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inhomogeneous perturbations
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Using Schwinger s quantum action principle, dispersion relations are obtained for neutral scalar
mesons interacting with bilocal sources. These relations are used as the basis of a method for
representing the effect of interactions in the Gaussian approximation to Beld theory, and it is argued
that a marked inhomogeneity, in space-time dependence of the sources, forces a discrete spectrum on
the Beld. The development of such a system exhibits features commonly associated with chaos and
self-organization (localization by domain or cell formation). The Green functions play the role of an
iterative map in phase space. Stable systems reside at the fixed points of the map. The present work
can be applied to self-interacting theories by choosing suitable properties for the sources. Rapid
transport leads to a second-order phase transition and anomalous dispersion. Finally, it is shown that
there is a compact representation of the nonequilibrium dynamics in terms of generalized chemical
potentials, or equivalently as a pseudo-gauge theory, with an imaginary charge. This analogy shows,
more clearly, how dissipation and entropy production are related to the source picture and transform
a Hip-Bop like behavior between two reservoirs into the Landau problem in a constant "magnetic
Beld." A summary of conventions and formalism is provided as a basis for future work.

PACS number(s): 03.70.+k, 05.30.—d, 05.70.Ln

I. INTRODUCTION

An increasing number of problems in physics Bnds
natural expression not in the static (equilibrium) as-
pects of quantum systems, but in the kinematical (non-
equilibrium) development of their average properties.
Examples include studies of early Universe expansion
[1—3], heavy ion collisions and the postulated quark-gluon
plasma [4], lasers and other driven systems [5—7], and par-
ticle creation in changing fields of force [8,9]. This migra-
tion &om equilibrium to nonequilibrium involves a shift
of paradigm. In common with zero-temperature field the-
ory, particle systems at equilibrium are often treated by a
scattering formalism, with an initial {in) state and a final
(out) state; this is only sensible if both are known and are
at equilibrium with the same thermodynamic reservoir.
The physics of a nonequilibrium system demands differ-
ent boundary conditions. The initial and Bnal states are
(by definition) not characterized by the same ensemble
and it is more appropriate to define the state (spectral
profile or density matrix) of the system at some initial
time t; and compute the Bnal state and its consequence
at a later time t. This describes an initial value problem
which is deftly handled by Schwinger's closed time path
(CTP) action principle. The new picture also implies a
concern with probabilities, or expectation values rather
than amplitudes.

In equilibrium, one is used to the emotion of transla-
tional invariance in space and time, implying that phys-
ical quantities only depend on the differences of coord. i-
nates x —x . When the field is driven into disequilibrium,
it acquires an additional dependence on the average po-
sition and time X = —(x + x'). This is measured relative

to an initial point of reference x, . In practical applica-
tions it is usually necessary to assume that the depen-
dence on the average coordinate is quasistatic or of low
adiabatic order in order to make computations tractable.
The depend. ence on the average coordinate has important
features: the preservation of unitarity demands that the
statistical state of the field only depend on x and not on
x —x'. Since the state of the field can only be altered
by the intervention of sources or sinks (hereafter referred
to collectively as sources), the sources must also develop
with respect to the average coordinate. Since one is in-
terested both in fluctuations and the average kinematics,
it is convenient to work with variables and sources which
are bilocal objects rather than working with the Beld it-
self. This is in contrast to the pure Beld approach used
by Schwinger [10]. Self-interacting theories are a special
case in which the field is its own source; they pose mainly
calculational problems —conceptually no new issue is in-
troduced other than self-consistency.

Since the external sources affect the average state, they
can be regarded as thermodynamical reservoirs, with the
caveat that they must suffer a "recoil" or back reaction
as a result of their effect on the system. This is not
negligeable off' equilibrium. Many quantum systems (the
laser, for example) can be treated as two-reservoir sys-
tems in which the "external" reservoir is of comparable
magnitude to the local one.

The nomenclature "open system" is used to describe
a system coupled to independent sources. The name
"closed system" is given to a system without sources or
one in which the Beld is its own source; in the latter
case, the source must become effectively impotent with
regard to the further development of the average state, as
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equilibrium is approached. Equilibrium is only achieved
when, either the whole system approaches some driven
limit cycle, or the contact with external sources is effec-
tively terminated. In a closed system, the final equilib-
rium is a thermal state, or a state of maximum entropy.
Some authors define equilibrium to mean a thermal state
rather than merely a static one, and nonequilibrium to
mean anything else. This is slightly misleading since a
nonthermal but static state is still final in the absence
of new perturbations and must therefore be considered a
point of equilibrium for the system. On the other hand,
thermal states are the only states stable to perturbations
in truly physical systems and so the preoccupation with
these is natural.

The purpose of the present paper is to extend
Schwinger's method of analysis to treat nonequilibrium
ensembles of bosons. This touches on and extends a
number of apparently different approaches to nonequilib-
rium [1,3,11]. Since Schwinger's original work [10] on the
initial-value problem, most authors have been seduced
by the functional integral and have therefore missed the
often subtle advantages of Schwinger's methodology. It
is intended that the present work should convey a peda-
gogical Bavor of the suggested approach, which overlaps
with the existing literature in strategic places without ac-
tually following any of them. In particular, conventions
and definitions (which difFer from most other accounts)
have been chosen rather carefully for practical purposes.
Some well-known results are rederived in order to make
the present work as self-contained as possible. The paper
begins with a summarial discussion of the formalism, pay-
ing special attention to the action principle and unitarity;
later the most general quadratic theory which maintains
unitarity is presented and the Green functions are cal-
culated for prescribed sources. Particular attention is
paid to the effects of nonlocality in the sources —an issue
which has been largely neglected in previous work, and
turns out to place strong requirements on the behavior
of stable systems. Finally, a brief comparison is made
between the present work and other approaches.

II. FORMALISM AND CONVENTIONS

The conceptual framework for the description of
nonequilibrium processes will include operator field the-
ory, the method of sources, and the local momentum-
space Green functions. In addition, it proves convenient
to use Schwinger's quantum action principle. This is
a statement about the unitary development of the field
with respect to the variation of certain variables. Since it
embodies the equations of motion and the fundamental
commutation relations for the field, it is both compact
and elegant. One begins with the action operator, which
is defined to be the classical action with the classical field
replaced by the field operator, together with a suitable
ordering prescription for the fields. Here the ordering will
be the usual time ordering and the action that is for a
real scalar Geld without self-interactions. The Minkowski
metric signature is (—+ + + . . ) which allows straight-
forward comparison with the Euclidean theory:

S= dV 2
0" 0„+2m, —J

where dV is the Minkowski volume element. The oper-
ator equations of motion now follow from the quantum
action principle [12]

(2)

giving

Given that P(z) = P(z;) at initial time t, (or, more gen-
erally, on the the spacelike hypersurface o,), the solution
to (3) may be written

P(z) = P(z;) + dV. .G.(z, z') J(z'), (4)

where 0., and o are the initial and Gnal hypersurfaces and
G, (z, z') is a Green function which satisfies

(— +m )G, (z, z') = 8(z, z').

Both the Feynman propagator and the retarded Green
function have this property.

