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Superspace formulation of Yang-Mills theory. II. Inclusion of gauge-invariant
operators and scalars
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In a superspace formulation of Yang-Mills theory previously proposed, we show how gauge-
invariant operators aud scalars can be incorporated keeping intact the (broken) OSP(3, 1~2) sym-
metry of the superspace action. We show, in both cases, that the WT identities can. be cast in a
simple form BW/88 = 0.
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I. INTRODUCTION

The theory of Yang-Mills fields forms the backbone of
all the successful high energy physics of today, viz. the
standard model. Yang-Mills fields are characterized by a
non-Abelian local gauge invariance. The consequences of
gauge invariance are formulated as the Ward-Takahashi
(WT) identities of gauge theories. A study of these is
highly important in any dealing with the gauge theories.
In particular, the establishment of renormalizability re-
quires use of these. The derivation and study of WT
identities and of the renormalization program in gauge
theories is facilitated greatly by the introduction of the
alternate global symmetry of the effective action, viz. the
Becchi-Rouet-Stora (BRS) symmetry [1—3]. Hence any
program that will shed light on BRS symmetry, Ward
identities, renormalization of gauge theories, etc. , is of
value.

BRS transformations contain an anticommuting pa-
rameter. This has naturally lead to construction of a
super6eld or superspace formulation of gauge theories in
order to make the underlying BRS structure evident in a
simple way [4,5]. An excellent review of earlier works is
found in the last of reference [5].

With a view to simplify the WT identities and renor-
malization program in gauge theories (especially for
gauge-invariant operators), an improved superspace for-
mulation was proposed [6]. This forinulation has the ad-
vantage that the superfields were completely unrestricted
(and not constructed by hand as in earlier formulations
[4,5]). It further had an OSp(3, 1~2) broken invariance,
which, unlike earlier formulations, was not a very for-
mal device [5], but one where superspace rotation could
be actually carried out. Further, the source terms for
composite BRS variation operators, so crucial to a sim-
ple formulation of WT identities, were generated &om
within. The sources for BRS variations and fields came
from supermultiplets of (super)sources. The sources for
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BRS variations and Belds came Rom supermultiplets of
(super)sources. These led to a simple formulation of
WT identities [7], in the elegant form BW/08 = 0.
These identities were further understood as arising from
a broken OSp(3, 1~2) symmetry of the superspace action
[8]. The formulation of Ref. [6] has also lead to an un-
derstanding of the interrelation between renormalization
transformations in gauge theories [9]. The formulation
of Ref. [6] has also been generalized to incorporate the
most general BRS and/or anti-BRS symmetry in linear
gauges [10].

A diKcult problem in the renormalization program
of gauge theories is the problem of renormalization of
gauge-invariant operators. This problem is relevant in
phenomenological applications of QCD through the use
of operator product expansion [11]. Though solved long
ago [12], the long treatment could well be simplified. We
expect the present superspace formulation to do this, be-
cause it simplifies the WT identities in form, and hence
hopefully their solution too. The erst step towards a
solution to this problem in this formulation is to show
how to incorporate the gauge-invariant operators in the
formulation without spoiling OSp(3, 1~2) symmetry (bro-
ken). The next step is to show that the WT identities
retain their simple form in presence of gauge-invariant
sources. We propose to do these two steps in the present
work. The final step of solving the WT identity will be
reported elsewhere.

In passing, we also show that the scalars can be incor-
porated in a straightforward manner in this formulation.
This will have application in the superspace formulation
of spontaneously broken gauge theories.

We now summarize the plan of the paper. In Sec. II,
we introduce the superspace formulation of Ref. [6] and
propose its extension to include gauge-invariant sources
without spoiling broken OSp(3, 1~2) symmetry of the La-
grange density. In Sec. III, we show that the proposed
generating functional does in fact contain all the infor-
mation about the Green's functions with one insertion
of a gauge-invariant operator. In Sec. IV, we exhibit
how scalars in an arbitrary representation of the gauge
group can be included straightforwardly. In Sec. V, we
show that in both cases the WT identities retain their
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simple form ]9W/c)9 = 0. Appendixes A and 8 deal
with the general structure of gauge-invariant operators
in Minkowski space and superspace. In Appendix C we
have listed the Jacobi identities and commutation or an-
ticommutation relations satisfied by the superspace co-
variant derivatives.

