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We consider the topological gauged WZW model in the generalized momentum representation.
The chiral field g is interpreted as a counterpart of the electric field E of conventional gauge theories.
The gauge dependence of wave functionals tIg(g) is governed by a new gauge cocycle Powzw. We

evaluate this cocycle explicitly using the machinery of Poisson cr models. In this approach the
GWZW model is reformulated as a Schwarz-type topological theory so that the action does not
depend on the world-sheet metric. The equivalence of this new formulation to the original one is

proved for genus one and conjectured for an arbitrary genus Riemann surface. As a by-product we

discover a new way to explain the appearance of quantum groups in the WZW model.

PACS number(s): 11.25.Hf

INTRODUCTION

In this paper we investigate the quantization of the
gauged (G/G) Wess-Zumino-Witten (WZW) model in
the generalized momentum representation. The consider-
ation is inspired by the study of (two-dimensional) Yang-
Mills (YM) and BF theories in the momentum represen-
tation [1].

The problem of quantization of gauge theories in the
momentum representation has been attracting attention
for a long time [2], [3]. While in the connection represen-
tation the idea of gauge invariance may be implemented
in a simple way

we get a nontrivial behavior of the quantum wave func-
tions under gauge transformations in the momentum rep-
resentation. Indeed, one can apply the following simple
argument. The wave functional in the momentum rep-
resentation may be thought of as a functional Fourier
transformation of the wave functional in the connection
representation (1):

rp(E) = f 1&A exp
~

i f trE;A;
~

rp(A) .

Taking into account the behavior of A and E under gauge
transformations,

Ag =g A,g+g (9;g, Eg = g E,g,
we derive

O(Er) = exp
~ if trE;Egg t

~

rg(E) .

P(E, g) = f trs;g;gg

The inlnitesimal version of the same phase factor,

tt(E, e) = f trE;8;e, (6)

We conclude that the wave functional in the momen-
tum representation is not invariant with respect to gauge
transformations. Instead, it gains a simple phase factor
P(E, g), which is of the form
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corresponds to the action of the gauge algebra.
It is easy to verify that P satisfies the equation

rtg(E, gh) = P(E, g) + P(Eg, h) .

This property reHects that the composition of two gauge
transformations (4) with gauge parameters g and h is
the same as a gauge transformation with a parameter
gh. Equation (7) is usually referred to as a cocycle con-
dition. It establishes the fact that P is a one-cocycle of
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the (infinite dimensional) gauge group. A one-cocycle is
said to be trivial, if there exists some P such that

(8)

In such a case the gauge invariance of the wave function
may be restored by the redefinition

An infinitesimal cocycle P(E, e) is trivial, if it can be
represented as a function of the commutator [e, E]:

~(E e) = ~([e E]) . (10)

It is easy to see that the cocycle (6) is nontrivial. In-
deed, let us choose both E and e having only one nonzero
component E and e (in the Lie algebra). Then the
commutator in (10) is always equal to zero, whereas the
expression (6) is still nontrivial. As a consequence, also
the gauge group cocycle (5) is nontrivial.

On the other hand, on some restricted space of values
for the field E the cocycle may become trivial (generi-
cally if we admit nonlocal expressions for P). This is im-
portant to mention as one may rewrite the (integrated)
Gauss law (4) as a triviality condition on the cocycle:
Let us parametrize iII as @(E):=exp[i/(E)], which is
possible whenever @ g 0, and insert this expression into
(4). The result is precisely (8) with P—:f trE, B;gg
In fact, e.g. , in two dimensions the wave functions of the
momentum representation are supported on some conju-
gacy classes E(x) = g(x)Eog (x) with specific values of
Eo. But away &om these specific conjugacy classes, and
in particular in the original, unrestricted space of values
for E, the general argument of the cocycle (8) being non-
trivial applies. More details on this issue may be found
in Appendix A.

It is worth mentioning that in the Chem-Simons the-
ory a cocycle appears in the connection representation as
well:

The cocycle P(A, g) is usually called Wess-Zumino action
[4]. It is intimately related to the theory of anoinalies [5].

Recently, a cocycle of type (5) has been observed in
two-dimensional BF and YM theories. In this paper
we consider the somewhat more complicated example of
the gauged WZW (GWZW) model for a semisimple Lie
group. Like the BF theory, it is a two-dimensional topo-
logical field theory [6] (for a detailed account see [7]).
It has a connection one-form (gauge field) as one of its
dynamical variables and possesses the usual gauge sym-

metry. However, there is a complication which makes the
analysis different from the pattern (4). In the GWZW
model the variable which is conjugate to the gauge 6eld,
and which shall be denoted by g in the following, takes
value in a Lie group G instead of a linear space. So,
we get a sort of curved momentum space. We calculate
the cocycle PGwzw which governs the gauge dependence
of wave functions in a g representation and find that it
differs from the standard expression (5). We argue that
while the cocycle (5) corresponds to a Lie group G, our
cocycle is related to its quantum deformation Gq. In the
course of the analysis we 6nd that the GWZW model
belongs to the class of Poisson o models recently discov-
ered in [8]. This theory provides a techiucal tool for the
evaluation of the cocycle PGwzw.

Let us briefIy characterize the content of each section.
In Sec. I we develop the Hamiltonian formulation of the
GWZW model, 6nd canonically conjugate variables, and
write down the gauge invariance equation for the wave
functional in the g representation.

Section II is devoted to the description of Poisson o.

models. A two-dimensional topological cr model of this
class is defined by 6xing a Poisson bracket on the target
space. Using the Hamiltonian formulation (the topology
of the space-time being a torus or cylinder), we prove
that the GWZW model is equivalent to a certain Pois-
son cr model coupled to a "topological" term Sg that
has support of measure zero on the target space of the
field theory. The target space of the (coupled) Poisson
o model is the Lie group G. We start from-the GWZW
action, evaluate the Poisson structure on G and discover
its relation to the theory of quantum groups. The origin
of the term Sg is considered in details in Appendix B.

In Sec. III we solve the gauge invariance equation and
find the gauge dependence of the GWZW wave functional
in the g representation. This provides a new cocycle
PGwzw. Calculations are performed for the Poisson o'

model without the singular term. In Appendix C we re-
consider the problem in the presence of the topological
term. It is shown that in the case of G =SU(2) at most
one quantum state is affected. We compare the results
with other approaches [9,7].

In some 6nal remarks we conjecture that the Poisson
o. model coupled to Sg gives an alternative formulation
of the GWZW model valid for a Riemann surface of ar-
bitrary genus. We comment on the new relation between
the WZW model and quantum groups which emerges as
a by-product of our consideration.

I. HAMILTONIAN FORMULATION
OF THE GWZW MODEL

The WZW theory is de6ned by the action

More accurately, one obtains (8) only mod 2m. But anyway
this modification of (8) is quite natural in view of the origin
of the cocycle within (4). Alternatively one might regard also
a multiplicative cocycle C = exp(iP) right from the outset, cf.
Appendix A.

&wzw(g) = k
trO„gg 0"gg d x

8m

k
trd i(dg g ')

12%

where the 6elds g take values in some semisimple Lie
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group G and indices p are raised with the standard
Minkowski metric. The case of a Euclidean metric may
be treated in the same fashion. Some remarks concerning
the second term in (12) may be found in Appendix B.

The simplest way to gauge the global symmetry trans-
formations g —+ lgl is to introduce a gauge field h tak-
ing its values in the gauge group; the action

A~wzw(g, h) = Aivzivv(hgh )

is then invariant under the local transformations g ~
lgl, h ~ hl . With the celebrated Polyakov-
Wigmann formula and a~ .= h t9~h, where 0~
|9p + |9y, AG~z~ can be brought into the standard form

Acwzw(g~ &+ ~
&—)

k= Awzw(g)+ — tr[a+0 gg
' —a g 'ot+g4'

a+ga g—'+a+a ]d'x .

In the course of our construction of AG~z~ a = a+d2:++
I

a dx has been subject to the zero curvature condition
da+ a = 0. This condition results also &om the equa-
tions of motion arising from (14). So, further on we treat
a~ as unconstrained fields (taking their values in the Lie
algebra of the chosen gauge group).