The surface integral under the variation of the action
vanishes independently implying that the generator of
in6nitesimal unitary transformations on the field is [12]

Since it is easily established [12] that the unitary varia-
tion of any operator A is

bA = —i[A, y~],
it follows that, on any spacelike hypersurface with or-
thogonal vector nj", one has

[P, II„]n"= ih(x, x')

with II& ——B~P. This is the covariant statement of the
canonical commutation relations for the Geld and its con-
jugate momentum. To avoid unnecessary notation it is
convenient to write this simply as

[P(», t), B,P(x') t)] = i8(x, x')

thus the Taylor expansion of the amplitude may be writ-
ten in the shorthand form

(&214 )~ = (&2ITe' I&i)

with the understanding that general covariance is easily
restored by introducing a suitable timelike vector.

From the action principle (2) it can be shown by
repeated functional differentiation with respect to the
source that



52 QUANTUM FIELDS IN DISEQUILIBRIUM: NEUTRAL. . . 7105

where T denotes time ordering (latest time to the left).
This formula may be regarded as a generating functional
for the n-point functions of the theory. The complex
conjugate of this quantity is

bination of sources) between an amplitude and its con-
jugate. This is achieved in the following way. First one
observes that

(12) s«lt) = s i ) (tli) x (alt) = s(I) = 0, (18)

where Tt stands for antitime ordering (last field to the
right). This reverse ordering is necessary to ensure the
cancellation of intermediate fields in the identity:

(&21&i)~(&iI&2)~ = (&2IT'e ' Te' 1&2& =1 (»)

(tl~(t') lt) = ) .(tl )( lx(t') I')('lt) (14)

where the sum over intermediate states z, i' is a sum over
all states and (tl is a shorthand which refers to either a
pure state of the system, or a mixed state, specified at
time t. The expectation value specifies the average value
of the operator X at the time t' given the state of the
system at time t. It involves conjugate amplitudes and
hence the conjugate forms of the action principle:

b(tli) = i(tlhs„li&,

b(ilt) = —i(ilbs,'., It&,

b

S b —— dtL.

This is the key observation for the construction of the
expectation values. Notice how the operator ordering in
(13) starts from an early time, increases to a final time
(at the centre of the operator product) and then reverses
back to the initial time. Each Beld, at each instant along
the closed time path, has a mirror counterpart required
for the cancellation of the intermediate operators in (13).
This property can now be used to advantage to construct
a "closed time path" action principle [10,13j.

Consider an expectation value of the form

so differentiation of this object is to no avail. However, if
we make an artiBcial distinction between the amplitude
and its conjugate by labeling all objects in the former
with a + symbol and all objects in the latter with a-
symbol,

S(tlt) = lim i(tlSS+ —SS' It), (i9)

~+(t ) =~—(t ) (20)

is required to ensure that the limit + ~ —restores the
single identity of the field operators, and additionally one
must have that all P fields (at any time) must stand to
the left of all P+ fields (at any time). Since —fields
are antitime ordered and + fields are time ordered, this
condition arises naturally and. ensures the triviality of
(13).

The meaning of the above procedure can be illustrated
by noting that the solution to (19) may be written

then we can use the solution of this quantity as a gen-
erating functional for (14) since X can be expanded in
terms of either &J or &J . This breaks the symmetry of
symbols in (18). At the end of a variational calculation
one removes the + and —symbols restoring the conjugate
relationship between the two amplitudes, having inserted
the appropriate operators by difFerentiation with respect
to the source of only one of them. Note in (19) that, for
any unitary field theory, the action is self-adjoint; thus
we may drop the dagger symbol in future. Also, in treat-
ing the + and —parts of the Beld as being artificially
independent, the condition

To obtain (14) from an action principle one would there-
fore like to introduce the operator L by functional di8'er-
entiation with respect to an appropriate source (or com-

The expectation value of the Geld is found using the or-
dered expression

(22)

lim t; exp —z J +z J+ + +x exp
+ & ~f, ~ ) ~, )

(23)

Taking the limit + ~ —,one has

(rex)) = (e, exp' —i ~ (14(x)exp rI i ~r((
)

(24)

This shows that the average value of the operator de-
pends only on the past (retarded) history of the system
beginning from the initial time t;. It can be shown (see
Appendix) that the closed time path generating func-
tional is closely related to the generator for the retarded
n-point functions. The acausal (advanced) pieces cancel
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P+(z) = P(z, ) + G, (x, x') J+(x')dV

0—( ) = 4'+(& )+ G, (x, x') J (x')dV

in the limit + —+ —.
So far, the discussion has used the slightly trivial exam-

ple of pure states (tl. As noted. implicitly by Schwinger
[10], the same action principle holds when (tl . It) is
replaced by (tip(t) . It) (a mixture of states) since this
does not affect the conjugate relationship between ampli-
tudes. The nature of the expectation value can therefore
be left out of the discussion for the most part. Indeed,
in practice, the eKect of a nontrivial density matrix in
the expectation value can be mimicked by the introduc-
tion of suitable sources [10,14], a procedure which will
be adopted in the next section. To present the formal-
ism in a way conducive to generalization, the next step is
to present the Green functions for the case of pure-state
vacuum expectation values and then introduce the Gnite
temperature (mixed state) modifications which will be
the starting point for writing down an ansatz for nonequi-
librium.

The above use of generating functionals is closely re-
lated to the path integral approaches of Calzetta and Hu
[1],and I awrie [3]. It proves useful, however, not to pass
directly to the path integral, but to follow Schwinger's
approach. For the reinainder of the paper, Eq. (19)
will be considered the starting point for the discussion of
nonequilibrium Geld theory:

From Eqs. (1) and (19) one obtains the operator equa-
tions of motion for the Geld. Taking the initial time to
be t;, the furthermost future time to be t, and the Gnal
time at which expectation values are to be computed as
tf, then using the boundary condition in Eq. (20):

where G, (x, x') is a retarded (causal) Green function.
Notice that, as the distinction between + and —is re-
moved, these equations reduce to (4). Substituting these
into the exponential solution to (19) and defining a vector
and its transverse by J = (J+J ), one may write

ln(o, t;lo, t;) = i J (z')dV. .Q(z;)
ty

where

too

+i J (x)G(x, x') J(x')dV dV
ti

(26)

G(,)
( 8(x —x')G, (x, x') 0

(27)

and g(z —x') is the step function which satisfies

0(z) + 0(-x) = 1. (28)

As a result of this property, the sum of rows and columns
in (27) is zero. This is a refiection of the triviality of Eq.
(13). It further implies the causality of expectation values
derived from this generating functional. While (27) has
a simple physical derivation in terms of the equations of
motion, a more symmetrical form can be obtained by at-
taching a variational interpretation to G, (x, x ) directly.
Again, following Schwinger, and varying with respect to
the sources,

= &(z*) + G, (x, x') J+(x')dV ~2~. (t. lt. ) = (')'(tl(~2++ —&.s-) (&.S+ —&.~ ) lt),
(29)

G, (x, x') J (x')dV (25)
where, according to the ordering rule, this equals

~2~1(tilt&) = (i)'(tip+(»)p+(») + &-(»)&-(») —&-(»)&+(») —&+(»)&-(»)I') (30)

Comparing the solution of this to

exp
I

— dV dV J G(x, x') J(x')
I

2

one has

(4' (+)z4' (+z)) = iG++(z z )