II. SUPERSPACE ACTION TO INCLUDE
GAUGE-INVARIANT OPERATOR INSERTION

A. Superspace notations and superspace action

In this section we shall brieQy introduced the notation
(for more details, the reader is referred to Ref. [6]). We
shall then introduce the superspace action for ordinary

I

gauge theories and show how it is to be generalized to
include an insertion of a gauge-invariant operator of ar-
bitrary dimensions and. Lorentz structure.

We shall work in a six-dimensional superspace x
(x",A, ())) with two anticommutating coordinates A and
0. The superspace formulation of Ref. [6] utilizes an an-
ticommutating antighost superfield (,

' (x) and a commu-
tating superfield A, (x). The former is a scalar under
rotations [8] characterized by the group OSp(3, 1~2) and
the latter is a covariant vector. The sources for fields and
composite operators for the BRS variations also come in
the form of a (coinmutating) scalar superfields t (x) and
an (anticommutating) vector superfield K'(z). We will
not go into further details here; the reader is referred to
Refs. [6] and [8]. We only state the superspace action

S = dtx — I'eg"P'IPe—t + dtx IC—'(g)A;(g) + C (g) tteA„(d) + C e + t
77p

—= Sp+ Sg

d'xZ p + d4xc~, (2.1)

where F;~ is the superspace generalization of the field strength [6]. [The index i runs over 0 to 5 while the index p
runs over 0 to 3.)

The superspace generating functional for the superspace action is given by

C)'[IC(x), t(g)] = f(dA)(dC)exp(id[AC, IC, t]), , (2.2)

where the measure has been defined in Ref. [6].
l p is invariant under 0Sp(3, 1

~
2) superspace rotations. W is related to the generating functional of ordinary

Yang-Mills Green's functions by [6]

[dk ][dk e]W [K, t] = W [K~g (z), K e (x), —t e (z), K"(z), K (x), t (x)] . (2.3)

B. Inclusion of gauge-invariant operators

We want to generalize l'.p to include the source term for
a gauge-invariant operator so that it still has OSp(3, 1~2)
invariance.

Now consider a typical gauge-invariant operator 0 =
0~, .. .~ [A]. First 0 belongs to a representation of the
Lorentz group O(3, 1) and not to a representation of
OSp(3, 1~2). Secondly, it only contain the x-dependent
part of the gauge fields A„(z), viz. A„(x) (and its space-
time derivatives). Now in order to construct a superspace
analog of 0, viz. 0, we have to (i) alter the external index
structure, (ii) change A„(x) to superfield A;(x), and (iii)
change space-time derivatives to superspace derivatives.
This will be done as follows.

As shown in Appendix A, a gauge-invariant operator
can be written entirely in terms of D ~ and E &'s. We
replace each D„~ by the superspace covariant derivative

operator D, ~ = —h ~t9; + gf ) "cA; (z) and each F„& by
F &(x) defined in [6]. The contracted indices continue to
be contracted but now range over 0 to 5 instead of 0 to 3.
One thus obtains an operator 0;,...;„[A(z)]which belongs

to a representation of OSp(3, 1~2). We now introduce a
superspace source N""'"(x), assumed also to belong to
an appropriate representation of OSp(3, 1~2) such that
N" '"(x) ,0, ."..; (A) is an OSp(3, 1~2) scalar. We then
modify Zp to a

(2.4)

and define the generating functional R" accordingly so
that

W'[IC, tN] = f (dA)(dC) exp, i f d x[f'e+ Z~]

(2.5)

Then &~, , ~)v 0 generates the Green's functions of the

superspace theory with one insertion of 0,, ...;„.Among
these we are interested in those with one insertion of
O~, ...„.We shall show how we can recover the Green's
functions of the Yang-Mills theory with one insertion of
0„,. ..„ in a later section [see Eq. (3.9)].
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III. EVALUATION OF W'[K, &, N] W' = dK4 dK04 W' (3.5)

%'e shall show, in this section, how the generating func-
tional TV' can be evaluated partially, by performing inte-
grations over A; g and A; p. The procedure is very much
the same as that in Ref. [6]. Hence we shall be brief and
indicate only the main steps successively.