In order to And a Hamiltonian formulation of the
GWZW model we first bring (14) into first order form.
To this end we introduce an auxiliary field p(x) into the
action by the replacement (g—:Bog)

k—(gg + u+ gii —g )
8m

2K 2~ p(gg '+ u+ —g~ g') -——S' (»)
k

As p enters the action quadratically, it may be eliminated
always by means of its equations of motion so as to repro-
duce the original action (14). In the functional integral
approach this corresponds to performing the Gaussian
integration over p.

Now the action (14) may be seen to take the forin (with
~g—:~ag)

AGw wz(g~ p~ u+) 12' trd (dg g ) + d xtr pgg —a g pg —p+ —(g Bg+ cjgg )4'
( 4~

-p~gg ' ——
l

~+ —~———p+~gg '
I8~q k

(i6)

This is already linear in time derivatives. After the sim-
ple shift of variables

4m —1a+ —+ a+ = a+ —a ——p+ Ogg
k

the last term is seen to completely decouple &om the
rest of the action. Therefore one can exclude it Rom
the action without loss of information. We can again
employ the argument about integration over a+ [or also
a+ in (16)]. So we have introduced one extra variable

p and now one variable is found to drop out &om the
formalism.

After a+ is excluded, the rest of formula (16) provides
the Hamiltonian formulation of the model. The first two
terms play the role of a symplectic potential, giving rise
to the symplectic form

I

term in (16) gives a local contribution to the symplectic
form on the phase space. The third term, which includes
a, represents a constraint:

k
g 'J g —u+ —(g '&g+ ~gg ') = o .

4m'
(19)

t', k, )' ( k
tr~ g pg+ —g ~g

I
=tr~ p ——~gg

4m. ) q 4~

and hence

The variable a is a Lagrange multiplier and the con-
straint is nothing but the Gauss law of the GWZW
model. It is a nice exercise to check with the help of (18)
that the constraints (19) are first class and that they gen-
erate the gauge transformations. Equation (19) implies

tr[pBgg '] = 0 . (20)

+
~
p+ —Ogg

'
~

(dgg ') dx' .
4 r

Here d is interpreted as an exterior derivative on the
phase space. It is interesting to note that the nonlocal

This permits us to eliminate the Hamiltonian in (16) in
agreement with the fact that the model (14) is topologi-
cal.

Being a Hamiltonian formulation of the GWZW model,
the form (16) is not quite satisfactory, if one wants to
solve the Gauss law equation (19). We therefore ap-
ply here some trick usually referred to as bosonization
[10,11]. The main idea is to substitute the Gauss decom-
position for the matrix g into the GWZW action:

See also Appendix C. (21)
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where gg is lower triangular, g~ is upper triangular. In
the case of compact group G both of them are elements
of the complexification of G. (Note, however, that we
do not complexify the target space G here, but only use
complex coordinates gt, gg on it. ) If the diagonal parts of
gg and g~ are taken to be inverse to each other, this split-
ting is unique up to sign ambiguities in the evaluation of
square roots. Analogously any element of the Lie algebra
Q corresponding to G may be split into upper and lower
triangular parts according to

Awz(g) = tr d '(dgg ')s
127r

k= —tr dggg& h dgtgt4'

+,,'jg (24)

In this way we removed the symbol d in the first term
of the right-hand side. The topological term

Y = Yz+ Y„, Pz)& = (Yi.)d (22)
(25)

where a subscript d is used to denote the diagonal parts
of the corresponding matrices.

Observe that the three-form tr(dg g i) may be rewrit-
ten in terms of gt and gg as

k
trNdg g ) l

is considered in details in Appendix B. In contrast with
the conventional WZ term the new topological term (25)
influences the equations of motion only on some lower
dimensional subset of the target space.

Let us return to the action of the GWZW model. We
make the substitution (21) and introduce a new momen-
tum variable

II = IIt + IIg
A;= d —tr(dggg~ rt, dggg~ )

k= ggpg~ ——(ogtg~ + 9ggg~ ) .
4m

(26)

Here u is a three-form on G supported at the lower di-
mensional subset of G which does not admit the Gauss
decomposition. Now we can rewrite the topological Wess-
Zumino term as

Rescaling a according to A:= (k/27r)a we now may
rewrite the GWZW action in the form

&cwzw(g, II, &) = Sv (g, II &) + Sa(g) (27)

where Sb has been introduced in (25) and S~ is given by

-1 -1 2
gg(g, II, A) = jg rtr (II(gogrgr gogtgt ) + A gr grgt —gt grgt + —gt IIgt —gt IIgt

k
(28)

In the further consideration we shall disregard the topo-
logical term Sg. In Appendix C we prove that if we take
(25) into account, the results will change only for wave
functions having support on those adjoint orbits in G
[one in the case of G =SU(2)] on which the Gauss de-
composition breaks down.

For the formulation of a quantum theory in the g repre-
sentation, the momentum II should be replaced by some
derivative operator on the group. The first term in (28)
represents the symplectic potential on the phase space
and suggests the ansatz

. ( h
g m g, II -+ i

~ gg —gg-
bgg bgg ) (29)

At this point some remark on the notational con-
vention is in order: On GL(N) coordinates are given
by the entire g;~ of the matrix representing an element
g EGL(N). The corresponding basis in the tangent space
may be arranged into matrix form via

project the translation invariant derivatives from GL(K)
to G. In more explicit terms, given an element Y of the
Lie algebra of G, a right translation invariant derivative
on G is defined by tr YgO/I9g. The matrix valued deriva-
tives in this paper are to be understood in this sense. In
particular, (29) means that the quantum operator asso-
ciated with tr YII is given by

b h &t»ll -+ —itr
] Yegg —Yegg »~r

With this interpretation it is straightforward to prove
that commutators of the quantum operators de6ned in
(29) reproduce the Poisson algebra of the corresponding
classical observables, as defined by the symplectic poten-
tial term in (28).

Let us look for the wave functionals of the GWZW
model in the g representation. This means that we must
solve the equation

(g~ 't9igt —
g~ 'c))igg)tIg(ggtgg)

fh I h

& hg);, h(g")
2~i, f h

gg
g1'

h gg

With this convention the entries of gt9/I9g are seen to be
the right translation invariant vector fields on GL(K).
Given a subgroup G of GL(N) the trace can be used to

i)' h b
I gt @(g~ g~) (»)

bgg hgg r
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for 4' being a wave functional; the functional derivatives
are understood to act on 4' only (but not on everything
to their right). The problem is clearly formulated, but
at first sight it is not evident how to solve Eq. (32). To
simplify it we introduce another parametrization of the
matrix g:

g =6 gph. (33)

Here gp is diagonal and h, is defined up to an arbitrary
diagonal matrix which may be multiplied from the left.
The part of the operator (32) which includes functional
derivatives simplifies dramatically in terms of h. One can
rewrite Eq. (32) as

S~(X,A)

i
A;„+ 'P—"A,„A,„~ dx" n, dx . (39)

o)X* j.

Here A and X are understood as functions on the world
sheet. Both terms in (39) are two-forms with respect
to the world sheet. Thus, they may be integrated over
M. The action (39) is obviously invariant with respect
to diffeomorphisms of the world sheet. It is also invariant
under diffeomorphisms of the target space which preserve
the Poisson tensor. Equations of motion for the fields X
and A are

O„X'+ 'P'~A~„= 0,
—1 —1

~ g,
—

O,g, —g,
—

O, g, + „—„h ~

e[g„h,] =O, (34)
f97

OA, —BA,„— . A~Ak ——0 .

(4o)

where g~, gg are determined implicitly as functions of 6
and gp via

g~ gg
——h, gph .

We discuss the interpretation of Eqs. (32) and (34) in
Sec. II and solve them eKciently in Sec. III.

Here 0„ is the derivative with respect to x" on the world
sheet.

I et us remark that the two-dimensional BF theory
may be interpreted as a Poisson o. model. Indeed, if one
chooses a l, ie algebra with structure constants f'& i, as the
target space % and uses the natural Poisson brackets

II. GAUGED WZW MODEL
AS A POISSON o MODEL

(X', A') = f'~i, X", (4S)

The Gauss law equations of the previous section may
be naturally acquired in the theory of Poisson o models.
We start with a short description of this type of topolog-
ical 0. model.