(&+(z)&-(z')) = &G+ (»z')-
(&-(z)&+(z')) = iG-+(z *')
(4-(z)&-(z')) = iG (z z')—--

(33)
(34)

(»)
(36)

G(**')=
I(G+ G )' (32) As the distinction between + and —is lifted, the assumed

ordering implies that

where G++(x, x') = i(TQ(z)P(z')) = G~(z, z'), (37)
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G+-(*,*') = -'(~(*)~(*'))= -G'-&(-, -'),

G (x, z') = i(Ttp(z)P(z')) = G~~(z, z'),

(38)

(39)
(40)

where

H(x', x) = H(x, x')*

(— + m )G~(x, x') = h(x, x'),
+ ')G&"( *')=o

(— + m )G~~(z, z') = —8(z, z'),

(41)

(42)

(43)

by virtue of Eq. (5) for the field operator. The nonzero
right-hand sides of (41) and (43) are due to the time
ordering. From the time ordering (37) it follows that

where G~ is the Feynman propagator, G(+~ are the pos-
itive and negative &equency Wightman functions, and
G~~ is the antitime-ordered propagator. In the limit of
zero source, these quantities satisfy the equations

and the sum of rows and columns is manifestly zero.
Since the spectrum of the operator — + m2 on the
complex wave e' is solved for any k satisfying a dis-
persion relation, the solution to (42) is the most general
linear combination of plane waves satisfying the disper-
sion relation k + m = 0. This implies that the vacuum
positive and negative frequency Wightman functions can
be written, in n-spacetime dimensions:

G&+l = -2~. .'".~*-*'l"8(kp)S(k2+ m'), (53)
(2m.)"

G = 2vri e'""l* * 8(—kp)8(k + m ). (54)
(2vr)"

—iG~(z, x') = ie(t —t') G~+l (x, x')
—8(t' —t) G~-l(*, *'). (44)

Defining the Fourier transform of G(z, x') by

(55)
Substituting this relation into (37) and using the com-
mutation relations for the field (9) proves (37). Similarly,
(43) follows from the relation

and using the integral representation

G»(»z') = —Gs(z *'). (45) (56)

Using (28), it is now straightforward to see that the sum
of the rows and columns in (32) is vanishing, as required
for causality. A number of additional relations between
the Green functions can be proven. The retarded and
advanced Green functions satisfy

G- (*,*') = -8(t —t') [4(*).4(*')1,
(* * ) = 8(t —t) [~(*) ~(* )l. (46)

Also, in virtue of (28), it is easy to see that

(47)

(48)

These will be useful later and serve to pinpoint the
conventions used in this work. Before considering the
momentum-space representation of these functions, it is
useful to note that G(x, z') can be written entirely in
terms of the formal quantity

H(»*') = '(tl&(z)&(z') lt) (5O)

G(z, z') = 8(t —t')
l

+8(t'- t) I

'* ' '*''.*' I, (»)

The unequal-time commutator and anticommutator
Green functions are defined by

G( *') = [&(*) &(*')1 = G'" + G' '

G(-, -') = «(-), ~(-')& = G"' —G'-'

it is straightforward to show from (44) that

GF(k) =
+ m —ie' (57)

which is fully consistent with (41). C ~~(k) is easily ob-
tained from (45).

Note that, had the symmetrical form of G(x, x') not
been used, similar results could still have been obtained.
It is possible, in the manner of a symmetry transforma-
tion to redefine the Wightman functions so that positive
and negative &equencies are mixed. This simply mixes
up the Feynman and anti-Feynman propagator also. For
instance, if one defines

G~+l(k) = 2vrih(k + m2)[8(kp) + ae(kp) + Pe( —kp)j,

(58)

then the corresponding Feynman propagator becoines

Gy(k) =
k2+ m2 —ie k2+ m2+ie (59)

where the last term is evidently a piece &om G~~. Since
this only complicates the matter, such redefinitions will
not be pursued further.

So far, this summary of the action principle has only
explicitly encompassed pure state expectation values,
which are comparatively trivial. A statistical system
with real particle densities, as well as perhaps a tem-
perature and entropy, is described by a mixture of such
vacuum expectation values (since the character of the
actual pure state is not usually knowable), with the sta-
tistical weight given by the density matrix p. The sim-
plest example of such is a system in thermal equilibrium
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[p = exp( —PII)]. Although a thermal system is quite
extraordinary as many particle systems go, it serves as
a useful reference point, both Rom the viewpoint of for-
malism and from a physical perspective, since very many
physical systems can be characterized by a temperature
of sorts. A statistical expectation value for some operator
X may be written

Gp+ (x, x') = T (tl '"&(x)&( ')lt)
T (tie-~Hit)

T «I -'"lt)
Tr(tie t'HP(x')P(», t+ iP)lt)

Tr(tie
—t'H lt)

—G(-)(», t+ tP, x'), (63)
T (tip(t)x(t')lt)

T (tl~(t) lt)
(60)

which characterizes the average value of X at the time t'
given the state of the system at time t. Notice that the
trace is over probabilities of the form (tlt) rather than
of amplitudes (tlt'). The latter would be meaningless.
The structure of the expectation value is therefore simply
that in Eq. (14) and the closed time path action prin-
ciple applies. Indeed, it is noteworthy that the density
matrix itself is merely an operator which can efFectively
be introduced into the pure state generating functional
by functional difFerentiation with respect to an appropri-
ate source. There is, therefore, no loss of generality in
taking the closed time path action principle at face value
and making no special reference to p.

The cyclic property of the trace in (60) has noteworthy
implications for the Green functions and sources in the
CTP formalism. Consider the expectation value in (60).
This may be rewritten as

where the cyclic property of the trace has been used.
The left- and right-hand sides are precisely the elements
of the oK-diagonal G+ and G +. This property is, in
fact, suKcient to determine the thermal Green functions.

To determine these, in a form which manifestly reduced
to the vacuum case, one writes

G(+) (k) = -2~ [0(k,) + X]S(k'+ m'),
G(-) (k) = 2-[0(-k.)+ n~(k'+-'), (64)

G(+) (k) = —e~"'G( ) (k);

it follows that

with X and Y to be determined. Since the commutator
function G(x, x') must be independent of the state of the
system (in order to preserve the canonical commutation
relations), it follows immediately that X = Y. If one
then employs the KMS condition which, in momentum
space, becomes the definite relation

T ( (t) ei H
(t' —t) X(t)e

—iH(t' t))—
and hence

O(k, ) + X = e~" ~t'[0(-k, ) + X] (66)

T (e
—iH(t' t) (t)eiH(—t' t)X(t))—

T (tlat (t)lt)
(61) where

x = 0(kp) f(lkpl) = f)p(kp), (67)

iH (t' —t) (—t)eiH+(t' —t)x(t))(x(t )) —
~(tip(t) lt)

(62)

The cyclic property of the trace therefore implies that
the density matrix p always sits between the + and
—branches of the operator product and hence it must
always be reflected by the ofJ-diagonal terms in
space. In the special case of a thermal density ma-
trix, the same observation leads to the well-known Kubo-
Martin-Schwinger (KMS) condition [15], by identifying
the inverse-temperature P with imaginary time. This is
seen by considering the thermal Wightman function

where H is the Hamiltonian of the system. Using this
"relativity" between the time dependence of p and X, it
is possible to place all of the dynamical development of
the system in either one or the other. An example of
the use of density matrix time development is given in
Ref. [11].In the CTP formalism, the distinction between
forward moving times and backward moving times makes
Eq. (61) electively:

G(+)(k) = —2~i0(kp)[1+ f(lkpl)]8(k + m ), (70)
1

Gp. (k) = + 2vrif(lkpl)8(k + m )0(kp).