(1) In

just the same way as Eq. (2.3) involves J[dK4][dKs4]W.
Hence we shall begin with (3.5) which in effect puts to
zero c4 and c4 g. Then the modified equation of motion
for cs ~ or equivalently E4& ——F4s~ —p s —p reads

E4s = o. (3.4a)
8"= dA d exp iS+i d xNO (3 1)

A; = A;(x) + OA, s+ AA, g+ AHA;, ps (3.2)

dependence of S + JNO d4x on A, s and A; g arising
solely out of dependence of A(x) on these via

(8) Now, it is easy to show that the effect of doing inte-
gration over A„s, A„p, c4 q, c5 s, c5 q in (3.3) is simply to
use equation of motion (3.4) and (3.4a) in the NO term.
[Hence we assume dimensional regularization which puts
to zero b4(0) and derivatives of b4(x) at x = 0.] Thus we
obtain

exp iS ~+ i d4~ NO

= TV+i d'xNO (3.3)

and evaluate it in this form. Then later we put it back
in the form of exponential.

(4) In evaluating the term ((NO)) in (3.3), we can use
the equation of motion for S (i.e., in absence of NO) in
it as this term is already of order N.

(5) In performing the integrals over
A~ g, A~ g, c4g, cs g, cs p, we can choose instead as inte-
gration variables E&s, E„4, F44, Fss, F4s as the Jacobian
of the relevant transformations is one [see relation of Eq.
(3.3) of Ref. [6] for elaboration].

(6) The equation of motion for F„s,F„4, F44, and Fss
in absence of the NO term reads

F4„+K„0„(= 0, —
Fs„——0,
Ess =0

F44 —2K = 0, (3.4)

(7) In relating W' to the Yang-Mills (YM) generating
functional with one insertion of 0, we shall be needing

is immaterial as it can be removed by the equation of
motion of A (this is explained in detail in Ref. [6].) Hence
only the bona fide dependence of S+ f NOd4x on A; s
and A, p needs to be retained.

(2) As the original W does not depend on A; ~s and as
these are not dynamical variables, we shall omit (put to
zero) terms in NO depending on A; ~s in evaluating W'.

(3) In W' we are only interested in the terms to the
First order in ¹ Hence we consider

dK4 dK4~ R'+i d4x NO'

~P,I "P,~ OPI." Pn (3.7)

Note that the above argument does not generally apply
to 0,, ...; with ig ——4 or 5 for some k. This should not
bother us as we are not interested in insertion of such
spurious operators. They have been added to recover
formal OSp(3, 1~2) invariance of Z.p which is expected to
be useful in formal manipulation of W'. Hence we note
that

(3.6)

where 0' is obtained from 0 by the following operations.
(a) Put c4 and c4 s equal to zero.
(b) Remove A; s and A; g dependence of 0 arising

solely out of A(x).
(c) Put A; gs to zero.
(d) Express 0 in terms of F„s,F„4,F44, Fss, F4s in-

stead of A„s, A„p . . . cs g, and use (3.4) and (3.4a) in
them. In particular note that it replaces Fs„, Fss, E4s to
zero and F4„by (K„—h„()—and F44 by 2K .

