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The infrared limit of D = 4, N = 4 Yang-Mills theory with compact gauge group G compactified
on a two-torus is governed by an effective superconformal field theory. We conjecture that this is
a certain orbifold involving the maximal torus of G. Yang-Mills 8 duality makes predictions for all
correlators of this efFective conformal field theory. These predictions are shown to be implied by the
standard T duality of the conformal field theory. Consequently, the Montonen-Olive duality between
electric and magnetic states reduces to the standard two-dimensional duality between momentum
and winding states.

PACS number(s): 11.25.Hf, 11.10.Kk, 11.15.—q

Seventeen years ago Montonen and Olive [1] made a
bold conjecture: Yang-Mills theory with gauge group G
and coupling constant e is identical to a gauge theory
based on the dual gauge groupi G" [2] with coupling
4nie. The identification involves a relabeling of states
and operators, interchanging particles with solitons, and
electric charges with magnetic charges. It was quickly
realized [3,4] that the conjecture is viable only for K = 4
supersymmetric Yang-Mills theory. When a 0 angle is
included, 2' shifts of 0 together with the Z2 symmetry
of Montonen and Olive generate an SL(2, Z) symmetry
which acts on the complex coupling constant

0 4~. 0&= —+ —&= —+-
27' e 2K 0!

as

a~+ b
7

C7. +d (2)

We recall the definition of G" below.

with ad —bc = 1, a, b, c, d 6 Z. This SL(2, Z) symmetry
on the space of theories is known as S duality. S dual-
ity originated in the study of lattice models [5,6] but has
come to play a prominent role in recent speculations con-
cerning the structure of both N = 4 Yang-Mills theory
and string theory [7] as reviewed in [8].

Initial evidence in favor of S duality for N = 4 Yang-
Mills theory was provided by the exact agreement [3,4] of
the (calculable) masses of the stable elementary particles
and solitons with those predicted by the Z2 symmetry of
Montonen and Olive. More recently the masses of some
bound states have been demonstrated to be in agreement
with the full S duality [8], and the predictions of S duality
for a topologically twisted version of the theory on a more

general four-manifold have been tested [9].
A skeptic could remain unconvinced by this evidence.

It concerns only zero-momentum, supersymmetric, or
topological properties of the theory. Such properties are
highly constrained by the powerful symmetries of theory,
especially by the N = 4 supersymmetry. Thus, a true
skeptic may argue that the evidence to date all follows
from the known symmetries of the theory in some deli-
cate way. A more reasonable skeptic might argue that
S duality is indeed nontrivial, but only holds for the su-
persymmetric or BPS saturated. states of the theory. If
the Montonen-Olive conjecture is correct, the theory and
its S dual must agree on much more than this. In par-
ticular, all finite-momentum correlation functions must
agree. This is clearly not implied by the known symme-
tries: the addition of higher dimension operators to the
theory can change the correlation functions without af-
fecting the topological quantities. It is also clear that a
two-particle state with nonzero center-of-mass momen-
tum is not Bogomolny-Prasad-Sornmerfield (BPS) satu-
rated even if the individual one-particle states are. Thus
evidence for S duality at nonzero momentum necessarily
involves evidence for S duality away from the supersym-
metric subspace of the theory.

In this paper, we will propose and confirm, with some
assumptions, a finite-momentum test of S duality, albeit
in a very special limit. The id.ea is to compactify four-
dimensional N = 4 Yang-Mills theory with group G to
two dimensions on a torus. At distances large compared
to the size of the torus, the efFective theory must re-
duce to a conformal field theory. %'e conjecture and give
plausibility arguments that this takes a particular form
involving the maximal torus T C G (and some antisym-
metric tensor fields if 9 is nonzero). S-duality transfor-
mations involve no dimensionful parameters, and there-
fore commute with scale transformations. S duality of
D = 4, N = 4 Yang-Mills theory therefore makes a defi-
nite prediction of an exact duality symmetry of the efFec-
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tive conformal Beld theory which must act on all finite-
momentum correlation functions. This prediction will
indeed be confirmed. in the following: S duality reduces
to the well-known "T duality" of conformal Beld theory
in which tori are interchanged with their duals. The in-
terchange of electric and magnetic charges effected by S
duality is essentially the familiar interchange of momen-

turn and winding m, odes eKected by T duality.
Consider compacti6cation of D = 4, N = 4 supersym-

metric Yang-Mills theory with compact gauge group G.
For simplicity we Brst consider only the case for which
the simply connected covering group G associated to G
is SU(n). The general case is treated in the Appendix.

