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Exact supersymmetric massive and massless white holes
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We study special points in the moduli space of vacua at which the supersymmetric electric solutions
of the heterotic string theory become massless. We concentrate on configurations for which the
supersymmetric nonrenormalization theorem is valid. These are ten-dimensional supersymmetric
string waves and generalized fundamental strings with SO(8) holonomy group. Prom these we
find the four-dimensional spherically symmetric configurations which saturate the BPS bound, in
particular, near the points of the vanishing ADM mass. The nontrivial massless supersymmetric
states in this class exist only in the presence of non-Abelian vector fields. We also find a new class
of supersymmetric massive solutions, closely related to the massless ones. A distinctive property of
all these objects, either massless or massive, is the existence of gravitational repulsion. They reHect
all particles with nonvanishing mass and/or angular momentum, and therefore they can be called
white holes (repulsons), in contrast with black holes which tend to absorb particles of all kinds. If
such objects can exist we will have the first realization of the universal gravitational force which
repels all particles with the strength proportional to their mass and therefore can be associated with
antigravity.

PACS number(s): 11.25.—w, 04.65.+e, 04.70.Dy, 11.30.Pb

I. INTRODUCTION

The purpose of this paper is to exhibit some peculiar
features of exact supersymmetric solutions of the het-
erotic string t;heory. We will consider the most unusual
properties of these solutions which all saturate the super-
symmetric positivity bound in the limit when the mass
of such con6.gurations tends to zero:

M = Z 'R~~(@p)Z + 0 . (I)
Here R is a continuous function of the asymptotic values
of the scalar fields 40 and Z are electric and magnetic
charges. It has been pointed out recently by Hull and
Townsend [I], Witten [2], and Strominger [3] that since
the matrix 'R is a continuous function of 40, the masses
of the Bogomolny states are also continuous functions of
C o. In particular, for some values of 40 massless states
may exist which saturate the bound.

The first explicit example of such a state was given by
Behrndt [4] and it was interpreted as a massless black
hole. This was a significant progress. A wider class
of similar solutions was obtained in [5]. The solutions
were interpreted as NL, ——0 states of the toroidally com-
pactified heterotic string. However, all these solutions
did not include non-Abelian fields which are necessary
to cancel anomalies of supersymmetry. Therefore it was
not quite clear whether these solutions survive and re-
main massless with an account taken of o," corrections.
The importance of quantum corrections to supersymme-
try transformations increases in the situation when it is
known that; the massless states may present the points of
enhanced gauge symmetry. Anomalies of supersymmetry
result &om the Lorentz anomaly in the efFective heterotic
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string action and may spoil all conjectures about the
exactness of the Bogomolny-Prasad-Sommerfield (BPS)
bound. The anomalies can be cured when Yang-Mills
fields are included according to the Green-Schwarz mech-
anism of cancellation of anomalies.

In this paper we will consider a general class of su-
persymmetric solutions including non-Abelian fields. We
will 6nd massless states which may correspond either to
black holes or to waves, and which remain exact solutions
of equations of motion due to the presence of non-Abelian
fields even with an account taken of o.' corrections. In
other words, we will find massless BPS states which satu-
rate the supersymmetric positivity bound and which are
&ee of anomalies of supersymmetry.

We will find also a class of anomaly Bee massive con-
figurations closely related to the massless black holes. A
rather unusual property of all these configurations (either
massive or massless) is that instead of the usual black
hole horizon, which absorbs all particles falling into the
black hole, they have a repulsive (i.e. , antigravitating)
naked singularity which rejects all test particles. Since
the totally reflecting surface is not black but white, it is
more proper to call these new singular configurations su-
persymmetric white holes, or repulsons. The solutions

The name "white holes" referring to the complete reHection
(as opposite to the complete absorbtion by black holes) seems
to be most adequate. Unfortunately, many years ago this
name was used for hypothetical objects associated with the
time reversal of the gravitational collapse. Physical relevance
of such objects is rather doubtful [6]. Therefore we believe
that the name "white holes" is essentially vacant and can be
used for the repulsive singular configurations discussed in our
paper. However, in order to completely avoid collisions with
old terminology, we will often call our massive and massless
white hole configurations "repulsons. "
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can be obtained either directly in four-dimensional space
or by dimensional reduction of ten-dimensional gravita-
tional waves. The repulsive singularity discussed above is
not present in the ten-dimensional noncompactified ver-
sion of the solution. It appears after the compactification
in those places of the four-dimensional space where the
volume of the six-dimensional compactified space shrinks
to zero.

Our basic strategy in looking for massless states is
the following. If a configuration has one-half of unbro-
ken N = 4 supersymmetry and describes a solution of
N = 4 supergravity interacting with some Abelian and
non-Abelian vector multiplets, the vanishing ADM mass
simultaneously means the vanishing dilaton charge:

M~0 Z-+Q.