(9) We shall show in Appendix 8 that &&" "" and~&~I ~ ~ ~

&&" "" contain terms of which contains Fs„,Ess, or F4s
44

as a factor, the latter being zero by Eq. (3.4). Hence the
statement made in 8(d) above a/l dependence of 0 on
A„g, A„p, , cs p and of course c4 and c4 g drops out.
This leaves a possible cs dependence alone while it is
impossible as cs carries a ghost number one while 0 does
not and there is no field left in 0' to compensate the
ghost number of cs. Hence

dK4 dK4, W' K, t, N

]dIC ]]dICe]exp] iS+i f d x, .S. I. eOee, . e ]d] ]+0(N;, ;„)+O]iV).. . . . .,„~ ~

~ ~ ~ ~ (3.8)
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where N;, ...,.„...; denotes a source with at least one iI, ——4 or 5.
(10) Now the integral on the right-hand side of (3.8) can be done as in Ref. [6]. The term NO does not interfere in

any way with A„g, A~ g, . cs p iiitegration as it does not depend on anything but A~(x). The result is, self-evidently,

dA des d exp i 80d z+ N„, ...„„O„,...„„dx

+source terms for fields and BRS composite operators

= W[Ks", Ks, ts, K—"(x),K (x), t (x), N] . (3.9)

where W on the right-hand side of Eq. (3.9) is W
Eq. (2.3) modified to include the gauge-invariant source

INOd x. Equation (3.8) together with Eq. (3.9) shows
the equivalence of W' = J[dK~][dK&]W'[K, t, N] and
the Yang-Mills generating functional with one insertion
of O„,. ..~„, viz. W of (3.9) up to terms irrelevant for our
purpose.

We have thus in Eq. (2.5) constructed a generating
functional W', containing l e [see Eq. (2.4)] that pos-
sesses symmetry, which yields us correctly the Green's
function of Yang-Mills theory with one insertion of an ar-
bitrary gauge-invariant operator O~, ...~ . We shall con-
sider the WT identity satisfied by TV in Sec. V.

D„4 = ((9„—igT A„)4 . (4.1)

We now introduce a scalar superfield (a group multiplet)
4 (x) which transforms as a scalar under OSp(3, 1~2) and
has as its first component the column vector 4(x): i.e. ,

I

the corresponding WT identities continue to retain the
simple form BW/00 = 0.

Consider a set of scalars in some representation of
gauge group G. Let (T ) be the representation of gener-
ators of G corresponding to the representation to which
the scalars belong. Let the scalars be represented by a
real column vector 4(x). The covariant derivative of 4
1s

IV. INCLUSION OF SCALARS
4(x) = 4(x) + 04 g + A4 g + Ag@ g() . (4.2)

lf one is to apply this superspace formulation to the dis-
cussion of Higgs mechanism say in the Weinberg-Salam
model, one must show how the scalar fields can be in-
corporated in superspace formulation. In this section we
shall show that the scalars can be incorporated trivially
in the superspace formulation and show in Sec. V that

I

Let the usual Yang-Mills action including scalars be

Cop = F„F""+——(D„4) (D—"4) + V(4), (4.3)
4 2

where V(4) contains the mass terms and interactions
(independent of 8~4)) We t.hen define the generating
functional for the new superspace action by

(4.4)

where

Sp[A, (, 4, K, t, J] = S+ d x—[J(x) 4(x)]+ d x —[D,4(x)] [D,C(x)]g" + V(4(x))4 0 g 4 1
(4.5)

and

d4 (x)d@; p (x)d4; e(x) . (4.6)

The Wy of Eq. (4.4) is nothing but a straightforward generalization of W of Eq. (2.2). We shall now show that
Wy contains all information about the Green s function S of the Lagrange density of Eq. (4.3). Incidentally note that
the Z()y [with obvious interpretation] has the full symmetry under superspace rotations of OSp(3, 1~2).