The name Poisson 0 model originates from the fact
that its target space N is a Poisson manifold, i.e., N
carries a Poisson structure P. We denote coordinates on
the two-dimensional world-sheet M by x+, p = 1, 2 and
coordinates on the target space N by X', i = 1, . . . , n.
Poisson brackets (., ) on K are defined by specifying its
value for some coordinate functions: (X', X~) = 7 '~ (X).
Equivalently the Poisson structure may be represented by
a bivector

P = P*'(X)—1 -. 6
(36)

In terms of this tensor the Jacobi identity for (., ) be-
comes

g~ jk qadi j yak.
QXl /Xi QXl

For nondegenerate P the notion of a Poisson manifold
coincides with that of a symplectic manifold. In general,
however, P need not be nondegenerate.

In the world. -sheet picture our dynamical variables are
the X"s and a field A which is a one-form in both world-
sheet and target space. In local coordinates A may be
represented as

A = A;„dX'h, dx" . (38)

The topological action of the Poisson o model consists of
two terms, which we write in coordinates:

one reproduces the action of the BF theory

A~F(A', A) = f tr&(dAyA') . (42)

In the traditional notation X is replaced by B and the
curvature dA+A of the gauge field is denoted by F. The
class of Poisson o. models includes also nontrivial exam-
ples of two-dimensional theories of gravity (for details see
[i2,8]).

We argue that the gauged WZW model is equivalent to
a Poisson o. model coupled to the term (25). The target
space is the group G, parametrized by gg and gg. The
(l, l)-form A is identified readily from (28):

A = II(dgtg~ —dggg~ ) A dx

A(gq 'dgt —
g~

—'dgg) r dx' . (43)

Here we have interpreted the terms linear in II and A.
Then the part of the action quadratic in II and A di-

rectly determines the Poisson structure. In our formula-
tion of the general Poisson cr model (39) the indices i, p
of A correspond to a coordinate basis dX' in T*N and
dx~ in T*M. In such a formulation we simply have ta
replace A,„by 0/o)X' in the quadratic part of the action
to obtain the Poisson bivector (36) as the "coeKcient" of
the volume-farm dx~ h, dx . Each of the matrix-valued
one-forms dgtg& —dggg& and g& dg~ —

g& dgg in the
present expression (43) for A, however, represents a non-
holonomic basis in the cotangent bundle of the target
space G. In such a case the corresponding components
of A, i.e., II and A in our notation, have to be replaced
by the respective dual derivative matrices. Applying this
simple recipe to the quadratic part of (28) we find the
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Poisson bivector on G:

( 0 0 't tt' 8 cjII m
i gg —

gg ~, A —+
~ gt —

gg ~

&K j (age '9A
4vr (0 0 l, ( 0 01,( 8 01

I g~ —
ggk (Og~ Og~ j, q Bg~ Bgt j ( Bg~ Bgt j (44)

Using the parametrization (33) and (35) this expression
can be formally simplified to

(45)

For means of completeness we should check now that this
bivector fulfills the Jacobi identity (37). In our context
the simplest way to do so is to recall that the constraints
of the GWZW model are first class; this sufFices, because
one can show that the constraints of any action of the
form (39) are first class exactly iff 'P'~ obeys (37). Cer-
tainly one can verify the Jacobi identity also by some
direct calculation and in fact this is done implicitly when
establishing (47) and (50) below.

The above Poisson bracket on G requires further com-
ment. For this purpose it is useful to introduce some new
object. We a1ways assume that the group G is realized
as a subgroup in the group of n by n matrices. Then the
following matrix r acting in C" t is important for us:

ij kI, 4 ii ij kl ij kl jj (51)

Here summation over the indices with the tilde on the
right-hand side is understood. The remaining equations
of (50) can be rewritten in the same fashion. The for-
mulas (50) define the Poisson bracket only on the subset
of the group G which admits the Gauss decomposition
(21). One can easily recover the Poisson brackets of ma-
trix elements of the original matrix g. We leave this as
an exercise to the reader. The result may be presented
in tensor notation:

(g', g') = [g'rg' ——g'r'g2 —rg'g'+ g'g'r'] . (52)

We omit the calculation which leads to (50), as it is rather
lengthy but straightforward. Each equation in (50) pro-
vides a Poisson bracket between any matrix element of
the matrix with superscript 1 with any matrix element
of the matrix with superscript 2. In order to clarify this
statement we rewrite the first equation in components:

r = —) h'h;+) t t (46) Here r' is obtained &om r by exchanging the two copies
of the Lie algebra:

try 2rA B = trAgBg+ 2trAgB'g, (48)

where the trace on the left-hand. side is evaluated in the
tensor product of two spaces and

A' =—Ag 1, B'=1@B.
Now we are ready to represent the bracket (44) in a

more manageable way. As the most natural coordinates
on the group are matrix elements, we are interested in
Poisson brackets of entries of g~ and gg. Using short-
hand notations (49) and the definition of the r matrix,
we arrive at the following elegant result:

Here 6' and 6, are generators of dual bases in the Cartan
subalgebra, t and t are positive and negative roots,
respectively. The matrix r is usually called classical r
matrix. It satisfies the classical Yang-Baxter equation in
the triple tensor product which reads

(47)

Here ri2 ——r 1 is embedded in the product of the first
two spaces and so on. An important property of the r
matrix is

r'= —) h'g h +) t @t (53)

The Poisson bracket (52) is quadratic in matrix elements
of g and obviously smooth. This means that the bracket
(50), which has been defined only on the part of the group
G where the Gauss decomposition is applicable, may now
be continued smoothly to the whole group; for example,
for the case of G =SU(2) it is straightforward to estab-
lish that the right-hand side of (52), and thus also the
smoothly continued Poisson tensor P', vanishes at antidi-
agonal matrices g ESU(2). The latter represent precisely
the one-dimensional submanifold of SU(2) where a de-

composition (21) for g does not exist. It is worth men-

tioning that the bracket (52) appeared first in [13] within
the &amework of the theory of Poisson-I ie groups.

The group G equipped with the Poisson bracket (52)
may be used as a target space of the Poisson 0. model.
We have just proved that the Hamiltonian formulation
(geometry of the world sheet is torus or cylinder) of this
Poisson o model coupled to the topological term (25)
coincides with the gauged WZW model. .

4m
Q~, g~) =

Z
[r, g~g~],

[r~gggg] ~

4~
(gq, gz& =

k [,gag&] .

(50)

III. SOLVING THE GAUSS LAW EQUATION

This section is devoted to the quantization of Poisson
0 models. More exactly, we are interested in the Hilbert
space of such a model in the Hamiltonian picture. This
implies that we need a distinguished time direction on the



7152 ALEKSEEV, SCHALLER, AND STROBL 52

b
A;g ——i (54)

The components A,o enter the action linearly. They
are naturally interpreted as Lagrange multipliers. The
corresponding constraints look as

world sheet and thus we are dealing with a cylinder. The
remarkable property of Poisson 0 models is that the prob-
lem of finding the Hilbert space in this two-dimensional
field theory may be actually reduced to a quantum me-
chanical problem. This has been realized in [8] and here
we give only a short account of the argument.

It follows from (39) that in the Hamiltonian formula-
tion the variables X' and A;j are canonically conjugate
to each other (this changes slightly when the Poisson cr

model is coupled to the term Sg, see Appendix C). In.
the X representation of the quantum theory the X' act
as multiplicative operators and the A;~ act as functional
derivatives

If the Poisson bracket P is degenerate we cannot use
N as a phase space. However, if we restrict to some sur-
face 8 (these surfaces are also called symplectic leaves),
the Poisson bracket becomes nondegenerate and one can
try to carry out the quantization program. In the func-
tional integral approach we are interested in the exponent
exp(iA) of the classical action A, being the main ingredi-
ent of the quantization scheme. In order to construct the
classical action A we invert the matrix of Poisson brack-
ets (restricted to some particular surface 8) and obtain
a symplectic two-form

0 = -0; -dX' h, dX~, 0;kp" = b,

As a consequence of the Jacobi identity the form 0 is
closed

(60)

G' = i9ix' +.P"(X)A~i --0 . (55)
and we can look for a one-form o. which solves the equa-
tion

Combining (54) and (55) one obtains an equation for the
wave functional in the X representation

~

B]X'+i'P'~(X) .
~ @[X]= 0 .

l bx~ (56)

(X', X') = e;,gX (57)

This Poisson bracket describes a three-dimensional an-
gular momentum and it is well known that the square of
the length

Z':=) (X')' (58)

commutes with each of the X'. So, B cannot be changed
by means of Hamiltonian Bows and the surfaces 8 are
two-dimensional spheres.

