitter back-
ground the Green function for a nonconformal field can
be also given in a closed form in four-dimensional nota-
tion. Namely we have

g4k ~ik {x—x')
G(x, x') = H'T7'

2m 4

g4k iIc {~—x')
—H2

(2vr) 4 k4

where, as usual, depending on the ie prescription we

get either a Feynman, retarded, or advanced propaga-
tor. [The derivation of (15) follows the lines presented
in the Appendix to Ref. [32] where the first terms in the
WKB expansion are considered for arbitrary background
field. In a de Sitter background, a similar argument fixes
the exact propagator. ] In particular the Feynman prop-
agator takes the form [11]

(
H2 7~'

G~(x, x') 1 I——ln(x —x )2
(16)

Note that the argument of the log is not defined, as
a manifestation of the same infrared instability. What
is specific about the de Sitter background (and
1/6 or 0) is that the expansion in k in Eq. (15) termi-
nates on the second term.

In fact, this infrared blowup of the Feynman propaga-
tor is the basic observation which gave rise to the hopes
that quantum corrections to the de Sitter metric grow
with time. Indeed, the quantum propagators are not
vanishing in causally forbidden regions and may bring
information on the overall expansion in the future, char-
acteristic of the de Sitter solution, revealing in this way
an instability of pure classical solution. We are going to
scrutinize this suggestion.

The best way to approach the problem is to keep as
close to classical consideration as possible. Indeed, the

Now, propagators (two-point functions) for nonconfor-
mal fields exhibit new features since the solutions (10)
blow up at small k as compared to the solution for con-
formal fields. In particular, this implies that the anti-
commutator correlator Gq is in fact not defined in the
infrared. To be explicit, it is given by

H ' (Gi (Tl 7
I k) = TT + —cos(kQT)
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k
cos(kyar) (20)

classical solutions are known to be stable against pertur-
bations [33]. The crucial difference between classical and
quantum problems is that the development of classical
Buctuations is governed by the retarded Green function
G~ which is free of the infrared divergencies mentioned
above. The Green function is obtained in the standard
way:

GIr (x, x') = io(r —v')([@(~,x), g(7', x')]),

where we have suppressed the various tensor indices. Al-
though commonly expressed in terms of a VEV, it is im-
portant to recognize that G~ for the linearized theory is
a purely classical construct that may be obtained directly
from the classical equations of motion. Accordingly, it is
completely independent of the definition of the vacuum
state.

A simple calculation gives [12]

G~(x, x') = H [7~'Gg~'(x —x') + 0(d 7.)0(A~ —r)/47r],

(18)

where r = lx —x'I, +r = (r —+'), and

Ga" =0(& )~( —& )/4

is the retarded Green's function in the Bat spacetime. We
suppressed here the evident tensor indices. The second
term in Eq. (18) is connected with the broken conformal
invariance. For what follows it is essential that it vanishes
for Ar = 0. In the mixed (7, k) representation we find

H28(A7.), 1 )
Gii(~, 7.', k) = ~r'+ —sin(kA~)

first order in g„.Note that the last two terms that are
explicitly singular in 7. are multiplied by combinations of
fields whose wave functions, in lowest order, vanish when
7. ~ 0. This result persists in higher order, as we shall
argue below.

We will be investigating properties of the perturbative
solution of (21). The use of (21) ensures that at least one
propagator attached to each vertex is a retarded one and
is smooth in the infrared limit. Another important ad-
vantage of the Heisenberg representation is that the state
vectors in Hilbert space remain constant and the evolu-
tion of the system is contained in the time dependence
of the Beld operators. Therefore one may study the time
evolution of the physical quantities such as, e.g. , energy
density as the expectation values of the corresponding
field operators over the initial quantum state ~in) which
we take to be a no-particle, de Sitter invariant state. The
time evolution of this state is quite a complicated prob-
lem by itself since the notion of particle production is
ambiguous in general relatively (for discussion see, e.g. ,

[16]). In the Heisenberg picture we do not confront this
problem.