The bosonic part of the D = 4, N = 4 action is

I ' ""= ——— d xQ —g(4lTr
47r n

6
i F Fgsv + ) D yIDgyI +

1&I&J&6
TFn, F, (3)

where all fields take values in the Lie algebra g of G, and Tr is a nonuegenerate bilinear form on g. We normalize Tr
so that Euclidean instantons with integral winding number k have action 2xikr. If g = su(n) is identified with the
Lie algebra of n x n anti-Hermitian matrices the metric is

(a, b), („) = —Trc-(ab) .

We now compactify the theory by taking spacetime to be P xT where the internal space T2 is a small two-torus
of volume L . The line element is

L2
ds' = (d~p)'—+ (d~')'+ Id&'+ Cd~'l'

P2

where 0 & x, x & 1, and p = p1+ ip2 is a modular parameter for the internal torus. Define fields X g g, I = 1)8
by

X'=
X
X

IP, I = 1,6,
A2,
A3 .

The effective action at length scales much greater than L then reduces to

Ibosonic
4~ o,

d atr F + ) GIBED„X D"X + ) [X,X ][X,X ]GIIcGgI,
1&I,J&8 I&J

Tr Fpi[X, X ] —DpX DiX + DiX DpX do Ado.
4m2

where p, v = 0, 1, and the metric GIJ is

There are in addition fermionic terms whose form is fixed by the extended supersymmetry but these will not be
needed.

The action (7) contains terms of dimension not equal to two and so does not represent the infrared limit of the
theory. Our conjecture is that in the infrared limit it fI.ows to a conformal theory with bosonic action:

Ibosonic d2
47t. o. ) GIgcl„X 8"X

1&I,J&8

0
Tr I BpX BiX + BiX—BpX ] do. h der

The normalization for arbitrary simple G is given in Eq. (Al).
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In contrast with (7), the fields X'I, I = 1, 8, now take
values in the Cartan subalgebra t. Moreover, they are
subject to important global identifications discussed be-
low.

A very naive argument leading to (9) is the following.
The third term in (7) is a potential term for the X's. It is
relevant and grows in the infrared. At low energies X is
thus restricted to values for which the potential vanishes,
namely the Cartan subalgebra t. For X in t, the charge
current of the X's vanish. The gauge fields (which have
no local dynamics in two dimensions) may then be com-
pletely decoupled from the X's in light cone gauge. Their
action is quadratic and they may be integrated out.

This argument is too naive for several reasons.
Considers an N = 2 Landau-Ginzburg model with a P
potential. The potential is relevant and for n = 2 one
indeed finds that the infrared limit is the (trivial) the-
ory with P restricted to the minimum of the potential,
in accord with the preceding paragraph. However for
n ) 2 there is no mass gap and the infrared limit is a
minimal model determined by n. So in general it is not
correct simply to restrict the fields to the minimum of
the potential. For our model, if we denote by Y fields
orthogonal to the Cartan subalgebra and by Z fields in
the Cartan subalgebra, then in the infrared limit L —+ 0
(7) contains large quartic interactions of the form Y and
Z Y . In four spacetime dimensions these terms give a
mass to the Y fields at generic points in the moduli space
of D = 4, N = 4 vacua, and the IR limit is just a theory
of the Z's (that is, an Abelian gauge theory). The action
(9) is just the dimensional reduction of this Abelian the-
ory. Unfortunately, the compactification along Z x T is
not so simple because the large wavelength Quctuations of
the Z fields explore all of the moduli space. Near Z 0
the Y fields are light and must be taken into account. As
L —+ 0 the region in Z field space for which the Y fields
are light becomes vanishingly small. Thus in the infrared
limit we might be able to restrict attention to the Z fields
with the Y fields set to zero, and the two-dimensional
gauge fields decoupled. If the Y fields do appear in some