But cf. also Appendix C.

Equations (32) and (34) are particular cases of this equa-
tion. In order to solve (56) we first turn to a family of
finite dimensional systems on the target space N defined
by the Poisson structure P.

As the target space of a Poisson o model carries a Pois-
son bracket, it may be considered as the starting point
of a quantization problem. Namely, one can consider the
target space as the phase space of a finite dimensional
Hamiltonian system, which one may try to quantize. The
main obstruction on this way is that the Poisson bracket
P may be degenerate. This means that if we select some
point in the target space and then move it by means of
all possible Hamiltonians, we still do not cover the whole
target space with trajectories but rather stay on some
surface 8 C ¹ The simplest example of such a situation
is a three-dimensional space N = R with the Poisson
bracket

@[xj:=exp~ if d '0
~

(62)

makes sense, if the cohomology class of 0 is integral, i.e. ,
if

0=2~n, no Z, (63)

for all two-cycles o. C 8; in this case A = f d iO is
defined mod 2z and (62) is one-valued [cf. also (64) be-
low]. Alternatively to the functional integral approach we

might use the machinery of geometric quantization [14]
to obtain condition (63): Within the approach of geomet-
ric quantization it is a well-known fact that a Hamilto-
nian system (8, 0) may be quantized consistently only if
the symplectic form 0 belongs to an integral cohomology
class of 8. In the example of two-dimensional spheres
in the three-dimensional target space considered above
the requirement of the symplectic leaf to be quantizable,
obtained in any of the two approaches suggested above,
implies that the radius B of the sphere is either inte-
ger or half-integer (for more details confer [15,14]). This
is a manifestation of the elementary fact that a three-
dimensional spin has to be either integer or half-integer.

After this excursion into Harniltonian mechanics we re-
turn to Eq. (56). It is possible to show that formula (62)
provides a solution of Eq. (56). Moreover, any solution of
(56) can be represented as a linear combination of expres-
sions (62) corresponding to di8'erent integral symplectic
leaves [8].

Let us explain this in more detail. The wave func-
tional 4[x] of the field theory depends on n functions
X' on the circle. They define a parametrized closed tra-
jectory (loop) in the target space N. Now it is a more

(61)

If 0 belongs to some nontrivial cohomology class, o.

p dq does not exist globally. Still the expression
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or less immediate consequence of (56) that the quantum
constraints of the field theory restrict the support of 4
to trajectories (loops) X (z ) which lie completely within
a symplectic leaf 8 (just use coordinates X' in the tar-
get space adapted to the foliation of N into symplectic
leaves). A further analysis, recapitulated in part in Ap-
pendix C within the more general &amework of a Pois-
son o model coupled to a topological term, shows that
these leaves have to be quantizable and that admissible
quantum states are indeed all of the form (62) or a super-
position of such functionals. In the case that 8 is simply
connected, (62) may be rewritten more explicitly as

4'[X] oc exp[iA(X)],

A(X) =j0 (mod2m),

(64)

g=h 'gob (65)

where the two-dimensional surface Z is bounded by the
closed path A (x ) lying in some quantizable leaf 8. As
0 belongs to an integral cohornology class (by the choice
of 8), (64) is a globally well-defined functional of 2C(x ).
As stated already before any such functional solves the
quantum constraints (56) and, vice versa, any solution
to the latter has to be a superposition of states (64). On
the other hand (62) or (64) may be also reinterpreted as
exponentiated point particle action. x then is the "time-
parameter" of the trajectory A(x ), which one requires
to be periodic in time.

So we obtain the following picture for the relation be-
tween the Poisson f7 model and finite dimensional quan-
tum mechanics: In order to obtain the Hilbert space of
the o model on the cylinder, one may regard the target
space as a phase space of a dynamical system. This space
splits into a set of surfaces on which the Poisson brack-
ets are nondegenerate, creating a family of Gnite dimen-
sional systems. Some of these systems are quantizable
in the sense that the cohomology class of the symplec-
tic form is integral. To each quantum system generated
in this way corresponds a linearly independent vector in
the Hilbert space 'R of the o model. In the case that
the respective (quantizable) symplectic leaf 8 is not sim-

ply connected, however, there is a linearly independent
vector in 'R for any element of vri(8). This idea may be
successfully checked for BF theories in two dimensions
(for more details confer [8]).

Now we apply the machinery of this section to the
GWZW model. First, we should look at the surfaces 8 in
the group G where the restriction of the Poisson bracket
(50) is nondegenerate. For generic leaves this problem
has been solved in [13]. In order to make 'P nondegen-
erate, one should restrict to some conjugacy class in the
group

Each conjugacy class may be used as the phase space of a
Hamiltonian system. However, in the case of G =SU(2)
we found that the Poisson bracket vanishes on the sub-
set of antidiagonal matrices. Hence, any antidiagonal
matrix represents a zero-dimensional symplectic leaf in
G =SU(2). So, some exceptional conjugacy classes may
further split into families of symplectic leaves. This oc-
curs precisely where the Gauss decomposition does not
hold.

The form 0 on a generic orbit characterized by go
has been recently evaluated in [16] (a presentation more
adapted to the physical audience can be found in [17])
and has the form

k0 = —tr[h dh A (g~ 'dgg —
g~ dgg)],

4m
(66)

As outlined above quantum states are assigned only
to integral symplectic leaves. In Appendix C the corre-
sponding integrality condition (63) is evaluated explicitly
for the example of G =SU(2).

The exceptional conjugacy classes require some special
attention. From the point of view of the pure Poisson o
model there corresponds a quantum state to any inte-
gral symplectic leaf which the respective conjugacy class
may contain. For the case of SU(2), e.g. , there is one
exceptional (two-dimensional) conjugacy class (65) char-
acterized by trg = 0. It contains the one-dimensional
submanifold C of antidiagonal matrices in SU(2). Any
point of C is a zero-dimensional symplectic leaf and, be-
cause zero-d. imensional leaves are always quantizable, one
would be left with a whole bunch of states corresponding
to this exceptional conjugacy class.

However, we know that in order to describe the
GWZW model in full generality, we need to add the topo-
logical term Sg to the pure Poisson o part of the action.
Also, appropriate boundary conditions of A have to be
taken into account at the part of G where the Gauss de-
composition breaks down. Whereas Sg and these bound-
ary conditions may be seen to be irrelevant for the quan-
tum states corresponding to generic conjugacy classes,
they decisively change the picture at the exceptional
ones; e.g. , for G =SU(2) the net result is that there
corresponds only one or even no quantum state to the
exceptional conjugacy class defined above, depending on
whether A: is even or odd, respectively. Further details
on this may be found in Appendix C.

From (67) it is straightforward to evaluate the cocycle
PGvvzw which controls the behavior of the wave func-
tional with respect to gauge transformations; e.g. , for
the case of infinitesimal transformations

where gg, gt, and h are related through (35). The cor-
responding point particle action or phase factor of the
quantum states is

&Gwzw(g)

k
d tr[h dh A (gt dgt —

g& dgg)] . (67)4'

In the language of Appendix C the definition (64) corre-
sponds to the choice of a constant (pointlike) "loop of refer-
ence" for +o.

hg = —[s, g], bh = hs,

the new gauge cocycle looks as

(68)
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k
g ~wzvv(g e) = — tre(g~ dgt —

g~ gg) (69)

An integrand of this type has been studied in the &ame-
work of Poisson-I ie group theory [18]. However, the
gauge algebra interpretation is new.

In order to check that the cocycle P~vvzw is nontrivial,
it is convenient to use the same trick as the one we applied
in the Introduction. Indeed, choose both g and ~ to be
diagonal. Then any trivial cocycle vanishes, but (69) is
not equal to zero for generic diagonal g and e.

IV. DISCUSSION

I et us brieHy recollect and discuss the results of the pa-
per. Using the Hamiltonian formulations we have shown
that the GWZW model is equivalent to a Poisson o. model
coupled to the topological term Sg..