To do this, we need only to concentrate on two new integrals over 4, g(x) and 4; g(x). This is done in a few steps.
(i) First, dependence of S on 4, p and 4', s arising solely from that of 4; on these variables via Eq. (4.2) can be

ignored completely on account of equations of motion of 4, [6].
(ii) Secondly, 4; ~() do not appear in Wy as dynamical variables.
(iii) Consider now the terms in S dependent on 4, ~ and 4; g. They are (with corresponding integrals)
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We can now change the variables of integration to
(D4C); and (Ds@)~ themselves. The Jacobian of the
transformation is one. Integration over (D4O); yields an
anticommuting h-function Q,. (Ds@);(x). This can be
used to replace 4 g in the source term by (—igT cs C').
Then the (Ds@), integration is done trivially. Thus the
net scalar dependent piece in the expression for IVAN

reads

=0

[omitting 0(N;, ;„.....;„,.0(N ), 0(dN/d8) terms )].

B. Scalars

(5.2)

(d@(e)) exp~ i f d e(Cep+ Je(e)p(e)
In this case there are the following new terms in the

integrated out action:

d x J g (x)4(x) —J (x)igT A„4

The last term in the exponent of (4.8) gives the term for
the BRS variation of 4:

+—(D„e) (D„@)—V[4] . (5.3)

h'@BRs = igT c& 4—bA . (4.9)

Wy[K, t, J(x)] = [~(K '(x))~(K g'(*))]
a,z

x W [K g K g, t g, K",K— , t, J, Jg],
(4.10)

where R' is the generating functional for the action 80@
of Eq. (4.3) with sources for BRS variations of A„, c, c
and 4 included. This concludes the discussion of how
scalars can be included in the present superspace action.

The rest of the integrals can be carried out straightfor-
wardly as in Ref. [6]. The result is

In taliing OW/O8, —J+(X)igT A 4' terms contribute.
There is no further contribution. But this new contri-
bution is recognized as exactly being the BRS variation
of Jg@(x), with other new terms being BRS invariant.
Hence the derivation of [7] goes through leading to the
result

(5 4)

Thus the WT identities continue to retain their elegant
form.

APPENDIX A: GENERAL STRUCTURE OF A
LOCAL GAUGE-INVARIANT OPERATOR

V. WT IDENTITIES

In this section, we shall give a brief derivation of the
WT identities of the gauge theories with (i) one inser-
tion of the gauge-invariant operator and (ii) scalars. The
derivation is much the same way as in Ref. [7]. Hence we
only explain the steps qualitatively.

The steps are (i) evaluate b'W/b8 from the integrated
out form; (ii) Recognize that these are just the terms in
the BRS variation of the integrated out action under the
standard BRS transformations of the fields [7].

We only mention new relevant points.

We shall derive a very simple result in this Appendix.
It is about the general structure of a gauge-invariant op-
erator constructed out of Yang-Mills fields only. The re-
sult, while it is rather trivial, is very much needed in the
discussion of superspace generalization.

We shall show that for a simple gauge group G, the
most general local gauge-invariant operator constructed
out of Yang-Mills fields has the structure

0 —'((

(~) (~) ' (A.l)

where each of the X&&& can be written as a string of co-

variant derivatives, D„~ acting on one field strength, E &.
For example,

A. Gauge-invariant operator insertion X ' = D '~D~~F~
(g) p ~ Ab (A2)

We call

W' = [dK ][dKg]W'[K, t, N] .

In TV', the exponent now contains a new term
(x)0~, . . .~ [A]. It will contribute to OW'/O8 only

through ON/08. But we can always set ON/89 = 0 in
the end being an independent field of x~. In the BRS
variation, the new term does not contribute as 0[A] is a
gauge-invariant operator. Hence the proof of WT identi-
ties goes through as before, and we have

D
0 = ) g~O(„) [A] . (A3)

The X ''s can be distinct for each k. Further t '"'
(A:)

is a group tensor. Z denotes formally a sum of terms of
this form. That 0 of (Al) is a gauge-invariant operator
is obvious. This is so since each X&&') is a group vector

and t "" " is a group tensor.
To prove (Al), imagine expanding an arbitrary local

gauge-invariant operator 0 of dimension D as
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As O is invariant under APPENDIX B

hA„= —c)„0 (x) + gf ~~A~P'(x), (A4)