g(2 2 X3) = exp[27rx2A + 2'7r2 3R] (10)

where A, B p t must satisfy

exp(2vrA) = exp(27rB) = 1

in order that (10) is single valued as a nontrivial loop is
traversed in the internal torus. The set of such Lie alge-
bra elements forms the coweight lattice A, „ght(G) C t:

A,o~„ght(G)—:(A C t: exp(2aA) = 1) C t . (12)

A,o~„.gi,t(G) is the dual to the weight lattice A~„ght(G)
of G. A gauge transformation of the form (10) shifts A2
and A3 by A and B. We must therefore identify

X X + 2vrv,

X ~ X + 27tv ) (14)

where v, v' C A, „ght(G) are coweight vectors. There
are no such identifications of X, ..., X since they de-
scend &om D = 4 scalars rather than gauge fields. Sec-
ondly, we must identify all fields by the action of W(G),
the Weyl group of G. We conclude that the proper do-
main for (Xi, ..., X;X,X ) is the orbifold:

way in the infrared limit then the two-dimensional gauge
fields do not decouple and must be dealt with. Clearly
a more careful analysis, perhaps using the N = 4 super-
symmetric nonrenormalization theorems, is required to
see if the above assumption are justified. Despite these
misgivings, we strongly suspect that (9) is at least part of
the answer. We henceforth proceed on that assumption.

We now discuss global identifications of the fields
E t appearing in (9). Two types of identifications

arise because choosing the Cartan subalgebra t does not
completely fix the gauge freedom. First of all, we must
take into account gauge transformations of the form

(t x [t/2~A, o~„ght(G)] x [t/27rAco~eight(G)]j W(G),

where W(G) is the Weyl group, acting diagonally on all X
Finally, there are 8x rank (G), real, left and right-moving fermions. The dimensional reduction of a D = 4, 1V = 4

theory yields a D = 2, N = 4 theory, so we arrive at the result: The leading L —+ 0 behavior of the D = 4, N = 4

We are grateful to D. Kutasov, E. Martinec, and N. Nekrasov for discussion on these matters.
Related observations were made long ago in [10].
The target space (15) is naturally a hyper-Kahler manifold since it can be written as

The N = 4 in D = 4 actually leads to N = 8 in D = 8, but the (4,4) superconformal algebra is the largest one that can act
irreducibly.
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SYM theory is governed by the D = 2, c = 8 x rank(G), (4,4) superconformal field theory of an orbifold with target
space defined by (15).

To be quite explicit, take 0 = pi ——0, p2
——1, and use the metric on g = su(n) given in (4) and an orthonormal

basis T& to identify t with R and the metric (4) with Euclidean metric:

n —1

t —= R" ': ) x, T' ~ (x„..., x„,),
j=1

(X'=" X' X') -+ (X'=" X' X') X e R" ' J =1 8

The action for the conformal field theory is then given by

Ibosonic
4vra,

8

tT ) [BpX oipX —oiiX BiX ]

where X E R is identified by

X7

X
(X', ..., X )

~ X +27tH

X + 27ru', u, u' C A, „ght(G),
(tp X', ..., tp X ), ip F W(G) .

S duality exchanges a gauge group with its dual G",
the magnetic group of Goddard, Nuyts, and Olive (GNO)
[2,11]. The global structure of a simple compact Lie
group G is given by specifying either its weight lattice
or coweight lattice. GNO noticed that the coweight lat-
tice of G is always the weight lattice of a dual group G .
In the case where G and G have the same simply con-
nected universal cover, G = SU(n), the dual group may
be defined in terms of the original groups as follows. We
must use a metric to identify t = t*. For SU(n), with
the metric (4) we have

I d o.[8pX. OpX —BiX . BiX],
4vro.