&Gv zw(g, &) = Sv (g, &) + ~a (g) . (70)

It is natural to conjecture that this equivalence holds true
for a surface of arbitrary genus. Let us mention that orig-
inally the GWZW is formulated as a Witten-type topo-
logical field theory. This means that the action includes
the kinetic term and explicitly depends on the world-
sheet metric. Then one can use some supersymmetry
to prove that in fact the terms including the world-sheet
metric do not inHuence physical correlators. The Poisson
0. model provides a Schwarz-type formulation of the same
theory. The right-hand side of (70) is expressed in terms
of differential forms exclusively and does not include any
metric from the very beginning.

At the moment the GWZW model is solved in many
ways whereas the general Poisson 0 model has not been
investigated much. Applying various methods which
work for the GWZW to Poisson o. models, one can hope
to achieve two goals. First, one can select the meth-
ods which work in a more general &amework and, hence,
which are more reliable. This is especially important
when one deals with functional integrals. The other am-
bitious program is to solve an arbitrary Poisson a model
coupled to a topological term explicitly. Solution should
include an evaluation of the partition function and topo-
logical correlators in terms of the data of the target space.
In this respect an experience of the GWZW model may
be very useful.

Another issue which deserves some comment is the re-
lation between quantum groups and WZW models. This
issue has been studied much in the literature [19]. The
picture of the quantum symmetry in WZW models may
be described in short as follows. Separating left-moving
and right-moving sectors of the model we add some finite
number of degrees of &eedom to the system. The quan-
tum group symmetry is a gauge symmetry acting on the
left and right movers. The physical fields are invariants
of the quantum group action. Usually one can choose
some special boundary conditions when separating the
sectors in order to make the quantum group symmetry
transparent.

Let us compare this picture to the considerations of
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APPENDIX A: GAUGE COCYCLES AND
INTEGRAL COAD JOINT ORBITS

Here we study in details the one-cocycle

P(E, g) = jtrEBgg 'dz (A1)

of the loop group LG, which plays the role of the gauge
group on the circle. Along with the additive cocycle P
we consider a multiplicative cocycle

C (E,g) = exp[i/(E, g)] . (A2)

The counterparts of the cocycle and coboundary condi-
tions in the multiplicative setting are, respectively,

4(E, ggg2) = 4(Eg', g2)4(E, gg),
C(E, g) = C'(Eg)4(E)

(A3)

(A4)

Let us observe that one can consistently restrict the

We are grateful to K. Gavredzki for this remark.

this paper. The gauged WZW model appears to be
equivalent to some Poisson o model with gauge group
G as target space. We derive the Poisson bracket (52)
directly &om the GWZW action. This bracket is quite
remarkable. Quantizing the brackets (52) one gets the
generating relations of the quantum group [20]. We have
found that the gauge dependence of the wave functional
of the GWZW model is described by the classical action
defined on the symplectic leaves. This type of action for
the bracket (52) has been considered in [17]. It is proved
there that such an action possesses a symmetry with re-
spect to the quantum group. So, confirming our expecta-
tions, the quantum group governs the nonphysical gauge
degrees of &eedom of the GWZW model. The new ele-
ment of the picture is that we do not have to introduce
any new variables or choose specific boundary conditions
in order to discover the quantum group structure. Let
us remark that the treatment may look somewhat more
natural for GWZW than for the original WZW model.
The reason is that GWZW may be viewed as a chiral
theory &om the very beginning. The only choice which
we make is the way how we bosonize the WZW action.
We conclude that the quantum group degrees of &eedom
are introduced by bosonization. It would be interesting
to explore this idea &om a more mathematical point of
view.
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region of definition of E from the loop algebra lP to any
subspace i.nvariant with respect to the action of the gauge
group by conjugations. Let us choose such a subset in the
form

E = h(x) EpIx(x) (A5)

Ep = ) Epxxi; . (A6)

In the case of compact groups the cocycle C is trivial if
and only if all coefBcients Eo are integer. To demonstrate
this, let us present the explicit solution for 4. It is given
by

O = exp
~

~ $ trE, Bhh 'dT
~

for Eo being a constant diagonal matrix. For fixed x
Eq. (A5) defines a conjugacy class in the algebra P (coad-
joint orbit).

The diagonal matrix Eo may be decomposed using a
basis of fundamental weights m, in the Cartan subalge-
bra:

illov form (A9) is (66), the Kirillov form of the quantum
group.

We conclude that for certain restricted subspaces of
the loop algebra the cocycle e'(E, g) may become trivial.
In two dimensions the wave functionals in the momentum
representation are supported on these special subspaces.
The corresponding coboundary 4 governs the gauge de-
pendence of the wave functionals:

(A11)

for 4'0 being a gauge independent distribution with sup-
port on loops in integral oadjoint orbits.

Let us stress again that the triviality condition (A4) is
actually an integrated form of the Gauss law (as shown
in the Introduction). Then (All) provides a universal
solution of the Gauss law. In the example which we con-
sidered in this appendix we observe a new phenomenon
in the theory of gauge cocycles. A nontrivial cocycle may
shrink its support in order to become trivial and produce
a physical wave functional. This may lead (as in the ex-
ample of 2D YM theory with coxnpact gauge group) to a
discrete spectrum in the momentum representation.

P = f trEOBhh dx (A8)

may be reformulated in terms of the (well-defined) Kir-
illov form on the coadjoint orbit,

It is easy to check that (A7) provides a solution of the
coboundary problem. It is less evident that (A7) is well
defined. The group element h(x) is defined by E(x) only
up to an arbitrary diagonal left multiplier. When co-
efficients in (A6) are integral, this multiplier does not
inHuence (A7).

For noncompact groups, though, (A7) may turn out to
be well defined even for continuously varying choices of

To establish contact with the presentation in the main
text, one may observe that the additive coboundary
(generically not well defined)

APPENDIX B:TOPOLOGICAL TERM FOR
R =SU'(2)

The topological Wess-Zumino term in the WZW model
is usually represented in the form

k
Awz(g) = tr d '(dgg )s .

12%

The integration is formally performed over the two-
dimensional surface E. [Here Z is the image of the world-
sheet M under the map g(x) &om M + G.] The symbol
d has been introduced by Novikov [21] and applied
to construct multivalued action functionals in [21,22].
It is understood in the following way. One chooses a
three-dimensional submanifold B in the group G so that
BB = Z. The integration over Z is replaced by an inte-
gration over B:

0 = trEp(dh h ) = 2trdE A h dh, (A9)
k

Awz(a) = tr (dgg
—')' .

12K
(82)

(A10)

The ambiguity in the choice of Z does not inHuence the
multiplicative cocycle 4, iff the Kirillov form is integral;
i.e. , iff 0 satisfies (63).

For compact groups the integrality condition (63) on 0
coincides with the before-mentioned condition on the Eo.
If (63) is satisfied with n = 0 not only the multiplicative
but also the additive cocycle P becomes trivial. This
occurs, e.g. , in the noncompact case g = sl(2, R).

It is worth xnentioning that (AS) is the action for a
quantum mechanical system with the phase space be-
ing a coadjoint orbit. We consider a similar system in
Sec. III. There the quantum mechanical phase space is a
conjugacy class in the group and the analogue of the Kir-

The deffnition (B2) is ambiguous as B may be chosen in
many ways. The possible ambiguity in the definition of
WZ(g) is an integral over the uxuon of two possible B's:

&&wz(a) = tr
i (dgg )12%

k
tr (dg g ')

12' ggl Ugyl I

(dgg ')

Here we denote by B"the manifold B"with opposite ori-
entation. Let us restrict our consideration to the case of
G =SU(2). The only nontrivial three-dimensional cycle
in SU(2) is the group itself. It implies that the integral
(B3) is always proportional with some integer coeffxcient
to the normalization integral
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kI= tr (dgg ) =2vrk.
127t G'

tr(dggg~ ') = tr(dgggg) = 0 . {89)

Here we used the fact that the volume of the group SU(2)
with respect to the form tr(dgg i)s is equal to 24vr2.
This calculation explains why one should choose inte-
ger values of the coupling constant k. In this case the
Wess-Zumino term WZ(g) is defined modulo 27r and its
exponent exp[iAwz(g)] is well defined.

Usually Awz(g) is referred to as a topological term
because the defining three-form tr(dg g ) on the group
G is closed and. belongs to a nontrivial cohomology class.
This implies that the integral (Bl) does not change when
we fix Z and vary B in a smooth way. Choosing the
proper coefficient k/12m, k g N, we get a three-farm
which belongs to an integer cohomology class. As we
have seen this ensures that exp(iAwz(g)) is preserved
even by a topologically nontrivial change of B.