If we know any ten-dimensional solution with one-half of
unbroken N = 1 supersymmetry, we may use the fact
that the corresponding four-dimensional dilaton e @ is
related to the ten-dimensional dilaton e2@ as follows:

e
—'~ = e

—'~gdet G,

It is clear that for the Hat six-dimensional solution with
gdet G = v det Go the massless supersymmetric state
of pure N = 4 supergravity is a trivial Hat space. The
nontrivial solutions exist only when there are matter mul-
tiplets. We will find that for our class of solutions not
only N = 4 nongravitational gauge multiplets must be
present but also some of them have to be non-Abelian to
keep supersymmetry preserved with an account taken of
quantum corrections.

The class of massive supersymmetric solutions which
we are going to study will be closely related to the mass-
less configurations. They will also have the property
that the mass of the configuration is proportional to the
charge of the four-dimensional dilaton. Therefore the
new mass formulas for the white holes which will be ob-

For solutions without the fundamental axion charge this
can be shown using the supersymmetry rules.

where the matrix G describes the geometry of the internal
six-dimensional space. Knowledge of the ten-dimensional
solutions means that both e @ and det G are known.
The massless four-dimensional configurations saturating
the BPS bound are the ones in which the ten-dimensional
dilaton charge Z is compensated by the modulus field
charge o., where we define

Z—2@ —2/0 + r
Z

~
—24 ~

—240 + r
0v'det G = (v'det G), + —+r

The BPS state is massless when

(Qdet G)o Z + e ~' o. = 0 .

tained in this paper will simultaneously give the dilaton
charge formulas.

II. SUPERSYMMETRIC STRING WAVES AND
GENERALIZED FUNDAMENTAL STRINGS

We have found various examples of configurations with
vanishing four-dimensional dilaton charge by using some
known solutions of the equations of motions of efFective
action of the heterotic string. Some of them belong to
the class of exact supersymmetric heterotic string back-
grounds and require the non-Abelian gauge fields to be
part of the solution, some others do not seem to pre-
serve the unbroken supersymmetry when o.' corrections
are taken into account. The first class of exact solutions
with SO(8) special holonomy is given by supersymmet-
ric string waves (SSW's) [7] and their T-dual partners,
generalized fundamental strings (GFS's) [8]. Both the
pp waves and fundamental strings admit a null Killing
vector and belong to the class of supersymmetric grav-
itational waves. The Killing spinor for these solutions
satisfies a null constraint, and the dimensionally reduced
form of these solutions always gives electrically charged
configurations.

We will consider here the u, v-independent part of these
solutions, which is described in terms of nine harmonic
functions, satisfying the flat space eight-diinensional
equation P,. i 8;8, h(x') = 0. These configurations solve
the cohomology constraint trB —trE = Q.

The second class of supersymmetric solutions, associ-
ated with the chiral null model [9], is described by ten
harmonic functions. When one of the harmonic functions
is taken to be a constant, the chiral null model is reduced
either to SSW solutions or to GFS solutions. Therefore
only for these solutions the embedding of the spin con-
nection into the gauge group is possible. This leads to
the preservation of unbroken space-time supersymmetry
with an account taken of n' corrections, as well as to the
left-right world-sheet supersymmetry. However, when all
ten functions are present in the solutions the status of
unbroken supersymmetry in presence of o.' corrections
is not clear. The holonomy of torsionful spin connec-
tions of this theory, related to the properties of o.' correc-
tions, is a subgroup of the noncompact SO(1.9) Lorentz
group. This was established in [10] for uplifted electri-
cally charged a = 1 dilaton black holes (which form a
particular case of the chiral null model) and for the com-
plete chiral null model in [9]. The spin embedding into
the gauge group is the only known way to preserve unbro-
ken supersymmetry. It does not work for generic chiral
null model since the gauge group of the heterotic string
is compact.

All solutions described above admit the null Killing
vector and therefore may be called gravitational waves.
Dimensional reduction of these solutions was performed
in [11].

Here we would like to describe first the solutions which
solve the cohomology constraint dH = 0 and which re-
main supersymmetric even with an account taken of o.'

corrections. After this is done we will look for the massive
four-dimensional supersymmetric black holes and study
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how they approach the massless states. For this pur-
pose we start with anomaly free ten-dimensional solu-
tions of N = 1 supergravity coupled to supersymmet-
ric Yang-Mills theory. The exact SSW as well as exact
GFS solutions admit a null Killing vector /" with l = 0.
This Killing vector generates an isometry in the v direc-
tion where we use light-cone coordinates x" = (u, v, x'),
i = 1, . . . , 8. The solution consists of the ten-dimensional
metric, dilaton, two-form, and the non-Abelian gauge
fields. The metric and the two-form field are both de-
scribed in terms of the dilaton e ~( ) and one vector
function A„(x') of the transverse coordinates x'.