X X+2vrv, v g A

is equivalent to the theory

d 0 [OpX BpX —OiX BiX]

(20)

Acoweight (G ) = Aweight ( ) [Acoweight (G) ] (19)
X X+2vrv, v g A* .

Specifically, SU(nm)/Z is dual to SU(nrn)/Z
Let us now consider the predictions of S duality. In-

variance under transformations of the type w —+ w + 1,
i.e. , 0 ~ 0+ 2vr in (1), are obviously symmetries. The
other generator of S duality w ~ —1/w acts less triv-
ially. S duality predicts that the theory defined as the
Weyl-group orbifold of the free field theory (9) with the
identifications (15) for the group G is equivalent to the
theory with G replaced by its dual G" and w replaced by
—1/7. We now show that this is identical to T duality of
the conformal field theory in (9).

First, let us recall the conventions for T duality. Sup-
pose A, A* C R" are dual lattices, where IR" has the Eu-
clidean metric. Then standard T duality states that the
theory

Since the G and G theories reduce to the supersymmet-
ric orbifolds based on the lattices

G theory: A, „ght (G) 6 A, „ght (G),

(22)

G" theory: Acoweight(G") A..w.;ght(G"),

it is now manifest that S duality at p1 ——0 = 0, p2 ——1
follows from (19). For other values of p, 0 the "quadratic
form" defining the action of the Gaussian model is given
by the matrix E = B + G with

G" is also known as the "I anglands dual" jn the mathe-
matics literature.

In Minkonskian signature there is no relative factor of i
between the kinetic and topological terms.
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E = [bli~l eq(r, p)] 8 Tr,

where q(r, p) is the 2 x 2 matrix,

(23) 0-dependent part of the action is

0[(vo ~i) —(vi ~.)]
1 8

q(r, p) = v—hh, ;~ +
0! 2'K

( ipse'

(24)

and h is the two-metric in (5). Thus, the torus of the
sigma model has complexioned Kahler form and complex
structure given by w and p, respectively. Since

q( 1/r p—) =
I 1 0 I

q(r, p)
'

I

(0 -1&,( 0

(1 0 ) ' ( —1 0 (25)

we see that the 8-duality transformation r -+ 1/r fo—l-
lows from the T-duality transformation E ~ E to-
gether with the rotation

(X') (0 —1) (X'l
)I

~
I& 1 0 )I I& X' )' (26)

cos XL + X~
2

(27)

where Xl & are the left and right moving parts of X .
The time derivative of X acting on such a state is
nonzero. From the four-dimensional point of view, since
X = A3 this means that there is electric flux w'inding
around the x direction of the internal torus. Under T
duality this is mapped to the winding state

cos Xl —X~

Now one finds that the spatial derivative (in the o. di-
rection) of X is nonzero. Thus there is a magnetic Hux
in the x direction. Note that this is not quite in ac-
cord with S duality. To recover S duality on the states
we must compose T duality with the Z2 transformation
(26), in accord with (25).

If the world sheet is a torus, Ei ——T (or, more gen-
erally, has ai g 0), and X,X are in winding number
sectors,

It is useful to consider the simple example G = SU(2)
in more detail. We can identify the coweight lattice of
SU(2) with the root lattice A, t of su(2), which we will

take to be ~2 times the integers. The weight lattice of
SU(2), A „sh& [SU(2)] is then the integers divided by ~2,
and [A~„sht]' = A,~ot. The dual of SU(2) is G" = SO(3).
After reduction the SU(2) theory contains "momentum
states" created by the vertex operator

where we use the metric on t in (4). Thus, one can ac-
cordingly map winding number sectors to instanton num-
ber sectors. Field configurations with windings de6ning
nontrivial elements of A~„sht/A, o~t for both X,X sat-
isfy 't Hooft-type boundary conditions.