So the fact that the three-form

k

12' tr(dg g ')'

—1
g = gg gg (85)

Observe that the Gauss decomposition is not applica-
ble for some elements in SU(2). The Gauss components
gg, gg do not exist on the subset of antidiagonal unitary
matrices. In a parametrization

is closed and belongs to integer cohomology of G makes
the action WZ(g) well defined. . However, it is not true
that Awz(g) is defined already by the cohomology class
of u. If we choose some other representative in the same
class [as, e.g. , u in Eq. (810) below], we get a new topo-
logical term, which is well de6ned for the same reason as
WZ(g). In fact, the new action will difFer from Awz(g).
The reason is that the integral (82) is defined over the
manifold with a boundary and, hence, it is not de6ned
by the cohomology class of the integrand. It depends on
the representative as well.

Now we are prepared to introduce a new topological
term for the WZW model. As it was explained in Sec. I
we use the Gauss decomposition for the group element g:

which holds since the diagonal parts of (dM M ) van-
ish for any triangular matrix M if m & 2.

We established Eq. (88) on the part of the group G
which admits the Gauss decomposition. It is easy to see
that this equation cannot hold true on all of G. Indeed,
the left-hand. side is represented by the exact form dp
whereas the right-hand side belongs to a nontrivial coho-
mology class. In order to iinprove (88) we introduce a
correction to it:

dp = ((u —~) . (810)

dz)
p =i

~

zdz —zdz —2—
~
dP .

z J
(811)

Multiplying p by test one-forms, the resulting three-
forms are integrable on G. So p is a regular distribution
and therefore the derivative dp is also well defined. Using

d(dz/z) = orb[Re(z)]b[lm(z)]dz dz

=:—2vrih (C),

where h(C) has been introduced to denote the 8 two-form
supported on the critical circle C we obtain

~ = kb(C)dg . (812)

I et us conclude that the topological Wess-Zumino
term may be replaced by the sum of a local term and
a topological term supported on the set C of antidiagonal
matrices:

k
WZ(g) = tr (dggg~ n, dgtgt ') + Sb(g),

4m

This equation is to be understood in a distributional
sense: The three-form cu is supported on C. Moreover
it is closed and belongs to the same cohomology class as
(d.

To determine u for G =SU(2) we return to the
parametrization (86). In these coordinates (87) takes
the form

z

( —gl —zz e
v 1 —zz e'4' )

JI
~a{g) = 8(C)dg . (813)

k
p = —tr(dggg~

'
A dgggt ')

4m
(87)

on the compliment of C. It is easy to verify the relation

z e C, ~z[ & 1, P E [0, 2~) {86)

these elements are given by z = 0. They form a circle C
parametrized by P.

We can apply the Gauss decomposition on the rest of
the group in order to remove the symbol d Rom the
topological term u. Indeed, consider a two-form

The new topological term Sg(g) depends exclusively on
the positions of the points where Z intersects C. In par-
ticular, it vanishes if Z belongs to the part of the group
which admits the Gauss decomposition.

In Sec. II we showed that the local term of (813) fits
nicely into the formalism of Poisson o models. Coupling
of such a model to the topological term Sg is subject of
Appendix C.

APPENDIX C: POISSON cr MODEL COUPLED
TO A TOPOLOGICAL TERM AND

QUANTUM STATES FOR SU(2) GWZW
8f =&

Here we have used the fact that

(88)
Within this last appendix we pursue the following three

goals: First we investigate the change of a Poisson o
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model

S~(X,A) =
~

A,. +-V'»;„A,.~dz~~dz"( ox'

(Cl)

under the addition of topological term:

s(x, A) = s~(X, A)+ s...(x) . (C2)

Here St, ~(X) is supposed to be given by some closed
three-form ~top,

Sg~p(X) = (strap) DB = ImM,
B

(C3)

of (generically) nontrivial cohomology on the target space
K of the model (cf. also Appendix B). To not spoil the
symmetries of (Cl) we further require ut, ~ to be invariant
under any transformation generated by vector Gelds of
the form 7 '~0~. We will focus especially on the change
in the Hamiltonian structure that is induced by (C3).

Next we will specify the consideration to the GWZW
model. In the main text and the previous appendix we
have shown that the (Hamiltonian) GWZW action (16)
may be rewritten identically in the form (C2) with sr& z

——

u. However, an additional complication arises due to the
fact that the matrix-valued one-form

P —= &'dx*:= g& 'de —
g& 'dgg, (C4)

which we used in the identification (43) for A, becomes
singular at the part of G where the Gauss decomposition
breaks down. The singular behavior of A has to be taken
into account in the variation for the Beld equations, if we
want to describe the GWZW model by means of (C2)
globally. We will show that the bulk of the quantum
states obtained in the main text remains unchanged by
these modi6cations. The considerations change only for
states that have support on loops lying on exceptional
conjugacy classes in G.

Finally we will make the considerations more explicit
for G =SU(2) and compare the resulting picture to the
literature.

In the classical Hamiltonian formulation the term (C3)
contributes only into a change of the symplectic structure
of the 6eld theory. With

= -'~ '."&dx' ~ dx& ~ dx"op 6 cg fc

the symplectic structure takes the form

(C5)

0"' (X,A) = dA, i(z ) hdX*(z')dz +0,"'p (C6)
Sl

with the extra piece
A;i ——i . +8,".' (x) . (C8)

ally there will not exist any symplectic potential 0"
such that n"'~ = dO"'~

In the case W = G and uq p .——u the symplectic forms
(C6) and (18) in the main text coincide. Actually A;i(zi)
and X'(zi) are Darboux coordinates of the symplectic
form 0"'~ of the GWZW model. As 0"' has nontriv-
ial cohomology such Darboux coordinates cannot exist
globally. The situation may be compared to the one of a
sphere with standard symplectic form 0 = sin8 d8 h dp;
trying to extend the local Darboux coordinates cos8
and y as far as possible, one finds (again in a distri-
butional sense) 0 = d(cos Id') + 2vrb2("southpole")—
2vrh2("northpole"). Here we used d(dy) = P &„2vrb

(pole), resulting from the breakdown of d&p as a coor-
dinate differential at the poles while it still remains a
regular one-form in a distributional sense. By the way,
one may infer Eq. (18) also from (C6) and (C7): Just re-
place the coordinate basis dX by the left-invariant basis
dgg and note that d(pdgg ) = dpdgg +p(dgg )2
has to be substituted for d(A, idX') = dA, idX'.

The classical Gauss law (55), on the other hand, re-
mains unaltered by the addition of a term (C3) to the
action. Indeed the constraints G' 0 emerge as the co-
efBcient of A;0 within the action S = S~ + Sg and Sg
does not depend on A.

Now let us turn to the quantum theory of the coupled
model (C2). Again we go into an X representation. In
general "wave functions" may be regarded as section of a
hne bundle, the curvature of which is the symplectic form
[14]. In the case that this line bundle is trivial, i.e. , when
the symplectic form 0"' allows for a global symplectic
potential, one may choose a global nonvanishing section
in the bundle. The relative coefBcient of any other sec-
tion with respect to the chosen one is then a function,
the wave function @[X]. This procedure is called triv-
ialization of the line bundle. In the case of prominent
interest for us in which ut & and (thus) 0 belong to
some nontrivial cohomology class the quantum line bun-
dle over the loop space will be nontrivial [23]. Sections
may be represented by functions @[X]then only within
some local charts.

The X' may still be represented as multiplicative op-
erators. However, the change in the symplectic structure
implies that one cannot represent A;q as the derivative
operators (54) any more. Indeed the modification Ofit'id

preserves commutativity of the X' as well as the com-
mutation relations between the A;~ and the X', however,
the A;q do not commute among each other any longer.
The net result of the change in the symplectic structure
is that we have to add some X-dependent piece to the
operator representation of A;~'.

field («&P) [X( l)]g Xi( 1)
+1

xdx~(z ) h dX"(z )dz (C7)

The new quantity 8,"-' is a symplectic potential to the
nontrivial part O~ of the symplectic form, i.e. ,

yield afiel gxi
Note that as (if) uq ~ is nontrivial in cohomology on the
target space, 0"' becomes nontrivial as well, i.e., glob- is a solution to the equation
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0,"' = d6", ' (locally) . (clo)

is not unique and may be chosen in many ways. If
art p belongs to a trivial cohomology class, (Clo) may be
solved globally. Any choice for 8"; then corresponds to
the choice of a trivialization of this line bundle. If, on the
other hand, uq p belongs to some nontrivial cohomology
class, we can speak about a solution to (Clo) only locally.
Still any choice of a local potential 8~ corresponds to
a local trivialization of the quantum line bundle within
some chart. Within the latter, quantum states may be
represented again as ordinary functions 4'[X] on the loop
space and (C8) gives the corresponding operator repre-
sentation of A;q.