Although analytically quite complicated, it is straight-
forward in principle to develop the perturbative solution
of the integral equation (21). [See Fig. 1(a).] Each three-
point vertex carries a factor of 1/mp~, so, for consistency,
we should also include in V~ higher-point vertices ob-
tained from the expansion of Eq. (6) as well as vertices
of the same order from higher dimensional operators im-
plicitly included in the action Eq. (5). We will discuss
that in more detail in a subsequent paper where we will
also consider in greater detail the renormalization of the
theory. Here we concentrate only on a possible existence
of singularities at 7 = 0. The contribution to @ from the
conformal Green's function reads

and in the limit if k —+ 0 the retarded Green function
for a nonconformal Beld is no more singular than for a
conformal (or in fiat space).

The Heisenberg picture of quantum Beld theory is clos-
est to the classical one, and we expect that the infrared
problem is most easily treated within this approach.
With the initial condition @„(rp,x) = @„'"(7p, x), the
operator equation (8) can be rewritten in the integral
form

dBV(r', x+ r), (23)

d'x'G~~„(7. , x; r', x') (H~') 'V r3(7.', x'),

where V p(7, x) is the interaction term. More specifically,

V„=Q„~Q p +g ~@ p„—g I'„+21„1'~p
FIG. 1. (a) Perturbative solution of Eq. (21). The line

denoted by B corresponds to the retarded propagator. (b)
Loop corrections to metric fluctuations g~„.

(22)

where I'„„= (v/j„„+ @ „—@„' )/2 is the Christoffel
symbol associated with the metric g~„= q„+Kg„ to

We remind the reader that counterterms are implicitly in-
cluded in V„„.
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where ~rg = w —7' and the angular integration is made
over directions of r. The nonconformal part coming from
(18) contains two terms: the first of the form of Eq. (23)
and the second given by

1 d7'
+nonconf

4+mp& o ~ 0
der dOV(~', z+r).

(24)

(+no neo nf ) 3&ip]

Our interest is in the VEV of this expression. Using
translation invariance, one may simply set the spatial
arguments to 0 to obtain

involves space derivatives of conformal modes @o,, as well
as the time derivative of the nonconforrnal modes i/i, ~ o.
Despite what one might think, @,~ 0 can be shown to sat-
isfy a conformal Beld equation, so that all these terms
in I'; involve an explicit factor of ~ and satisfy the con-
formal integral equation. Thus, this term in V~ is a
kind of cross product of a nonconformal field with a con-
formal 6eld. It is only the expectation value of squares
of conformal fields that manifest infrared problems, so
one would not expect this to give trouble. In conclusion,
there are no infrared divergences in quantities of interest
to us here, and we may ignore for our purposes the fact
that the true vacuum state is not de Sitter invariant.

I et us consider higher loop corrections to (V{+,0)).
The two-loop corrections take the generic form

The generic form of the loop expansion is illustrated in
Fig. 1(b). In calculating the VEV, one encounters quan-
tum correlation functions of the type

Gi (~, ~', z —z') = (0, in~ (@;„(7,z), g;„(~',z') )~0, in).

O'Ty d72 d k d gr, (~', o) =
m 7. 7 (2~) (2'�)
x O'GR(r', ~i, k) O'G~ (7', ~2, k)—
XB Gl(rl& 72) g)0 Gi(+i)172) k g (28)

{26)

a'Ka'~' '
~' ~m»'p (27)

times possible powers of log ]w~. This behavior, when in-
serted into the integral equations, implies that the con-
formal modes are finite as & ~ 0, while the nonconformal
modes may diverge as a power of log ~v~. This would sug-
gest that the de Sitter background would be unstable
to quantum Huctuations, since the Huctuations would be
growing with time. Although this is a much weaker sin-
gularity at w = 0 than previously suggested [10—12], this
may nevertheless lead to a breakdown of perturbation
theory and leave open the question of the ultimate fu-
ture of the de Sitter metric.