A„(x'j = (A (x')—:—,A = 0, A;(T')).

0„'is not vanishing. This spin connection cannot be
embedded into SO(32) or Es x Es gauge group of the het-
erotic string. However, without such spin embedding the
preservation of supersymmetry at the quantum level is
questionable. Therefore in what follows we will consider
only SSW and GFS with non-Abelian fields included as
exact supersymmetric solutions in our class.

We will limit ourselves to the solutions which in four
dimensions correspond only to static configurations and
not to the stationary ones. For this purpose we take
Ai ——A2 ——A3 ——0. Our next specification will be to
consider the solutions which depend only on x,x, x .
Thus the SO(8) symmetry is broken. The only nonvan-
ishing components of the non-Abelian vector field V&
in this case are V„' with i = 1, 2, 3 and m = 4, 5, 6, 7, 8.

For SSW the dilaton has to be taken constant,
e 2~( i = e 2~, for GFS the function K(x') has to
be a constant, K(x') = Ko. Under these conditions both
solutions can be described as

ds = 2e ~du(dv + A„dx~) —) dx'dx', A„= 0,
1

B = 2e ~du A (dv + A&dx") . (8)

The non-Abelian gauge Beld V„ is obtained by em-
bedding of the torsionful spin connection into the gauge
group of the heterotic string:

V =tV =0 = /AP P P P

a, b, I, J = 1, . . . , 8.

ae '~ = ZK=0, &a['A&j =O, a['A&j —= A'&, (10)

where the Laplacian is taken over the transverse direc-
tions only (A—:gi 8;8,). This solution has SO(8) sym-
metry. Obviously, SSW with constant dilaton and GFS
with constant K are special solutions of this system of
equations. However, for any other solutions when both
the dilaton and the function K are nonconstant, the proof
of unbroken supersymmetry is not available. The holon-
omy of the generalized connections in this case includes
the noncompact subgroup of the Lorentz group, since

In the chiral null model [9] e ~ = F'.
This solution with constant K = Ko is equivalent to the

one presented in [8] after the shift in the isometry direction
v' = v —Kou/2.

The Yang-Mills indices are in the adjoint representation
of SO(8). The equations that the dilaton e 24'( i, K(x'),
and A.;(x') have to satisfy for the configuration to be
supersymmetric and solve equations of motion are

III. ZERO MASS CONFIGURATIONS
WITH ASYMPTOTICALLY FLAT

INTERNAL GEOMETRY

The efFective action describing the dynamics of the
massless Belds of toroidally compactified heterotic string
is described by the bosonic part of the action of N = 4
supergravity interacting with 22 Abelian N = 4 vector
multiplets. Ten-dimensional supergravity, dimensionally
reduced to four dimensions provides 6 of them. The
additional 16 are coming from the ten-dimensional vec-
tor multiplets, or &om the gauge sector of the heterotic
string. The action in the form given by Maharana-
Schwarz [12] and Sen [13] is

8 = d xQ—detg B —2g""0„$0 P16'
+ g""Tr(B„M—LB ML) — e ~(H~„p)

8 12
e~g"" g" —F„„(LML) sF„,„,

where P is the four-dimensional dilaton, and M is the
28x28 matrix valued scalar field, describing the moduli.
Vector fields include graviphoton as well as vectors from
the gauge multiplets. The 28x28 symmetric matrix L
with 22 eigenvalues —1 and 6 eigenvalues +1 defines the
metric in the O(6, 22) space. We use the units where
G~ ——1, which should be taken into account when com-
paring with GN ——2 units often used. for identification of
string states.

Dimensional reduction of the chiral null model (with-

There is an apparent discrepancy between the statement
about the holonomy of generalized fundamental string solu-
tions in [8] and [9]. Using T-duality rotation from the waves,
we have found that the holonomy of the SSW as well as of
GFS is SO(8). Meanwhile in [9] only the holonomy of SSW is
qualified as that of SO(8) and the case of GFS is considered as
not special. The analysis shows that there is no discrepancy,
however. Spin connections are frame dependent: in the frame
used in [9] one can still find that the curvatures are such that
the spin embedding into the SO(8) gauge group solves the
problem with n' corrections for CFS configurations.
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out Yang-Mills fields) was performed in [11]. The super-
symmetric four-dimensional solutions of the field equa-
tions following from the action (11) have the metric (in
the canonical frame)

is given by

4g'(2g' + r2)
r(r2 4g2)5/2

2 2pgg2 —2pd~2
can

and the four-dimensional dilaton is
8 1

The origin of this singularity can be traced back to the
fact that the volume of the compactified six-dimensional
space shrinks to zero for r = 2g since

e 2@= e 2&Z— r2 —4g
det a = e-4&e4& =

(r + 2m)' (20)

Other fields can be also deduced from the ten-
dimensional solution by dimensional reduction.