(71)
Another important forin of G~+~ is obtained by per-

forming the integration over ko, thereby enforcing the
role of the delta function in (64). This gives a result
which will prove more useful for calculations later and is
more closely related to the ansatz used by Lawrie in Ref.
[3]:

f (Ikp I) =
p~t (68)

By considering (amongst other things) G(x, x'), it follows
that f(lkpl) is an even function of lkpl thus f(kp)0(kp) =
f (—kp) 0(—kp), whereupon it is trivial to show the uni-
tarity relation

(69)

Note that the fact that G~+~ consists only of positive
frequencies ko is pivotal in this derivation. The Feynman
propagator can now be obtained from Eq. (44) by using
the integral representation of the step function (56). The
thermal Green functions are therefore summarized by
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G~ (x, x') = —2ai exp(i[k (x —x') —ur(t —t')])
dn —1I 1+ 2&&o(I~I)

(2z-) n —1 2fco
[

= —2vri exp(i[k (x —x') —~(t —t')])
dt's

—1A, 1+ f(I~I)
(2vr) 2icu

f

(72)

where f&o(ko) is the function composed of only positive
&equencies. It is now straightforward to verify that the
canonical commutation relations are satisfied, by diKer-
entiating G(x, x') with respect to t' [see Eq. (49)].

This completes the presentation of conventions to be
used in the remainder of the paper. It is convenient to
add here that a bar (e.g. , a) represents an object which
is even, while an object with a tilde (e.g. , a) represents
one which is odd with respect to its arguments.

III. INTERACTION WITH SOURCES

The formalism demonstrated so far has been for free
fields. Free fields are always in a state of equilibrium
and therefore the discussion needs to be widened to in-
corporate collisions or interactions. The present work
will deal with interactions which can be mediated by
sources of the type P(x)A(x, x')P(x'). This includes a
variety of self-interactions, contact with external forces,
and noise or impurity scattering, depending on the na-
ture of A(x, x'). The self-energy of an interactiiig field
theory has this form, for instance, thus sources of the
quadratic type can also be a representation of the low-
est order, self-consistent "particle dressings. " In Feyn-

man diagram language, these represent the resummed
one-loop approximation, Hartree approximation, and so
on. Lawrie [3] uses the notion of such sources to effect
a renormalization (resummation) of perturbation theory
in a real scalar field theory. The same idea is expressed
in a different language in the work of Calzetta and Hu
[1]. Since it is not the aim of this paper to discuss specific
models, the specific nature of the source terms will not be
specified here. Rather the discussion will center around
what general properties such a system might have and a
discussion of possible applications will follow.

In an interacting theory, one normally perturbs about
the Bee field theory. Unfortunately, the dispersion rela-
tion (or "mass shell" constraint) for free particles is no
longer appropriate, since it reBects none of the interac-
tions which "dress" the particles. A more satisfactory
starting point would be a "quasiparticle" mass shell, in-
cluding some of the interaction effects as the basis for a
perturbation theory. This is the essence of a renormal-
ization and can be effected by the use of sources [16].

The starting point for the investigation of nonequilib-
rium fields will therefore be the closed time path (CTP)
action principle, taking the action S for a neutral scalar
boson and supplementing it by quadratic sources. Ob-
serving the CTP operator ordering, one has

S+ —S —+S+ —S + — dVdV T + xA++ x, x' + x' + xA

+& (x')A+ (x x-')0+(x)+-T'[&-(x)A--(* x')&-(x')]) . (73)

It should be clear that no fundamental field theory
may contain off-diagonal terms in + space. The CTP
action principle is, by construction, diagonal, being the
difference between S+ and S [see Eq. (19)]. However, it
was remarked earlier that the effect of a density matrix
must be reflected in oK-diagonal terms so, while such
terms are certainly not fundamental, they can exist as
off-diagonal self-energies representing the dynamics of a
density matrix. Moreover, since o8-'diagonal terms repre-
sent a point of contact between fields moving forward in
time and fields moving backward in time, one might an-
ticipate that oK-diagonal sources would be at least partly
responsible for choosing an arrow of time (the generation
of entropy). The explicit coupling will therefore play an
important role in both nonequilibrium kinematics and
dynamics.

The essential unitarity of the CTP formalism is seen,

&om Eqs. (15) and (16), to be summarized by the fol-
lowing property of the transformation function:

(t'lt')*+ = (t'I t')~ (74)

S++(x, x') = —S (x, x'),
S+ (x, x') = —S—+(x, x').

This, in turn, implies that S p may be written in terms
of real constants A, B,C, and p~,

namely, that complex conjugation merely exchanges +
labels with —labels and vice versa. If one defines in-
dices a, b = +, —,then the operator defined by the
second variation of (73) with respect to the field
S~i, = hathi, (S+ —S ), with S~p ——S++, S+ . . ., satis-
fies the relations
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(— + m, 2)b(z, x') + A(x, x') + i C(x, z')
ab ++ I

B(x,z') + ~&(z, x') D~ —iC(x, x')

( —m') b(z, x') —A(z, z') + iC(z, x') j
(76)

where a new derivative has been defined to commute with
the function p" (x, x'):

D~ = g~ +—p '(x, x') g„p„(z,z').
p P (77)

(78)

Note, first of all, that the sum of rows and columns in
this operator is zero, as required for unitarity and subse-
quent causality. Second order derivatives in the sources
could be rewritten using the field equations (still to be
found) and absorbed into other terms; thus such terms
are redundant. Higher order derivatives are not consid-
ered since they are seldom of interest in practice. There
can be no nonvanishing terms of the form Q+Bp+ without
violating time reversal invariance or merely adding total
derivatives to the action. Finally C g 0 is clearly disal-
lowed in a fundamental theory on the grounds of unitar-
ity. It turns out, by considering the field equations, that
the only fully consistent choice is C = 0, even though
such a term does not violate Eq. (74). Equation (76)
agrees with the form given by Lawrie, up to differences
in conventions and the inclusion here of B(x, x').

The significance of the off-diagonal terms involving p~
can be seen by writing out the coupling fully:

The term in parentheses has the form of a current be-
tween components Pi (the forward moving field) and P2
(the backward moving field). When these two are in
equilibrium there will be no dissipation to the external
reservoir and these off-diagonal terms will vanish. This
indicates that these off-diagonal components (which are
related to off-diagonal density matrix elements, as noted
earlier) can be understood as the mediators of a detailed
balance condition for the field. A similar conclusion was
reached in Ref. [1] by a different argument for the quan-
tity referred to here as B. When the term is nonvan-
ishing, it represents a current flowing in one particular
direction, pointing out the arrow of time for either posi-
tive or negative frequencies. The current is a "canonical
current" and is clearly related to the fundamental com-
mutator for the scalar field in the limit + ~ —.