We now explore an interesting parallel structure be-
tween four-dimensional (4D) gauge theories and 2D con-
formal field theory. A beautiful and famous phe-
nomenon in conformal field theory is the Frenkel-Kac
construction, i.e., the existence of enhanced current al-
gebra symmetries in special Gaussian models. Our re-
sults suggest a 4D analog. It is natural to conjecture
that N = 4 Yang-Mills theory in D = 4 has enhanced
syminetries when the SL(2, Z) action on the coupling is
not free, i.e. , at 7 = i, e '/ . At these points the the-
ory is strongly coupled and 0 = 0, 7t.. For gauge group
G = SU(2), the conformal field theory we have described
has enhanced Kac-Moody symmetries of SU(2) x SU(2) or
SU(3) at these points, before dividing by the Weyl group.
A surviving SO(2) Kac-Moody symmetry in the orbifold
theory has a simple 4D interpretation. At 7 = i, e '/

the theory is self-dual and the gauge bosons are degen-
erate with spin-one monopoles. The isotropy group of
the classical SL(2, R) symmetry acting on r is the clas-
sical SO(2) electric-magnetic rotation. Apparently, this
continuous symmetry survives in the quantum theory at
v = i, e '/ . As for the other currents projected out of
the orbifold theory we may remark that, in general, if a
theory A can be embedded in a theory B with symme-
tries it can happen that the symmetries of B strongly
constrain the amplitudes of A. Perhaps the D = 4 the-
ory has such hidden symmetries at the strong-coupling
points w = i, e '/ . Clearly, this is an interesting topic
for further work.

There are several other lines of investigation worth
pursuing. The infrared limit of our dimensional reduc-
tion should be studied more carefully. Generalizations
to other two-manifolds besides the torus are of interest.
Much stronger tests of S duality might be obtained by
considering the I corrections to our leading result. Even
more ambitiously, perhaps a perturbative proof of S du-
ality might be achieved by analyzing the expansion to
all orders. Finally, the generalization of these remarks to
theories with K = 2 (or fewer) supersymmetries promises
to be fascinating.

Note added. We would like to draw the reader's at-
tention to Ref. [12] where issues similar to the above are
discussed.

G.M. would like to thank E. Verlinde for some ini-
tial collaboration on these matters. We thank D. Freed,

X = 27l& vp + 27lo vi )

(29)

X = 2vro. vBo+ 2vro. u

with v, tv E A, „sh&(G) and 0 ( o, o ( 1, then the

The connection between 4D supersymmetric Yang-Mills
theory and conformal 6eld theory described in this paper is
probably unrelated to the connection uncovered in [9].
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H. Garland, D. Kutasov, E. Martinec, N. Nekrasov, and
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ported by DOE Grants No. DE-FG02-92ER40704 and
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sition function g(P): S ~ G. By conjugation, g(P)
can be taken to be in T. Thus, the magnetic quantum
numbers live on the lattice T—:Hom((1), T). Using the
exponential map we may think of this lattice as being in

Acoweight (G)
Notice that since Hom(U(1), U(l)) = Z the weight and

coweight lattices of G, hence electric and magnetic quan-
tum numbers, are canonically dual:

APPENDIX A: GENERALIZATION TO
ARBITRARY COMPACT GROUPS Acoweight(G) = [Aweight(G)] (A2)

The generalization of the above discussion to the case
of G, an arbitrary compact group, is straightforward. Lo-
cally, G can be written as the product A x K where A
is a torus and K is semisimple. S duality for the part
of the theory associated with the Abelian factors of G is
elementary, so we focus on K. Quotients by finite sub-
groups living in diferent factors yield orbifold versions of
the conformal field theories derived below, so, henceforth,
we take G to be connected and simple.

1. Normalization of the action

We normalize the action so that anti-self-dual instan-
tons in the simply connected covering group G associated
to G have action 2vrikw, with the instanton number k tak-
ing on all integral values. This gives the normalization

This is the Dirac quantization condition.
Physically we may define the dual group as follows.