The massless solution was found by Behrndt [4] in the
&amework of toroidally compactified heterotic string the-
ory, and it was further generalized in [5]. It has vanishing
dilaton charge and is obtained when the functions defin-
ing the solutions are taken in the form [11]

e-2 2m
A =1+)

1

2g~A„= )r

n=4, . . . , 8, r =x . (14)

This choice corresponds to the asymptotically Hat inter-
nal space. The four-dimensional dilaton is given by

1

e = Il+( 2(m+ m) 4(q2 —mm) l '
r r2 ) (15)

where q = +„4(q„)2.
In terms of the right- and left-handed charges the dila-

ton is given by
1

2(IQL I' —IQ~I') &

(i6)

Right-handed charge is the charge corresponding to the
gravi-photon, and left-handed charge is the charge corre-
sponding to the vector fields of the matter multiplets.
There is only one possibility to make these solutions
massless: to take ~2IQ~I = m + m = 0. The dilaton
becomes

4(m'+ q') l ' ( 2IQL, I'l '

) (17)

Using the fact that for toroidally compactified string su-
persyinmetric configurations

I Ql, I

—
I QR I

= —2(NI, —1),
one can see that for vanishing Q~ the state is character-
ized by %1. ——0. Here Nl. is a non-negative integer, de-
scribing the total oscillator contribution to the squared
mass of a state from the left moving oscillators of the
string. Rescaling this solution for arbitrary value of the
dilaton at infinity, e @' = g, we get finally the canonical
four-dimensional metric in the form [5]

1 1

r')

The singularity of this configuration at r = 2g was found
in [5] to be a true singularity since the scalar curvature

In the magnetic case g —+ —,and the volume of the com-
pactified space is

4 4- rg —4deta=e 4@e4@ =
g2(r + 2m)2

It shrinks to zero at the point r = — where the four-9
dimensional magnetic solution is singular:

ds, „(m)=
I

1 —
I

dt —
I

1 —
I

dx
( 4l ~, ( 4)

(22)

All this analysis is valid in the &amework of the
toroidally compactified heterotic string with only Abelian
vector fields in the solutions, and when one ignores the is-
sue of o.' corrections to supersymmetry. Prom now on we
will consider only exactly supersymmetric SSW and GFS
supplemented by the non-Abelian fields and described in
Sec. II.

This means that when both m and m are nonvanish-
ing, supersymmetry is anomalous. If only one of these
two numbers vanishes, which is acceptable &om the point
of view of the exactness of the solution, we do not ap-
proach the massless state. Only for m = m = 0 we can
have a massless solution without anomalies. This special
configuration has the dilaton field given by

1
4q' 5
"' )

(2s)

2m 1 xqv„~'"~ = t„ i+
n = 4, 5, 6, 7, 8. (24)

For the massless configuration presented above with m
m = 0 the Yang-Mills field is

V„~'"j = l~, i = 1, 2, S, n = 4, 5, 6, 7, 8. (25)

The ten-dimensional manifold in the process of com-

The presence of the Yang-Mills vector fields in the ten-
dimensional solution will add some non-Abelian vectors
as well as scalars to the four-dimensional solutions. It is
quite remarkable that for this solution to be nontrivial
the presence of the non-Abelian vector field is necessary.
In fact, using Eq. (9) we will find that for the configu-
ration given in (14) the non-Abelian part of the solution
in ten dimensions is given by [8]
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pacti6cation is split into the four-dimensional mani-
fold M with coordinates v = t, x,x, x and a six-
dimensional manifold M with coordinates x, . . . , x,
u = x [11]. The moduli space of our configuration is
de6ned by the six-dimensional metric G„„r= 4, . . . , 9,
and by the six-dimensional matrix B„,:

e'~A„

conditions for exactness. The four-dimensional dilaton is
now given by

1

2q„'l '
(A„)p +

B„,=

(e'&A

0

( —e'~A

—e'~Z j
e'@A„

0
(26) e-'& = e- &0

~
1+

1
4g2q2 )

This expression can be reorganized as follows:

In addition, there are non-Abelian vectors and scalars
which will come &om the ten-dimensional Yang-Mills
field (24). The two matrices G and B together form the
O(6, 6) inatrix rt4 [12] which appears in the Bogomolny
bound [13]. The ansatz (14) used in Eq. (26) has the
following properties.