Using Eq. (76) it is now possible to empress (73) in the
form

ScTP = dV dV PS bP—a b

2

and thus the closed time path field equations may be
found by varying this action with respect to the + and
—fields:

= (— + m )P+(z) +-
+ z 2

= ( —I )&—(z) —— "V* (A —'C)&+(z ) + (B+ 'C)&—(z ) + &"(~p&+(z )) + ~ &p&+(z')

A(x, x')

A(x, x')

B~q„(z,x')

—[A(x, x') + A.(x', x)]

—[A(x, x') —A(x', x)],
1(*
2

&" ~~(»*')+ ~" ~~(z' *)

and setting the right-hand side to zero, which introduces
the notation

To solve this system of nonlocal equations, the best
strategy will be to look for the Green functions, or the
inverse of the operator S b. This is the method adopted
by Lawrie [3]. Although a common strategy will be used
here, the method will be somewhat different in spirit.
The variational approach used in Ref. [1] will not be used
here. Owing to the nonlocality, it is clear that the inverse
operator cannot be a translationally invariant function in
the general case. It must be formally dependent on both
Cartesian coordinate differences and the average coordi-
nate:

The canonical commutation relations which derive from
the action principle [see Eq. (9)] are unchanged by these
modifications, since they depend only on x and therefore
cancel out in the commutator. This is key feature in any
consistent description of nonequilibrium phenomena.

1
x — x Ã

2

1x—:—(x+ x').
2

(84)
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Moreover, since the operator contains ofF-diagonal terms,
which typically signify a nontrivial density matrix, it is
natural to look for a solution based on the form of Eq.
(70), generalized to include a dependence on x. Although
this sounds like an innocent step, it is far &om a triv-
ial undertaking since it introduces nonlinearities in the
spectrum of excitations which must be handled in a self-
consistent way. It is useful to work with the quantity
H(x, x'), from which all the Green functions can be ob-
tained (actually the Wightman function in disguise). Us-

ing either the field equations or the matrix equation

S bG ' = b 'b(x, x'), (85)

one obtains equations of motion for the quantity H(x, x')
[see Eq. (51)]. Not all of these equations are independent,
owing to the symmetry in Eq. (74). In particular, their
consistency requires that C = 0 which is now chosen
explicitly. It is sufhcient to consider

II

(— + m')H(x, x') + dV
~

A(x, x") —H(x, x') —p"(x, x") g„O„p&—(x, x")
~

H(x", x) = 0 (86)

on the understanding that H(x, x') = H(x', x)*. This
relation is to be supplemented by the canonical commu-
tation relations for the field, which appear in Eq. (85) in
the form

Oi (H(x, x') —H(x', x) ) = ib(x, x') (87)

d k
H(x, x') = e'"~*-*'&H(k, x).

(27r)"
(88)

A suitable ansatz for this function, which generalizes the
dispersion relation and the one-particle distribution func-
tion f (ko), is

and complete the consistency of the equations of motion.
The next step in obtaining an intuitive formalism is to

introduce a (local) momentum space technique by Fourier
transforming x and retaining a dependence on the aver-
age coordinate x:

d" k

(2vr)"—' 2~~
~

where it is understood that ko ——~u~. Finally, it is use-
ful to define the derivative with respect to the average
coordinate 8 =

2 (0 + 8 ) and the quantities

O„ln(1+ f), —B„f 1— 1—
1+f 2 P 2 P

0„= " = —0„=—8„ln [~~.

Dphil

1—
2 2

(91)

(92)

represent self-interactions.
It can be verified that, since H(k, X) depends only on

the average coordinate, the commutation relations are
preserved [see Eq. (87)]. A more useful form of (88)
is obtained on performing the integration over kp. This
eliminates the dubious derivative of the delta function
from subsequent relations and leads to a number of help-
ful insights

H(k, x) = 2mg(ko)[1+ f(ko, X)]b[—ko+ (u (k, x)]. (89)

The spacetime-dependent function f(k, X) is often re-
ferred to as the signer function and signifies the inho-
mogeneity in particle occupation numbers. No loss in
generality is incurred by taking this to be a real func-
tion of its arguments. Moreover, even in an interacting
system, the general form of this ansatz will remain cor-
rect, but the form of ~ will need to be modified to reflect
the coupling between the fields, all provided. the scale of
inhomogeneities in the system is reasonably long com-
pared to the scale at which fluctuations occur. If there
is no suitable separation of the inhomogeneity scale &om
the fluctuation scale then the present approach is simply
misguided.

The generalized dispersion relation takes generic form
kp + QJ —0 In the free particle limit ~ = k + m, 2. It

is the determination of this dispersion relation which is of
specific importance, since this determines the spectrum
of excitations for particles in the plasma field, and forms
the basis of all perturbation theories when the sources

IV. DISPERSION RELATIONS

To determine the dispersion relations for given sources
it is useful to distinguish three cases which will be re-
ferred to as the local, translationally invariant, and in-
homogeneous cases, respectively. In the local case, the
sources are proportional to a delta function. In the trans-
lationally invariant case A(x, x') = A(x —x'), and in the
inhomogeneous case A(x, x') = A(x, x).

There are two ways in which one can proceed with the
determination of the dispersion relations. One is to sep-
arate real and imaginary parts and the other is to use
complexified momenta. The latter has several advan-
tages and makes straightforward contact with the classi-
cal theory of normal modes. It will be used exclusively
for determining the spectral relations. Separating real
and imaginary parts on the other hand allows one to
identify imaginary contributions as a Boltzmann-Vlasov
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equation, illustrating nicely the intimate relationship be-
tween transport and dissipation [14].

In order to extract information from the equations it
is necessary to undertake an approximation scheme in
which only low order derivatives are kept in x. This
is equivalent to an adiabatic (or quasistatic) scheme in
which the development of the system is slow in compar-
ison to fluctuations, so that fast and slow moving vari-
ables separate in an assumed way. In fact, this is already
built into the assumed form of the solution for the Green
function, since without such an assumption, there is no
ground for assuming that x and x would separate in the
prescribed manner. For most purposes, this approxima-
tion is quite sound. For the present, there seems to be
no way of eliminating this approximation.

A. Local sources

Clearly, this equation presents an insurmountable prob-
lem for the purposes of analytic calculation; thus an ap-
proximation must be made, based on the adiabatic evolu-
tion of the average properties of the system. The lowest
order case (which will be sufEcient to reveal the features
of interest in this paper) is when O„and derivatives of F„
may be neglected. This corresponds to a near classical
transport of particles, with relatively few of the fluctua-
tions added by the quantum nature of the field. With this
approximation, the dispersion relation may be written

k + m y A(r) + (8~A)—(T" —v"/(u) —B&p„

—E —2i k"F„—ip"k„—p"E„=0.

In the local case, the equation satisfied by H(z, x') is

[
— + m'+ A(x) —0~~„—p"0„]= 0.