It might be worth emphasizing that it is not only the
use of GR that softens the infrared behavior but the
form of V~„as well. With one exception, the noncon-
formal fields g;~. enter the expression V„ in the form

, and the derivative renders their contributions in-
frared Gnite. The one exception is the second-to-last term
in Eq. (22), which includes @;~I', /7. The connection I',

These correlators are not time-ordered and replace the
Feynman propagators of the more familiar in-out for-
malism. Unlike the retarded propagator or commutator
function, these are truly quantum-mechanical amplitudes
that do not vanish for spacelike separated. points. They
depend upon the definition of the vacuum state ~0, in),
about which we shall have more to say shortly.

The dimension of V~ is mass . At one loop, it involves
a single graviton propagator, which is proportional to
H . It can be shown that each additional loop brings out
another factor of H /mp~ . Thus there are two powers of
mass to be accounted for. Since the only remaining scale
on which the VEV (0, in~ V„„(7,0) ~0, in) can depend is w,
one would naively expect, and will subsequently justify,
a behavior as

Here we have gone over to a mixed time-momentum rep-
resentation, which is more convenient, since momentum
is conserved, and power-counting is more familiar in mo-
mentum space. GR is, as before, the retarded Green
function, while G~ is the anticommutator function given
in Eq. (26). Each partial derivative in Eq. (28) is to be
interpreted either as a derivative with respect to time
or multiplication by one power of momentum. Now the
quantum correlators, such as G~, depend in d.etail on
the choice of vacuum state ~0, in). This has generally
been chosen to be the de Sitter invariant vacuum, but
the infrared divergences discussed above and in Ref. [28]
might lead. one to worry about such a choice. The fact
that these correlators only enter Eq. (28) with derivatives
shows that those potential infrared singularities do not
acct the quantity being calculated here. With regard to
momentum integration, there will be various terms. In a
mass-independent renormalization prescription, such as
dimensional regularization with minimal subtraction, all
divergences proportional to a power of the cutofF are com-
pletely removed by the counterterms. Thus, we need only
concern ourselves with terms that are logarithmically di-
vergent. Such contributions cannot change the power
behavior of the time dependence, so that we simply have
the result that one would guess on the basis of dimen-
sional analysis. Thus, at worst, P2 (log ~7'])i'/7' for
some power p. When inserted into the integral equation
for the nonconformal vy;~, this yields a result that behaves
at wors~ as (log ~~~)~

Thus it is safe to say that a quantum correction may
bring only logarithmic dependence on v. Terms propor-
tional to powers of log]w~ are not inherently problems for

There are also two-loop contributions from the commutator
function.
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perturbation theory. Consider, for example, the e8'ect
of a 6nite renormalization of the curvature, so that the
scale factor a(t) might be of the form exp[(H + bH)t].
Expanding in powers of the perturbation gives

exp[(H + $H)t] = exp(Ht) 1 + hHt + +(bHt)
2

(29)

jn terms of the original conformal time Ht = —log(H]r[),
these corrections take the form of a power of log[a[. Thus,
it may be that logarithms arising from loop corrections,
while suggesting a breakdown of perturbation theory, are
merely finite renormalizations of the Hubble constant. To
understand whether logarithmic corrections are a true in-
stability rather than simply a finite renormalization, one
would have to show that the breakdown is not simply due
to large logs that can be summed up (as is often done us-
ing the renormalization group). Their physical interpre-
tation may be simplified by computing their contribution
to a gauge invariant quantity, such as the curvature.

III. CONCLUSION

To summarize, we have demonstrated that quantum
corrections to the classical de Sitter solution generated

by higher loops in quantum gravity can be at worst pow-
ers of logs of the conformal time w. Moreover calculation
of these logs is no longer a pure in&ared problem. We pre-
sented then further arguments based on consideration of
the one-loop eH'ective action according to which one-loop
e8'ects in de Sitter background reduce to renormalization
of the action for Q„, with no logs involved. One needs
also to include the eKects of the FP ghosts as well as
higher-point vertices of the same order in I/mp~.
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