Given any compact Lie group G, the dual group G" is
the group for which the electric and magnetic lattices
are exchanged [2]. It is a nontrivial fact that G" exists
for every compact group G. Mathematically, the dual
group is best understood by thinking of a Lie algebra
as defined by its root system R, following [13,14]. We
assume g is semisimple. Let V be a vector space. A
finite subset B C V is a root system if it satisfies cer-
tain axioms [13,14]. One key axiom states that for all
o. E R2!n." E V* with (n, n") = 2. The axioms are com-
pletely symmetric between B c: V and the set B" ( V*.
Now, to a root system R (and a choice of simple roots)
we associate a Lie algebra g(R) defined by the Serre pre-
sentation. Sine root systems come in pairs B,B" we get
two dual Lie algebrasii g(R) and g(R"). Furthermore,
by construction, we have canonically:

Tr(ab) = 2Bg(v, v)@g(a, 6), (Al) V = t*(R) = t(R"),

where 4g(, ) is the Killing form on I, Bg(, ) is the in-

duced form on g*, and v is the highest root of g.

2. Review of the dual group

We briefly review the general definition of the mag-
netic group G" dual to a compact Lie group G [2,11].
We first distinguish two kinds of quantum numbers in a
gauge theory with unbroken gauge group G: electric and
magnetic. These are defined by representation theory
and topology, respectively, as follows.

Electric quantum numbers are given by representations
of G. Representations are determined by characters y.
By conjugation, y is completely determined by its re-
striction to the maximal torus T & G. Thus, the electric
quantum numbers live on the lattice T = Hom(T, U(1)).
Using the exponential map we may think of this lattice
as being in t*: A;gi, t(G) C t*.

Magnetic quantum numbers are related to G bundles
over S . These are determined by the equatorial tran-

V* = t(R) = t*(R") .

Acoweight (G ) Acoweight (G)
n 0

t(R") = t*(R),
(A4)

so the lattice of magnetic quantum numbers of G becomes
the lattice of electric quantum numbers of G", and vice
versa.

3. Checking S duality

The Gaussian model in conformal field theory is de-
fined by a triple of data (V, q, A), where V is a vector

Finally, we can define the dual groups G, G . These
have simply connected covers corresponding to g(R) and
g(R"), respectively, and have global structure such that

In this paper V* indicates the dual of a vector space, i.e.,
the space of linear functionals on V. A quadratic form Q on
V canonically defines a form on Q* on V*. If we choose bases
the two forms are inverse matrices.

We adopt standard notation whereby, if V is a vector
space, the reciprocal lattice A* C V* to the lattice A C V
is the lattice of vectors with integer pairings: A* = (v E V*:
Vis E A, (v, iv) C Z).

The Cartan matrices are related by transposition, except
for Gq where one must reorder the simple roots.
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space with nondegenerate quadratic form Q and A (: V
is a lattice. The action is

G" = G(R") associated to root systems B,B" we have
C'*(R) ——Bz(R-) and a simple identity [13]

d o.[Q(o)oX, c)pX) —Q(c)iX, c)iX)],

X X+2+v, v gA.
(A5)

H+(Rv ) (Vl V)
4 g(R" ) ( ~ ) =

g i +I(R") ( ~ ')
&s(»~" ~~

T duality is the equivalence of the triples (V, Q, A) and
(V*, Q*, A*).

%'e can now show that T duality implies S duality
restricted to the e8'ective conformal Geld theory. Froin
(A4) we see that the vector spaces and lattices are nat-
urally dual. The metric associated to G follows from
(Al). Moreover for a dual pair of groups G = G(B),

shows that the metrics are inversely related. Nonzero
values of p~, 0 are handled in the same way as in the
SU(n) case explained above. Finally, G and G" have
canonically isomorphic Weyl groups W(G) = W(G"),
so the T-dual orbifold of the dimensionally reduced G
theory is identical to the dimensional reduction of the
S-dual G theory.
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