This can be separated into a more appealing form as the
dispersion relation for a damped oscillator array

(100)
Note that, since B is an odd quantity, it does not appear
in the local limit. Since one is interested in the variables
x —x' and X, it is convenient to Taylor expand x around
x. Under the Fourier transform this takes the appearance

where one identifies the natural frequency

=k +m —E (101)

the decay constant

(94)
I' = — (O„A)(T" —v"/~) + k"(F„—-—p„), (102)

1 2

It is useful to define a new quantity by and force term

~8
Bk

(1+f)
R = q"F„+O~q„—A(x). (103)

1 OH

H Bk„

where v~ =
&& is the group velocity of the dispersing

wave packets. In terms of the quantities (91) and (92) the
action of the spacetime derivative operator on H(x, x')
gives

d" 'k (1+f)g„H(*,*') = 2 (2~)--i
x [ik„+E„—0„] (97)

and subsequent derivatives are obtained in a straightfor-
ward way.

Substituting H(x, x') into the equation of motion (93)
now leads to a second-order difFerential equation for the
frequency u(X):

~' —2(ik" + E"+,'~&)0„+0'
= k + m + A(x) + (O„A)(T" —v"/(u) ——8&p„

F —2i k"F„—0"F„—i k"p„—p—"F„. (98)

(the steepness of the spectral envelope for the Wigner
function) so that

One notices how the efFective mass of the theory is re-
duced by the gradient of the Wigner function E„, ind. i-
cating that rapid transport could lead to a second-order
phase transition. This might also lead to anomalous dis-
persion.

In a true linear oscillator array B, I', and uo would all
be independent of the frequency ur. In Eq. (102) only the
zeroth component of the 1.ast term is independent of u.
This indicates that the decay or amplification of certain
modes in time is oscillatorhke, but that the spatial modes
are multiplied by a factor of k/u, the inverse phase veloc-
ity, which has a critical value when m/k is a maximum.
This signifies the efFect which a gap in the &equency spec-
trum can have in leading to anomalous dispersion in the
"plasma. " At high frequencies I' m k (Fo ——po) and the
system is oscillatorlike. At low frequencies, damping is
dominated. by the external potential A and by transport
as one might expect.

B. Translationally invariant sources

In the translationally invariant case, all variables are
a function of a —m'. One may therefore fully Fourier
transform the sources:
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A(x —x') = e'"l* - l"A(k),(2~)"

~w(x xi) ai„(x—x )"—
P(k)

(2m-)"
d"kB(z —x') = e'"~(*—* )"iB(k).(2'�) (104)

Although the translationally invariant theory describes
only steady-state disequilibria, it is nevertheless seen that
the Geld oscillations are concentrated around the usual
mass-shell uo with an amplitude driven by the external
force

(Ios)

Note that, since B is an antisymmetric function, a factor
of i is introduced to keep B(k) real. The equation of
motion. for H(z, x') is now

IT +m ]H(x, T')+ f dV A(T —x") —H(2: —T')

ll

—~&(x —x') g„—(0~~„) H(x", x') = O.

and a quality factor Q = coo/I'. Such a steady-state de-
scription would be appropriate for an "inGnite laser, " i.e. ,
a device which is not affected by any Gnite size consider-
ations.

C. Inhomogeneous sources

(Io5)

The translational invariance enables the latter spacetime
integral to be performed immediately, yielding the dis-
persion relation

The main case of interest is when the sources and
Green functions have a residual dependence on the aver-
age position and time. This includes the local limit as a
special case:

k + m + A(k) —2ik"y„—iB(k) = 0. (106) A(x, x') = n(x —x')P(x + x'),

An apparent consequence of the translational invariance
is that E„=0 owing to the steady state nature of the
system. Comparing the dispersion relation to Eq. (100),
one identiGes

n —
& b(x —x'),

P -+ A(x) = A(x'). (1o9)

I = —k"p„+B(k),2

(uo —k +m
R= —A(k) . (107)

As usual, one is looking for the eigenspectrum of the
quadratic operator acting on H(z, z'). The equation sat-
isfied by H(x, x') is now

II

[— +m2]H(x, x') + dV A(z, x") —B(z,x") —p" (x, x") 8„0&p„H(x"—, z') = 0 . (11o)

In the inhomogeneous case there is no dispersion relation consisting of continuous frequencies in general so the
dispersion relation will only exist for a discrete set. It is convenient to divide the discussion into two parts: the
determination of the dispersion relation and the nature of the restricted set of values which satisfy the dispersion
relation.

The problem to be addressed is contained in following form in momentum space:

(
— + m')H(x, x') +

n n
dV expi[k(x —x") + ip(x" —x')]S(p, x" + x') H(k, x" + x') = AH(x, x').

(2~)" (27r)"

The integral over x" is no longer a known quantity in general, but it is possible to extract an overall Fourier transform

by shifting the momentum p ~ p+ k and defining the average variable of interest x =
z (x + x'):

(k +ik"0„—-' + m, )H(k, x) + d& e'"( )S(k, x+ x")H(k+ p, x" + x') = AH(k, z).
(27r)"

(112)

In order to find eigenvalues, required for a stable expan-
sion in Fourier space, it is necessary to extract the factor
of H(k, x) from this expression. This is not possible for
arbitrary values of k. It is possible, however, if the mo-

menta are restricted to a denumerable set expressed by
the property

H(k+p, x" +x') =H(k, x" +z'),
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which implies that H(k, X) is a periodic function of the
momenta. Note that this condition expresses the nonlin-
earity of the nonlocal equation in a particularly simple
form and moves the problem of nonlinearity &om the
functional form of H(k, X) to the set of discrete kinetic
energies k which satisfy the dispersion or mass-shell con-
dition. Clearly, the source of the inhomogeneity acts as
a potential which tends to localize the Geld. This is sim-
ilar to what happens in Umklapp processes where the
loss of translational invariance induces a periodicity on
the wavevector. The absence of eigenvalues or the failure
of this property leads to the consideration of an in6nite
iterative mapping of states, which —in the absence of a
stable limit —is suggestive of chaotic excitations of the
field, though further analysis is required to show this
(see later). This can also be argued geometrically (see
the final section). Given this mitigating condition, one
has

H(k) =H ) (117)

where P„ is the momentum periodicity length (which has
dimensions of inverse space length). This finite length
must d.iverge to infinity when the inhomogeneities van-
ish. There is only one natural momentum or length scale
which has these properties: namely,

L„=P„=O„H(k, X).

In deriving (114) we have used the fact that

(118)

gal values of the momentum, thus the implication is that
the systexn may be degenerate, i.e., there exist bands of
energy which leave the Green function invariant under
certain shifts. These need not all refer to the same band.
It is, therefore, possible to write

6
dV e'i'~* lS(k, x + x")H(k + p, x" + x')

(27r)"
= S(k, X)H(k, X) (114)

assuming slowly varying x. The dispersion relation is
now obtained in a straightforward fashion, adopting the
same adiabatic approximation as before, and is given by
the implicit relation

k + vn + A(k, x) + (O„A)(T"——v"/(u) —iB(k)
—B&p„(k,x) —(F —N) —2ik" (F —N)„
—2ip" k„—p" (F —N)„= 0,

where it is noted that (k) is now discontinuous. Note
that the antisyminetry of B(k) makes it independent of
x. Comparing to the oscillator equation, one has

I' = — (B„A)(T" —v"/u))
1

+ k"(F„—N„—+ p„) + B(k),2

u)p2 = k + m —(F —N)
A = p"F„+B&p„(k,x) —A(k, x), (116)

where N„will be de6ned presently.
We now turn to the consequences of the condition in

Eq. (113). There are various precedents for such a re-
lation: one is Green functions defined on a torus (finite
temperature, Matsubara formalism, and electron band
structure); another is the case of Landau levels on a
torus. Although these are equilibrium situations, the
slow nature of the inhomogeneity scale makes the sit-
uation dircectly analogous. The periodicity is clearly the
important factor here. In most of these cases the peri-
odicity is one in real space and the result is a discrete
spectrum of eigenvalues. Here the periodicity lies in the
momentum itself. In fact the two notions are closely
related and a periodic system in real space has Green
functions which are periodic in momentum space owing
to an infinite summation over discrete &equencies (which
is therefore invariant under shifts by a whole number of
periods). The relation (113) must be satisfied for all le-

n+1 . nx x) sin(kx) = sin sin cosec-,
2 2 2

'
k=z

n+1 nx x) cos(kx) = sin cos cosec —,
2 2 2

'
A:=o

(120)

that an extra finite imaginary contribution can arise from
the discrete nature of the spectrum, which vanishes in the
continuous limit. It will be assumed. that such a contri-
bution can be absorbed by a redefinition of the sources.