(i) The O(6, 6) matrix M built out of G and B at
infinity (r -+ oo) is

(ii) Given this asymptotic value of the matrix M, there
is only one solution for the massless state which is not
changed by quantum corrections:

1

"r (28)

The metric of this configuration coincides with the metric
(18). Besides, there are Abelian vector fields and non-
Abelian vectors and scalars. The most unusual property
of this solution is that the massless state is described by
a static configuration. We will return to this issue later
after we find more general exact massless and massive
solutions.

IV. SPECIAL POINTS IN THE MODULI SPACE

A„= (A„)p+ A 4& o ~ ~
y

9o (29)

One can 6nd a solution describing a more general fam-
ily of BPS states with a vanishing ADM mass. For this
purpose we may use the fact that in gravitational wave
solutions in d = 10 one can use more general harmonic
functions. For the one-black-hole case one can take

e ~=e ~'+, %=K-2 -2 2m 2m
r

where
- 1/2-'~ Zo —(A )'

The mass formula for the exact SSW case (m = 0) is

2

M = —e ~' m —2(A„)p q„)0,
2

(34)

( 4M 4gq )

4M
xdt —

~

1+

The moduli space is presented by the matrix M which
asymptotically (in the limit r ~ oo) is described in terms
of asymptotic values of the matrices G and B:

) —b „
(G-)o =

k(A )o

0

(A„)p

-e'4" Kp )
(A„)o

(&-)p =
( —(A )o 0 )

(37)

Thus the asymptotic value of the matrix M is very dif-
ferent Rom the simple diagonal form in Eq. (27). A
complete expression for these matrices is

(A )o+ ~'„"

whereas the mass formula for the case of the exact GFS
(m=0) is

g
2

M = —[Ko m —2(A„)o q„] ) 0 .
2

The mass has to be non-negative due to supersymmet-
ric positivity bound, but the vanishing value of the mass
M is not forbidden by supersymmetry.

Thus the metric of the exact non-Abelian electrically
charged black hole is given by

However, for the solution to be exact we have one con-
straint:

mm= 0.

((A ) +2q

(—(A ) +'q"

—e'&K

(A„),+ ","
(38)

Indeed, this means that either m = 0 and the dilaton
is constant or m = 0 arid K is constant, which are the where for SSW and for GFS we have, respectively,
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e 24'0 m=0, metric (43): the determinant of metric changes its sign
at p —Tp

e ~K = e ~'+ Kp, m=0. V. EXACT SUPERSYMMETRIC BLACK HQLES
ARE WHITE

The non-Abelian fields for both configurations in the
four-dimensional form can be deduced from the ten-
dimensional form (24).

The moduli space is rather involved and allows to ap-
proach the critical points of the massless configuration
continuously when the right-hand side in Eqs. (34) and
(35) tends to zero.

In all cases considered the four-dimensional configura-
tion has a new singularity which was not present in the
ten-dimensional case. This singularity is present in the
compactified solution when the volume of the compact-
ified space shrinks to zero. For the solutions described
above we have

detG=e @e @

4( 4M=g 1+

At the singularity point

4g2q2) ( 2- 2m&
I I

e ' '+")&
(40)

ro ——2(QM2 + g'q' —M) (41)

the determinant of the metric of the compactified six-
dimensional space vanishes:

det G(ro) = 0 . (42)

In stringy f'rame the geometry of the electric configura-
tion (36) is given by

( 4M
dssir =

I
1+ 4 2 2g —1

dt —dzr2

Note that metric in stringy frame is well defined even
2 2

in the region r & rp, where 1 + —,& 0. It
may seem meaningless to continue metric to the region
r & rp, since the singularity at r = rp is a real curvature
singularity. However, it may be important to have such
a continuation in order to investigate the possibility of
tunneling through the singularity, see Sec. V. One may
suggest the continuation of the canonical metric (36),

! g~~ @ —goo 2
—goog~~ m

/goo ( r' )
(46)

Here E is the test particle energy at r —+ oo, and I is
its angular Inomentum with respect to the center of our

—1/2
configuration. For goo

——g„-„l = 1+ 4„—'„q Eq.

(46) reads

It is very tempting to associate singular spherically
symmetric configurations (36), (45) with black holes.
However, it would not be quite correct. Black holes
got their name for the reason that they strongly attract
all particles, so that even light cannot escape from a
black hole. Gravitational attraction can be described by
the Newtonian potential e' = 2(goo —1). This yields
the usual Newtonian attractive potential 4 = ——at a
large distance from a massive Schwarzschild black hole.
Meanwhile, the potential corresponding to the metric

—i/2
gpp

——g„„= 1 + „—„q at large r is given by

4 = ——+ q, , and. the strength of the gravitational field
2 2

is proportional to 4' = —„, — ~, . (For notational sim-

plicity we take here the coupling constant g = 1.) Thus,
in the limit r ~ oo we still have gravitational attraction,
but only for the configurations with a positive Arnowitt-
Deser-Misner (ADM) mass M. However, there is a stable
equilibrium for test particles at r, = 2q /M, and there
is a gravitational repulsion (antigravity) for r ( r, . (For
massless states the gravitational force is repulsive at all
r.) This repulsion becomes infinitely strong near the sin-

gularity, which appears at ro = 2(QM2 + q2 —M). in-
falling particles cannot touch the singularity at r = rp
and become totally rejected.