0(p) [A] is invariant under the Abelian part of (A4): viz. ,

We have noted in Appendix A that a typical gauge-
invariant operator generalized to a six-dimensional su-
perspace contains a chain of the form

ggcx(o) g gn
P (A5) X = D~- D~ . . E",kl ~

Hence 0(p) [A] can be expressed in terms of "Abelian"

field strengths E„„=O„A„—0 A„and their derivatives,

0 [A]=t '" "Y'. Y"
(o) o(x) o(n) ~ (A6)

where t~'" ~" are constant and each Y " contains ano(I )
arbitrary order of the derivative of F( )

Yo(~)
——0„, t9„F ~

Further each 0(„)[A] xnust be separately invariant under
global transformations of the group

SA = gf ~~A~O~ 0~ =.const .P p, ) (A8)

Y I D P DPP . . .DP —1P,F~
(Q) Pl P2 ~q uP (A9)

Note that Yp(&)
——Y& "~g p and

Nothing that each of Yo(&) transforms as a global vector
under G, it follows that the invariance of 0(p) [A] un-
der global transformations of G require that t '" " is a
group tensor.

Now we construct

where the indices i - j.. . kl are &ee to go from 0 to
5 when the group indices have been successively con-
tracted. Now for a given chain all the indices i . j . kl
may be free (they may be contracted elsewhere in the
expression for 0) or some of thexn may be contracted.
Thus the chain X may contain terms in which all of
i . . j -.kl take values between 0 to 3 and it may con-
tain terms in which at least one of these is 4 and/or 5.
In the latter group there are terms in which 4 and/or 5
appear only in E but not on any D and Gnally there are
terms in which at least one D caries an index 4 or 5. It
is this last type of term that we focus our attention on.
All the rest of the terms in I are such that 4 and/or 5
appears only in E. We shall now show that the last type
of term can, by use of Jacobi identities, be cast as a sum
over terms each of which has D s with i going only from
0 to 3; and 4 and/or 5 appears possibly only on E's (or
c5). This would then show that the entire A has this
property.

For simplicity, first consider a simple example. Let X
contain only one D with index (say) 4 and other D's have
only some spacetime index (p, = 0, 1, 2, 3):

X =D ~ .D~ D"- F~
p, 4 ~ crA

0[A]=t ' "Y ' ".'Y ".
(1) ( ) (Alo)

We can now compute D4 across D~ and all the rest of
further D's by using (C2b) of Appendix C. Finally when
D4 hits F g we use (Clb) of Appendix C to express

D

0 —0 = ) g"0(„)[A] . (All)

Now, we can repeat the discussion for the coeKcient of
lowest power of g, viz. 0(i) [A]. We then find a gauge-

invariant operator 0 of the form of (A10) such that

0 —0 —0 = ) g"0"(„)[A].
m=2

(A12)

This process can be continued. It is guaranteed to end
since the highest power of g is finite (D). Then

Evidently 0[A] is a gauge-invariant operator. Now con-
sider 0 —O. It is gauge-invariant operator of the same
dixnension D and no term in it of 0(g ). It has the ex-
pansion

D4E A = —DAF4 —D FA4

In each term in X, now, the index 4 always appears on
an F and all D's are with Lorentz indices.

Now consider the case when the indices on the last F
contains a 4 and/or 5. All discussion is the same as before
except, when D4 hits E, we use one of the following (see
Appendix C):

1
D4F4„———D„F44,P 2 P

D4F5 — D5 F4p D~F45 — gfc5F4p
—D~F45(at c4 ——0 = c4 p),

D4E44 ——0,
1

D4F45 ———fc5F44(at c4 ——0 = c4 g),
D4F55 —— 2D5F45 ——2fc5E4—5(at c4 ——0 = c4,e)

O=O+0+. . - (Ala)

O=t'" "X' ~ X"
(~) (~) ' (A14)

is of the form (A10). Hence (Al) is verified.
Hence we can choose the basis for gauge-invariant op-

erators in which every term is of the form

[we note that in the evaluation in Sec. III, we need to
consider 0 only at c4 ——0 = c4 s] proving the necessary
result.