Although one is looking at periodic functions, the so-
lution for H(x, x') need not be sinusoidal. In the case
of Landau levels on the torus [17,18], periodicity is only
achieved at the expense of a Aux-quantization condition
which, again, involves a degeneracy of solutions. There
is, in fact, an analogy to this situation here. The ex-
traordinary properties of Landau levels on a torus can
be attributed to the nontranslational invariance of the
electromagnetic vector potential. The similarity here is
the nontranslational invariance of the many-particle state
as expressed by the dependence on x. This point wi11 be
discussed at greater length in the Gnal section, to avoid
its meaning being lost in the present analysis.

The extra terms containing N„can now be explained.
They arise from the x depend. ence of the momentum
space measure:

(2vr)" ".
I L„ {121)

giving a contribution

(122)

which compounds the nonlinearity. The above restric-

exp(ikx) = h(x) .
(27r)"

Since A: is now restricted to a discrete set, the correctness
of this relation could now be an issue. It can easily be
verified using the formulas
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tions have no special consequences for the Feynman prop-
agator, since the nature of the momentum is not used to
obtain it. This is gratifying since the Feynman propa-
gator must always be the literal inverse of the quadratic
part of the + time-ordered action. Only the nature of
the singularity is altered in accord with the modified dis-
persion:

1
Gp(k) =

2 . +2vrif(k, x)h( —ko+sr )8(ko).
0

(123)

The appearance of a natural length scale, connected
to the inhomogeneities of a nonequilibrium system, is an
important feature for two reasons. First, the sponta-
neous generation of a length scale implies the possibil-
ity of domain formation, or a cellular localization in the
field. Second, the dependence of the Green functions on
themselves implies that the stable solutions of the sys-
tem can be regarded as fixed points of an iterative map.
Such maps have been studied in connection with classical
chaotic systems [19].

Although more work is required to place this intu-
ition on a firmer footing, many of the key signatures of
highly nonlinear phenomena are present in the semiclas-
sical structure which is unraveled in this analysis. In the
present case, the function H(k, x) depends not merely
on itself but on its derivative. For exponential-like so-
lutions one could expect that this would amount to the
same thing, up to a constant multiplier. The situation
would then be something akin to H = H(AH), for some
constant A. This bears a noteworthy similarity to Feigen-
baum's functional equation which can be written

V. ENTROPY) TEMPERATURE, AND THE KMS
CONDITION

For systems close enough to a thermal state, it is pos-
sible to define an approximate temperature and entropy.
The entropy of the system may be defined in various
ways, often based only on combinatorial considerations
of the micro-canonical picture. Here it is convenient to
define an "oscillator effective entropy" which is easily re-
lated to quantities which arise in the analysis. Suppose
the Wigner function is given by the approximate equilib-
rium form

f(ko, X) = [exp (P(x)ur(X)) —1] (127)

then one has

(12S)

and, classically, the statistical entropy S is

S = k(lnZ+ P(~)). (129)

1
lnZ = —Tr(1 —e ~ ) ——P(~),

2

thus the oscillator entropy may be defined as

(130)

S = —P(~) + Trln(1+ f)
1

2

This motivates the definition of a simple measure of en-

tropy for the oscillator array, given by

For a harmonic oscillator, one has (see, for example, Ref.
[20])

g(*) = ~g(g(xl~))

subject to a boundary value, or rewriting:

(124) d"k
S~(X) = 8(ko) ln(1 + f)8(—ko + u ). (132)

(2m.)

The rate of change of this entropy is then

g(g(Ax)) = Ag(x). (125)

This equation has an analytic solution as a power series

d" ~k ln(1+ f)
(2~).-i

A:&0

g(z) = I+cyz +c2z + ~ (126)
d"—'k (1+f)

(
(133)

where a limiting value is approached through a geometric
progression with Feigenbaum ration T = 4.66 and uni-
versal scaling factor o; = —2.5. Solutions to this equa-
tion which fall outside the fixed point behavior can gen-
erally be expected to lead to chaotic behavior and thus
the nonequilibrium Green functions which map the field
onto itself at neighboring sites and intervals will have
this structure. This strongly suggests that the Green
functions must either exhibit universal behavior or chaos
in their approach to stable behavior. In other words,
the approach to equilibrium need not be of the simple
damped or overdamped form of a linear oscillator array,
it could likely entail a chaotic attractor. The remainder
of the results in this paper do not depend on Eq. (117)
or the subsequent discussion.

This quantity can be compared to (97). It shows that
the entropy gradient can be thought of as a "connection"
for the field modes. The generation of entropy is there-
fore fundamentally connected with the flow of particle
occupation numbers and the "downgrading" of the &e-
quency spectrum, i.e., the rate at which energy becomes
unavailable to do work.

As mentioned earlier, the effect of a nontrivial den-
sity matrix, either at the initial time or later, is reflected
in the off-diagonal sources and Green functions. If one
imagines that the sources A~~ arise from a coupling to
another oscillator system [10] or that they represent the
self-interaction of the field to order P, then A~~ is es-
sentially the Green function for the field concerned and
one would therefore expect the KMS condition to hold
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for the sources at equilibrium, now in the form

0(I~I)A+-(~) = e~ 0(—I~I)A-+(~). (134)

B((u) = e~ —B(ur) . (135)

It is verified that

This condition does not hold in general, but for an
isoentropic process, in terms of the defined quantities at
p" = 0, one therefore has

The decay of field modes is exponential, per mode,
and is mediated by the source p" (x, x') and the gradient
of the potential A(x, z'). This does not preclude other
behavior for the Wigner function. For example, in the
simplest case close to equilibrium in which the system
is quasistatic and A = B = 0, with almost no external
force [see Eq. (116)],one has p„E„and thus 0"F„+
F 0 giving F~ ~ x a "long tail" power law decay
which parallels the decay of harmonic waves in curved
spacetime [22].

(136) VI. CALCULATION OF EXPECTATION VALUES

giving A+ ——sinh(2P~ur~)a(u) for some a(w) or

~-Pl~I
B((u) =

( (

——tanh(2P)cuf), (137)

which agrees with Schwinger's result [10]. Note that the
initial state f (x;) and its subsequent development enter
only as boundary conditions to the Green functions and
the Wigner function. The changing form of f (x) is deter-
mined solely by the sources A~~. Thus, if the sources do
not evolve, neither does f (x) and nor does the implicit
density matrix. In the perturbation around free field the-
ory [1], f(z) always represents the state of the system at
the initial time.