Indeed, one can write an equation of motion for a test
particle of a small mass m in an external spherically sym-
metric background (36), see [14]:

can str
PD PD

4g2q2

p2 (44)

which gives the following generalization of the canonical
metric (36):

ds. „=
I
1+t' 4g'q' l

p2 )
2 2

( 4M
x 1+

r

xdt —
I

1+(

4g'q' l '
)I

a
4g'q' i

p2 ) (45)

This continuation preserves an important property of

—1/212
2 4M 4q2~—I, 1+r2 r r2

It is clear from this equation that test particles with
any initial energy E cannot reach the singularity at r =
rp. One can easily show that each test particle within a fi-
nite time reaches some minimal radius r;„)rp, and be-
comes reBected. For example, in the case M = 0, the sin-
gularity is at ro ——2!q!, and all massless test particles with

I, g 0 become rejected at r;„=2!q! 1+ 4 2@2»o.
(For comparison, all massless particles with I ( 2ME
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are swallowed by the usual Schwarzschild black hole. ) In
the case M = 0, L = 0 massive test particles are reflected

sf e; = q~q~ (1 —e, ) eo. The only possible ex-

ception is the behavior of massless test particles in the S
state (m = L = 0). In this case one should use quantum
mechanical treatment similar to the one developed in [15,
16]. An investigation of this question indicates that even
in this special case particles are totally reflected. In this
sense our solutions d.escribe white holes rather than the
black ones.

To verify the last statement and to get an additional
insight into the nature of the repulsive singularity at
r = ro we will study the wave equation for a massive
scalar field, taking the metric of an electric white hole (re-
pulson) in the form which allows continuation to r ( ro,
see Eq. (45). For the 8 wave, the scalar field equation
0„(g~g~g""t9 P) = —m P in this metric reads

4M1+ 2P' = —m P. (48)

The solution of this equation in the WKB approximation
for m g 0 reproduces our previous results about total re-
flection, being strongly suppressed at r & r;„.However,
exact solutions of this equation both for m g 0 and for
m = 0 do not vanish and do not exhibit any kind of
singular behavior at the point r = ro. To give a particu-
lar example, one may consider this equation for M = 0,
m = 0. In this case Eq. (48) has a stationary solution
P = e '+'y in terms of Bessel functions:

1J„(Er), v~ = +—/1+ 4q2E2 .
2

(49)

These solutions behave in a regular way at r = ro. This
suggests that the singularity at r = ro at the quantum
level is transparent for massless particles in the S wave.
Only one of these two functions, the Bessel function with
v+ ——+ z gl + 4q2E2, is normalizable. It decreases near
the singularity at r = 0 as r"+ ~ . In such a situation
the probability flux near the singularity r = 0 vanishes,
which shows that even the massless particles in the S
wave (m = 0, L = 0) are totally reflected, though not by
the singularity at r = ro but by the singularity at r = 0.

Here one should make a cautionary note. In general,
test particles may influence the background. For M g 0
this does not lead to any problems: one may consider
test particles with energy E (( M, in which case their
influence on the white hole background can be neglected.
Therefore massive states described in our paper do ex-
hibit the antigravity regime and can be called white holes,
or repulsons.

On the other hand, in the limit M = 0 our semiclas-
sical considerations may become somewhat misleading.
Indeed, gravitational repulsion changes momentum of a
test particle. This may happen only if the white hole it-
self acquires the same momentum with an opposite sign,
which would imply that the massless white hole should
start moving with the speed of light. This may suggest
that the state corresponding to a massless white hole at
rest is unstable with respect to infinitesimally small ex-

ternal fluctuations, and therefore generically such states
should be described as particles (waves) moving with the
speed of light [1, 17].

However, it might be impossible to give any boost to
a massless white hole without either forming a bound
state with it or making it massive. Indeed, these states
can be considered massless only at an infinitely large dis-
tance &om them, but in this case they do not interact at

2 2
all. Repulsive force —~, which appears at a finite dis-
tance &om the center of a massless white hole, may be
interpreted as a gravitational interaction with its massive
core. Thus, gravitational interaction occurs only with an
internal part of the massless white hole, which leads to its
deformation. Such a deformation may change energy and
the effective mass of the white hole, and then it will be
able to carry finite momentum without being accelerated
to the speed of light.