Now consider a somewhat more complicated case. Let
there be two D4 in X . We pass through the erst D4
until it hits the second; then use D4D4 ——g2 fE44 Next.
consider the case with three D4's:
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D~P Dyh DP8 Dg(D(rc DAo Fv.

p 4 4 4 v 4 ij APPENDIX C

Here we need only exhibit how to pass the third D4 after
the second D4 has been passed through:

DR(D(lc D'g$Dt& + fTIKTFT
4 u — u 4 4u (B4)

(B5)

This generates at term like E"" E4 through which the
third D4 must be passed. This is done using the identity

D(TIf 'l7KTFT f(Ic T(D T9F'9
) fcTfTFT Dg+

fc"T
~

(D„F ) —f(~TFT D"

1. Jacobi identities

The 3acobi identities are

D„F p + D F),„+DpE„= 0,

D4E„+D„F 4 + D E4„=o,

D5F„' + D„D 5+ D„F5„——0,

D4F5„—D5F„4 + D„E45 ——0,

(Cla)

(Clc)

(Cld)

In the final term when all D's hit each other we use
D4D4D4 ——0 Eq. (Cli). This process can be evidently
generalized to more than three D4's.

An exactly identical procedure follows when there are
only D5's (any number of them) in A . Finally, we must
deal with the mixed case when there are both D4's and
D5's. First consider the simplest version of these:

X- = D-~".D"'".D'. "E'. .
P 22

The general procedure is similar to the previous cases
and uses in particular modification of (B4). Ultimately,
one ends up with

2D4F4„+ D„F44 ——0,

2D5E5„+D„F55 ——0,

D5F44 + 2D4F45 ——0,

D4F55 + 2DSF45 ——0,

D4E44 ——0,

(Cle)

(Clf)

(Clg)

(C ill)

(Cli)

DsD4F;~ = [D5D4 —D4D5] —gfF4sF;~ . D5E55 ——0 . (Clj)

Now, it is easily shown using (Cl) of Appendix C that
the term (DsD4 —D4Ds)F, ~ case by case contains only
F's and D„'s but no D4 or D5 in the final result. (c4 ——

0 = c4 s has been employed. )
A similar procedure can be given for more D5's and/or

more D4's. Now, what holds for each X holds for the
entire operator 0 of (Bl). Thus 0 can be written entirely
without the use of D4 and D5 anywhere (i.e. , in the term
of F;~, D„, c5 only).

Now we consider the dependence of O~, . ..„on A
First, A„& is present only in. some E4 „in 0 (and not, say,
D4 acting on A„) because 0 can be written without D4.
The subscript 4 must be contracted somewhere to 5 as
O„,...~ has no free subscript 4. Now consider the chain
X which has this index 5. From the above discussion
(with 4 ++ 5 everywhere) it is clear that each such term
contains either E5p or E54 or E55, all of which vanish by
equation of motion. The same applies to F44. This fact
has been used in Sec. III to simplify integration over

A„g, c4 p, etc. in the presence of an operator. Thus we
have the result.

All terms in O~, ...& depending on E4& and E44 vanish
by equation of motion. Those depending on E5~, E45, E55
also vanish because these quantities themselves vanish by
equation of motion.

2. Commutation or anticommutation relation
of the covariant derivatives

The commutation or anticommutation relations are

[D D ]aP — gfaP'YF7 (C2a)

[D,D„] P = gf P~F~„,— (C2b)

[Ds, D„] P = gf P~F5„, — (C2c)

(D4, D5) P = gf P'F45— (C2d)

~aP faPpFT . D 7D'1P f P'YE~7
4

(C2f)

(D D ) P = gf P~F~ i e D —~D~P = f P~F——
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