Let us finally write down the new quantum Gauss law.
Within a local chart on the loop space it takes the form

i(BX'+ P"8"'~)4 = P" b

bX&
(Cl1)

For nonsingular forms 8& p these constraints yield a re-
striction to functionals with support on loops lying en-
tirely within some symplectic leaf again. (This holds true
also for a singular 8"-, as long as its contraction with
the Poisson tensor 7 '~ vanishes. ) To see this, just use
the first k coordinates X' to parametrize the symplectic
leaves in any considered region of ¹ Then (Cll) yields
BX'4 = 0 for i = 1, . . . , k. So, strictly speaking, the
physical wave functionals will be distributions that re-
strict the loops to lie entirely within symplectic leaves.
The remaining n —k equations (Cll) then determine the
form of 4 on each leaf.

Let us show this for trivial cohomology of the de6ning
three-farm in (C3), i.e. , for the special case that

(drop d l9gop (c12)

globally on N. Then 0". = 6.&" [X(xi)]BiX"(xi)
globally on the phase space. To And the form of 4 on
a given syrnplectic leaf 8 we multiply (Cll) for i = k +
1, . . . , n by O~, from the left [cf. Eq. (59)]. The resulting
equation can be integrated easily to yield

well-formulated condition, as the invariance requirement
for (C3) under the symmetries of (Cl) may be seen to
imply that the restriction of 8tp onto any symplectic
leaf must be a closed two-form (while, certainly, 8q ~ will
not be closed in general on all of N).

For a truly topological term (C3) Eq. (C12) holds only
locally. Still (C13) provides the local solution to the
quantum constraints (Cll) in the space of loops on 8.
However, as the form 8t ~ is not deGned globally on 8 in
general, the global integrability for (Cll) does not have
the simple form (C14). Instead the use of various charts
in the line bundle over the loop space will be unavoid-
able to determine integrability of (Cll) on a lead and
thus the existence of a quantum state located on that
leaf. We will not study this problem in full generality
here further. Rather we will restrict our attention to the
GWZW model in the following.

Everything that has been written above applies to the
GWZW model, too, except for one small change: Actu-
ally, the correct Gauss law for GWZW is not G' —0,
but

P,G'=0, (C15)

where the inatrix-valued coeKcients P; have been defined
in (C4). To see this we recall that the constraints of the
GWZW model, given first in Eq. (19), result &om a vari-
ation for A oc a within the action. According to (43)
A p differs from (the components of) A by A;0 ——trAP, .
So the correct GWZW Gauss law (19) may be rewrit-
ten as (C15). For loops inside the Gauss-decomposable
region of G this is equivalent to the old form of the con-
straints G' = 0, since on that part of G the difference
corresponds merely to a change of basis in T'G. How-
ever, as P becomes singular at that lower dimensional
part of G where the Gauss decomposition breaks down,
the constraints (C15) have somewhat different implica-
tions G' = 0 in that region.

This consideration applies also to the quantum con-
straints; we have to multiply (Cll) by P; from the left.
The result is

(c13)
(P,MC'+ P;P"6,"'")4+iP,P" . 4 = 0,

or, equivalently,

(c16)

n+8,.p ——2vrn, n g Z, (C14)

for all two-cycles 0. p 8. This generalizes the integrality
condition (63), which corresponds to 8t ~

= 0. (C14) is a

where 4'0 is an integration constant, which, however, may
depend. on the chosen symplectic leaf (and, if 8 is not
simply connected, also on the homotopy class of the ar-
gument loop of 4). 4o may be regarded as the evaluation
of 4 on some reference loop on 8 and the phase is deter-
mined by the integration of the two-form 0 + 8t p over
a two-surface that is enclosed between the reference loop
and the argument loop of 4. Independence of the choice
of the chosen two-surface requires, e.g. , for a simply con-
nected 8:

~ gt Bigt —
g~ Bigs+ p P"8 ' + —h

~
@[go,h]

I I 27ri b

=o. (c17)

The part P;P'~8"', which may be rewritten also as the
insertion of the vector field (2n/k)(8/hh)h into the one-
form 6~'„=8&', is the new contribution from Sp that
has been dropped in the derivation of (34).

It is not diKcult to see that for loops that lie at least
partially outside exceptional conjugacy classes ("critical
region") in G one may solve (56) instead of (C16) or
(C17). Indeed close to any part of the loop outside
the critical region we may use (Cll) as the quantum
constraint, because (C4) is invertible in that part of G.
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But as argued above this restricts the loop to lie entirely
within a symplectic leaf outside the critical region in G.
For such loops now we may always choose

afiel
) (C18)

-trg = Re(z) =:cos 8 = const, 8 E [0, vr], (C19)

we And that, topologically speaking, these orbits are two-
spheres for 8 6 (O, vr) and points for 8 = O, vr F+ z
+1. Only one of the conjugacy classes is "exceptional"
it corresponds to 8 = vr/2 ++ trg = 0. Parametrizing this
critical 8 by polar coordinates P and 8:=arccos Im(z),
the part C of SU(2) on which the Gauss decomposition
is not applicable is identified with the equator i) = ir/2
of this two-sphere.

So the picture we obtain is that A = S is foliated
into two-spheres except for its "poles" z = +1. The
"equator" of the three-sphere, itself an S, is what we
called an exceptional conjugacy class. The equator C
S of this S is precisely the subset of N = G where the
Gauss decomposition breaks down and, correspondingly,
where the support of ut ~

——u lies. The exceptional
conjugacy class splits into several symplectic leaves: the
Northern part of the S, its Southern part, and the points
of the equator C, where 'P vanishes. According to our
general considerations above, this splitting is, however,
irrelevant; there will correspond at most one quantum
state to the exceptional conjugacy class.

On the other hand there corresponds precisely one
quantum state to any integral (nonexceptional) conju-
gacy class, as all of these orbits are simply connected.
So let us evaluate the integrality condition (63) for the
nonexceptional conjugacy classes in SU(2). From (66) we

as Ofi& vanishes on that part of the phase space. This
justi6es that in the main text we dropped the contribu-
tions from Sb (as well as the multiplicative factor P, ) and
restricted our attention to the solution of (56). Also we
had not to think of a nontrivial quantum line bundle in
this way. The main part of the states could be obtained
within one local trivialization of the line bundle, given
by (C18).

What has to be considered separately only are possi-
ble states that have support on loops lying exactly within
the critical region of G. In this case the full quantum
constraints (C16) have to be taken into account. It is
also in this region of G, furthermore, where the notion of
symplectic leaves and conjugacy classes do not coincide.
From (C17) we learn that it is precisely the modifica-
tions of (56) that restore the adjoint transformations as
symmetries on the quantum level. P diverges precisely
where 7 vanishes so as to give rise to the finite contribu-
tion (b'/Sh)h in (C17). As a result there will correspond
at most one quantum state to an exceptional conjugacy
class, even if the respective orbit splits into several (pos-
sibly in part integrable) symplectic leaves.

I et us now specify our considerations to G =SU(2).
In particular we want to determine all quantum states
within our approach. For this purpose let us first con-
sider the splitting of SU(2) S into conjugacy classes.
Parametrizing conjugacy classes by [cf. also (B6)]

find that in the coordinates (B6)

n = ——
ader.

27r z
(C20)

In the parametrization (C19) for the adjoint orbits this
yields for the integral of 0 over the respective two-spheres

f 2k8, 8 c [0, ~/2),
2k(8 —vr), 8 e (vr/2, ~]. (C21)

Here we have taken into account that the imaginary part
Im(z) of z runs only from —sin 8 to + sin 8 since ~z~ ( 1.