Another problem appears when one tries to understand
the nature of the repulsive gravitational field. The formal
reason of the repulsion is the existence of the nondiago-
nal terms in the metric of six-dimensional compactified
space, see (28). However, it would be nice to have a
simple intuitive four-dimensional picture describing the
repulsive force &om the phenomenological point of view.
One way of thinking about it is that the singularity acts
on test particles as a body with a negative mass. This
mass becomes "screened" by positive energy density of
physical fields. Therefore the absolute value of the effec-
tive gravitating mass of a sphere of a radius r decreases

Mat large r as —,and finally the total mass vanishes in
the limit r —+ oo.

This intuitive picture is, in fact, rather counterintu-
itive. The states with negative energy do exist in general
relativity. For example, the total energy of a closed uni-
verse is equal to zero as a result of exact cancellation of
positive energy of matter and negative energy of grav-
itational field. Still it is hard to imagine how massive
or massless white holes with a repulsive core could be
created in the process of gravitational collapse of nor-
mal matter with positive energy density. This could
make such solutions very suspicious. One should note,
however, that the same is true for the usual charged
stringy black holes as well. Typically such black holes
cannot be formed in the process of gravitational collapse
of charged elementary particles. Indeed, in most cases
there are no such charged particles in the underlying La-
grangian. The description of charged stringy black holes
is somewhat unconventional as compared with the ordi-
nary Reissner-Nordstrom black holes containing charged
elementary particles. One may consider a sourceless flux
of electric or magnetic Beld, and then imagine a situation
where the gravitational force squeezes the flux into a sin-
gularity. Then the singularity will look like an electrically
or magnetically charged particle. To describe such a sit-
uation at a more formal level, one should find the flux
of electric, magnetic, and gravitational Belds at infinity,
and then Bnd an extremum of action with these bound-
ary conditions, but without imposing any boundary con-
ditions and solving Lagrange equations at the singularity.
In particular, there is no requirement that the effective
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charge of the singularity is carried by an elementary par-
ticle, or that the singularity looks like a normal particle
with a positive mass. Such requirements appear only if
one imposes an additional condition that the black hole is
formed as a result of gravitational collapse of elementary
particles. For the reason discussed above, this condi-
tion does not necessarily apply to charged stringy black
holes. The best constraint which one can obtain on the
black hole mass is the supersymmetric Bogomolny pos-
itivity bound. This constraint applies not to the "effec-
tive mass" of the singularity, but to the total ADM mass,
and it is satisfied by the massless and massive white holes
considered in this paper.

VI. DISCUSSION

2v 2/Qa/
1

2([Q&~' —~QR]') l ' „,
(50)

Here 2(~QL, [
—[Qn~ ) = q, and the Yang-Mills field is

a necessary part of the solutions when q g 0. The mas-
sive a = ~3 electrically charged black hole of Gibbons
and Perry [18] is included into this class. In fact it is the
only case with ~Qr, ~~ —~Q~~ = 2q = q = 0, V = 0
for which the configuration does not need the presence
of non-Abelian vector fields to be exact: quantum cor-

In the previous papers [4] and [5] the massless NL, = 0
states of the toroidally compactified heterotic string have
been found. Those states saturate the supersymmetric
positivity bound. In this paper we have found. exact su-
persymmetric electrically charged four-dimensional con-
figurations whose ADM mass can vanish without the so-
lutions being trivial. One of the features of these solu-
tions is the necessary presence of non-Abelian vectors and
scalars besides the metric, Abelian vectors and scalars.
These solutions have been obtained as classical solutions
of the effective ten-dimensional action of the heterotic
string theory.

The configurations which we have discussed here can-
not be associated with the toroidally compactified string
with O(6,22) duality symmetry. The presence of Yang-
Mills fields required by preservation of supersymmetry at
the quantum level means that we have only O(6,6) sym-
metry with 6 Abelian gravi-photons and 6 Abelian vector
multiplets. But instead of the 16 additional Abelian vec-
tor multiplets, which are extending the symmetry of the
toroidally compactified string from 6 to 22, we have non-
Abelian vector multiplets.

Therefore the interpretation of these new configura-
tions as the states of the properly quantized string still
has to be investigated. The quantization conditions used
for toroidally compactified string should be generalized
for the presence of non-Abelian vector multiplets.

The metric of the exact supersymmetric configurations
which we have studied has the general form

1

2(IQL I' —IQ~I')
~scan = 1 +

rections vanish due to null properties of the curvature of
the pp waves with K = 1+ —and e 4' = 1, A = 0 [7].
This is a one-parameter extreme black hole solution:

1 1

~ r
When the mass of this solution tends to zero, it becomes
trivial, and one half of unbroken supersymmetry gets re-
stored to the completely unbroken supersymmetry of the
flat space. Apart from this massive black hole solution,
every other one has

(52)

This means that any solution in this group can become
massless (QR = 0) and still the metric and the right-
handed Abelian vectors (from the gravitational super-
multiplet) will have some nonvanishing 1jr~ terms. The
left-handed Abelian vectors (&om the nongravitational
vector supermultiplet) as well as the Yang-Mills fields
are also present since ~QL, ~

= 2q ) 0.
Thus the nontrivial supersymmetric massless configu-

rations described in this paper do not exist without the
non-Abelian multiplets. Even in the limit of the vanish-
ing mass one half of the supersymmetry is unbroken and
the other half is broken and serves to form the super-
charge of the ultrashort multiplet.

A very unusual property of the new set of exact su-
persymmetric solutions described in this paper is the
presence of a repulsive singularity when the condition
~Qr. ~~ —~QR~~ = 2q„) 0 is valid. This singularity appears
both for massless (Q~ = 0) and for massive (Q~ g 0)
solutions. As a result, these solutions can be better clas-
sified as white holes rather than the black ones.

Note that the gravitational repulsion which we are dis-
cussing here is quite different from the repulsive compo-
nent of interaction between extreme black holes, which
appears due to the nongravitational interaction of their
electric, magnetic, and dilaton charges [19]. White holes
(repulsons) considered in this paper repel all particles,
either charged or not, with the strength proportional to
their mass. This repulsion, unlike the nongravitational
repulsion considered in [19], does not violate the equiv-
alence principle. If existence of repulsons is confirmed,
we will have the first realization of the universal gravita-
tional force which repels all particles and therefore can
be associated with antigravity.

One should note, however, that the interpretation of
our solutions as white holes (repulsons) is rather straight-
forward for massive states, but, as we already mentioned,
interaction of particles with massless states requires a
more detailed investigation, and the classical concept of
gravitational repulsion in this case may become inappli-
cable. Formally white holes with vanishing ADM mass
are still described by a static four-dimensional geome-
try. The limit to the massless state has to be considered
with special care since normally one would expect that
a massless state has to be described by a wave configu-
ration which admits a null Killing vector. However, to
have a link to extreme white hole solutions it is natural
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to consider those white holes which do not become trivial
when the mass equals zero. One may try to boost this
solution to get the wave-type configuration.

Alternatively, after we have found the special points
in the moduli space where the four-dimensional white
holes become massless, we may return to the original

]

form of the ten-dimensional conGguration, which from
the beginning admitted a null Killing vector. The sim-
plest one, whose four-dimensional metric is given in Eq.
(18), is indeed a supersymmetric pp wave [7] described
by the metric, the constant dilaton, the two-form, and
the Yang-Mills Geld:

8 3 8

ds' = 2dudv —du'+ ) "dy"du —) dx'de* —) dy" dy",
n=4 i=1 n=4

e'@ =1,

B=2duA
i
dv+ "dx" i,

( 2q„
P

2 nv'"—
tC r3 1, 2, 3, n = 4, . . . , 8.

The remarkable feature of this solution is the fact that
only if the Yang-Mills Geld V does not vanish, i.e. ,

q g 0, the geoxnetry and the two-form are not triv-
ial. At q = 0 the metric becomes that of the flat space,
ds = dt2 —P,. i dx'dx', and the three-form H vanishes.
The supersymmetry is not broken at all, it is that of the
flat space. However, as long as q„g 0, one half of the su-
persymmetries is broken, the condition which the Killing
spinor satisfy is p e = 0 [7].

This solution, as well as the more general ones pre-
sented in Eqs. (7) and (9) and described in Sec. IV, are
exact solutions with one half of unbroken supersymmetry
with an account taken of perturbative quantum correc-
tions in n'. The generalization consists in allowing more
general asymptotic values of the ten-dimensional geome-
try, which is equivalent to allowing the four-dimensional
scalars to have more general vacuum expectation values.
The new mass formulas for exact supersymmetric non-
Abelian white holes are presented in Eqs. (34) and (35).

Thus we have described the exact supersymmetric non-
Abelian conGgurations either as ten-dimensional gravita-

I

tional waves or as electrically charged four-dimensional
white holes, which may be also called repulsons. Our ex-
act supersymmetric massless conGgurations do not exist
without the Yang-Mills Gelds which form a part of the
white hole conGguration. One may expect various non-
perturbative effects including confinement/condensation
of electric/magnetic white holes near the special points
of the moduli space where these solutions become mass-
less. It would be most appropriate to study these effects,
but it is outside of the scope of the present paper. Our
main purpose here was to demonstrate the possibility of
the existence of a new class of supersym~etric conGgu-
rations with very unusual properties, and to prepare a
framework for their subsequent investigation.
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