For the critical orbit at 8 = vr/2 the symplectic vol-
ume (C21) becomes ill defined. This comes as no sur-
prise. Here obviously the choice (C18) does not apply
for all loops on the critical conjugacy class. Still the cor-
rect integrability condition may be guessed &om a simple
limiting procedure: From (C21) we obtain

lim 0 = +k7r .
Om+~f2

(C22)

For integer values of k this result is unique modulo 2a.
It is plausible to assume that the critical orbit will carry
a quantum state, off again (C22) is an integer multiple of
2m [cf. Eq. (63)].

In fact, one can prove that this is indeed correct. To do
so one might use two charts in the quantum line bundle.
First (C18), which works for all loops that do not inter-
sect the equator C of the critical conjugacy class. And
second,

i)g.. = —
~

—+ i
~

dz A dP -+ i), 'field

2vr gz
(1 + i

I
(dzc4P —Bizd&) .

27r (z (C23)

This second chart is applicable to all loops on the critical
conjugacy class that do not touch its "pole" z = —i. The
solution to the full quantum constraints (C16) has again
the form (C13) within the respective domain of definition
of the two charts. Now one might regard the value of the
wave functional in both charts for two small loops close
to the pole z = —i, one of which with winding number
one around this pole, the other one with winding number
zero. In the first chart continuity of the wave function
implies that the wave functional will have basically the
same value for both loops. In the second chart the two
loops are separated from each other by a two-surface that
encloses basically all of the critical S2 (since in this chart
the first loop may not be transformed into the second
one through the pole z = —i, but instead one has to
move through the other pole z = i); this gives a relative
phase factor of the wave functions in this chart that may
be determined by means of (C13). The corresponding
phase need, however, not be a multiple of 2'. Instead,
the result of chart two has to coincide with the result of
chart one only after taking into account the transition
functions between the two charts (note that both loops
lie in both charts). In fact, for the first loop one picks
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up a nontrivial contribution to the integrality condition
&om there. Further details shall be left to the reader. In
any case the result coincides with the one obtained from
the limit above. So one finds that there exists a quantum
state with support on the critical orbit 0 = rr/2 for even
values of k and no such a state for odd values of k.

I et us remark here that in the latter case alt "physi-
cal" quantum states, i.e., all states in the kernel of the
quantum constraints, may be described within just one
chart of the quantum line bundle [as, e.g. , by (C18)]. So,
the restriction to physical states may yield the originally
nontrivial quantum line bundle of a coupled model (C2)
to become electively trivial.

Sumining up the results for G =SU(2) we conclude
that the integral orbits [i.e. , the orbits allowing for non-
trivial quantum states of the SU(2)-GWZW model] are
given by 8 = nrr/k, n = 0, 1, . . . , k.

Now we want to compare this result with the current
literature. According to [9], there are two different pic-
tures for the space of states of the GWZW model. (In
[9] they consider partition functions of the WZW model.
However, these two issues may be related using results of
[10].) The first picture eventually coincides with our an-
swer. The second one suggests the finite renormalization
k —+ A: + 2. In this case the integral orbits are character-
ized by 0 = nrr/(k + 2), n = 0, . . . , k + 2. However, in
th~s picture the singular orbits with n = 0 and n = k+ 2,
corresponding to the central elements +I ESU(2), should
be exoluded. In [9] it is proved that the two pictures are
equivalent. However, it would be interesting to establish
this equivalence in the language of Poisson 0 models.
One motivation is to compare the results with the sim-
ilar formalism [7]. Also, it seems to be easier to handle
the spectrum of the model in the second picture.

[1] D. Amati, S. Elitzur, and E. Rabinovici, Nucl. Phys.
H418, 45 (1994); D. Cangemi and R. Jackiw, Phys. Rev.
D 50, 3913 (1994); S. Shabanov, P. Schaller, and T.
Strobl, report (unpublished); cf. also [8] below.

[2] J. Goldstone and R. Jackiw, Phys. Lett. 74B, 81 (1978).
[3] A. G. Izergin, V. E. Korepin, M. A. Semenov- Tyan-

Shanskii, and I. D. Faddeev, Teor. Mat. Phys. 38, 1
(1979).

[4] J. Wess and B. Zumino, Phys. Lett. 37H, 95 (1971).
[5] L. D. Faddeev and S. L. Shatashvili, Tear. Math. Phys.

60, 770 (1985); L. Faddeev, Phys. Lett. 145B, 81 (1984).
[6] M. Spiegelglas, Phys. Lett. B 247, 36 (1990).
[7] M. Blau and G. Thompson, Nucl. Phys. B408, 345

(1993); A. Gerasimov, "Localization in GWZW and Ver-
linde formula, " Uppsala report and hep-th/9305090 (un-
published).

[8] P. Schaller and T. Strobl, in Integrable Models and
Strings, Proceedings of the Baltic Rim Student Semi-
nar, Helsinki, Finland, 1993, edited by A. Alekseev et
al. , Lecture Notes in Physics, Vol. 436 (Springer, Berlin,
1994), p. 98; Mod. Phys. Lett. A 9, 3129 (1994); cf. also
"Poisson 0-models: A generalization of . . .," to appear
in Proceedings of "Conference on Integrable Systems, "
Dubna 1994 or Report No. hep-th/9411163.

[9] S. Axelrod, S. Della Pietra, and E. Witten, J. DiK Geom.
33, 787 (1991).

[10] K. Gawedzki and A. Kupiainen, Nucl. Phys. B$20, 625
(1989).

[11] A. Alekseev and S. Shatashvili, Nucl. Phys. B$23, 719
(1989); M. Bershadskii and H. Ooguri, Commun. Math.
Phys. 126, 49 (1989); A. Gerasimov, A. Marshakov, A.
Morozov, M. Olshanetsky, and S. Shatashvili, Int. 3.
Mod. Phys. A 5, 2495 (1990).

[12] T. Strobl, Phys. Rev. D 50, 7346 (1994); T. Kloesch
and T. Strobl, "Classical and Quantum Gravity in 1+1

Dimensions, " Parts I, II, III (unpublished).
[13] M. A. Semenov-Tian-Shansky, Dressing Transformations

and Poisson Lie Group-Actions (RIMS, Kyoto Univer-
sity, Tokyo, 1985), Vol. 21, p. 1237.

[14] N. M. J. Woodhouse, Geometric Quantization, 2nd ed.
(Clarendon, Oxford, 1992).

[15] H. B. Nielsen and D. Rohrlich, Nucl. Phys. B299, 471
(1988); A. Alekseev, L. Faddeev, and S. Shatashvili, J.
Geom. Phys. 5, 391 (1989).

[16] A. Yu. Alekseev and A. Z. Malkin, Commun. Math. Phys.
162, 147 (1994).

[17] A. Alekseev and I. Todorov, Nucl. Phys. B421, 413
(1994).

[18] J. H. Lu and A. Weinstein, J. Diff'. Geom. $1, 501 (1990).
[19] B. Block, Phys. Lett. B 2$$, 359 (1989); L. Faddeev,

Commun. Math. Phys. 1$2, 131 (1990); A. Alekseev and
S. Shatashvili, ibid. 13$, 353 (1990); F. Falceto and K.
Gawedzki, in Proceedings of the XXth International Con
ference on Differential Geometric Methods in Theoreti-
cal Physics, New York, New York, 1991, edited by S.
Catto and A. Rocha (World Scientific, Singapore, 1992);
Bur-sur-Yvette Report No. IHES/P/91/59, 1991 (unpub-
lished). J. Balog, L. Dabrowski, and L. Feher, Phys. Lett.
B 244, 227 (1990); M. Chu, P. Goddard, I. Halliday, D.
Olive, and A. Schwimmer, Phys. Lett. B 266, 71 (1991).

[20] L. D. Faddeev, N. Yu. Reshetikhin, and L. A. Takhtad-
jan, Leningrad Math. J. 1, 178 (1989).

[21] S. P. Novikov, Dokl. Acad. Nauk SSSR 260, 31 (1981);
Usp. Mat. Nauk 37, 3 (1982).

[22] S. Deser, R. Jackiw, and S. Templeton, Ann. Phys.
(N.Y'.) 140, 372 (1982); E. Witten, Nucl. Phys. H223,
422 (1983).

[23] K. Gawedzki, in Nonperturbatirre Quantum Field Theory,
edited by G. t'Hooft et al. (Plenum, New York, London,
1988), pp. 101—142.