In the approach to equilibrium one normally expects
that dependence on the average coordinate x to disap-
pear. This is an expression of what is often called "loss
of memory" of the initial state, since z is measured rel-
ative to the initial time. An equilibrium state (thermal
or otherwise) is, by its nature, either static or periodic;
thus the resulting Wigner function f (kp, z) inust either
be independent of x or a periodic function of this vari-
able. One of the advantages of the present formulation is
that one sees how the sources are responsible for this loss
of memory. Since the sources drive the system, f(kp, z)
can never become x independent as long as the sources
are x dependent. Thus equilibrium will only be secured
by accounting for the back reaction of the sources to the
behavior of the field. Explicit equations of motion for the
sources have not been considered here.

An example of a periodic "equilibrium" is the case of
Rabi oscillations in the laser (see Ref. [21] for a review), in
which the source and the field enter into a pendulumlike
fIip-fIop behavior. An example of this wiH be given in the
final section.

The closed time path formalism codifies the causal re-
lationship between source and response, for the computa-
tion of expectation values in a general mixed state. Since
it is redundant except as a calculational aid, its intro-
duction should be justified by an example. The causality
of the method is not affected by the introduction of the
sources A~~, but the dissipative dynamics are. Normally
a fundamental Gaussian theory can never show dissipa-
tion, but in the present situation one has sources which
can drive the Geld modes and redistribute energy.

There are two cases of interest. In a self-interacting
theory one might identify A~~ with the correlation func-
tion for the Beld itself AG~~, giving rise to dispersion
relation of the approximate form

k' + m' + ATr(k' + m') ' = 0. (138)

This is like the variational method used in Ref. [1].
Lawrie [3] takes the view that the sources can effect a
renormalization of a self-interacting theory by choosing
them in such a way as to "minimize" the effect of higher
order perturbative contributions. In either case, the ef-
fective "resummation" induced by the sources makes it
possible to see damping of Beld modes at the one-loop
(Gaussian) level.

Consider the response of the field to the source J(x),
in the presence of A~~. One is interested in the causal
expectation value of the field at time t, given the state of
the system at the initial time. The time dependence, in
the present formalism, is now contained entirely within
the sources, or equivalently the dispersion relation. That
the CTP generator leads to a causal result is easily ver-
ified by realizing that the expectation value of the Geld
is always coupled to the sources by the retarded n point
functions. For an arbitrary action S[P],

b 1
(P(x)) = i (0~0)~ = —— dV [2G++(x, x') + G+ (x, x') + G +(x, x')]J(x') +

b J+(x) 2

1
dV [2G++(x, x') + G~+l —G~ l]J+

2
dV [G++(x, x') —G~ l]J(x') +-

dV~ G„g(x, x') J(x') +

thus the expectation value depends only on retarded times. Furthermore, the result is real (being a probability) since
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the retarded Green function is explicitly the real part of the Wightman functions, restricted to retarded times by a
step function:

G„,(x, x') = —0(t —t') G +l (x, x') + G~+l*(x, x') (140)

Making use of the integral representation (56), one has

(141)

Relabeling and inserting the momentum-space forms for the Wightman functions from (70), one has

1 ( 1 1
G...(k) = — d~ .

~

b'(~ —~+) — h(~+~ ) ~,
ko —(d + z t E ld+ (d

(142)

where su+ and —u are the positive and negative &e-
quency solutions to the appropriate dispersion relation.
These are complex numbers in general, owing to the non-
vanishing imaginary part labelled as I'. Now, since uni-
tarity demands that G~+l (z, z') be the complex conjugate
of G~ l(x, x'), it is clear that

(d+ (143)

It is assumed here that the dispersion relation has two

complex roots. The quantity appearing in the delta func-
tion in Eq. (89) is then —ke + w+w which may also be
written —ko+ u*u. To avoid confusion with previous no-
tation for the absolute value, the complex modulus will
not be denoted ~u~. This indicates that, in spite of the
complex momenta in the dispersion relation, whose role
it is to capture dissipation and transport or kinetic ef-
fects, the "mass shell" constraint is real. The simplest
expression for the retarded Green function is therefore

1
G„z(k) = —

i(2~+(kp —(u+ y ie) 2~ (ke —(u +ze))~ ~ (144)

This expression is not manifestly real, since it is a momentum space result. However, if one defines 2i~ = u
and 2~ = u+ + ~, where u and ~ are real, then it is possible to write

1 6 (i~ko —ur*u) + 2~2) ( ke2 + ~'—(u —4ikp~) l
(—k02 + u)*(u) 2 + 16k02~2

(145)

This may be compared to Eq. (108) and reduces to

1
—k +(u2 (146)

when co* = u and e ~ 0. Since the imaginary part of
(145) is odd with respect to the momentum variable k,
the Fourier transform back to configuration space is real,
as expected. The desired expectation value is therefore
manifestly real and causal, and the time dependence since
the initial time is contained entirely in the x dependence
of the &equency u. D„=6„—a„ (147)

and its square

corporated into the dispersion of a quadratic theory, for
suitably adiabatic processes. It is now of practical in-
terest to show that the same results can be presented
in another significant form by introducing a "covariant
derivative" D„which commutes with the average devel-
opment of the field state. This description parallels the
structure of a gauge theory (in momentum space) with
an imaginary charge. Alternatively, one may speak of a
generalized chemical potential for the "gauge" field.

Consider the derivative

VII. REFORMULATION D = —8"a„2a"8„~a"a„. — (148)

In the preceding sections, it has been shown how dis-
sipation and amplification of spectral modes can be in-

Without any approximation, it is straightforward to show
that, in the general inhomogeneous case,
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(— + m )H(x, x') = 2~ e'"( ) {—(ik„+Il„—0„—N„) —0"(ik„+.I"„—0„—N„)) . (149)
d" k (1+f)

It is then natural to make the identification

a„=E„—0„—N„+ p„
= ct„S@(k)—N„+ p„, (150)

where the meaning of this notation is such that the expression only defined when all objects are under the momentum
integration, this is to be understood in all future expressions. The field a& is clearly related to the rate of increase of
the entropy S~, the damping factor p+, and the rarefaction of the localized cells N„. One now has

d" k
(—D'+ m')H(x, x') = 2~

d" ik= 27' (2')"—i

(1+f)
21~1

(—(ik —p ) —c)"(ik —p ))

jk + 2ik"p„—p —i(c)"k„)+ (c)"p„)).
1+
2 Ld

(151)

Adding the appropriate source combinations for the inhomogeneous case one has, without approximation, the diKer-
ential equation satisfied by H(x, x'):

D+ m—+ p (k, X) + A(k, X) —B(k) + —(c)„A)(T" —v" /(u) H(x, x') = 0,
A:

(152)

where the appearence of the subscript A: to the bracket
serves to remind that the equation only exists under the
momentum integral. The local limit is simply

[—D' + m2 —p'(x) + A(x)]A, H(x, x') = 0. (153)

The "gauge" Geld a& couples via an imaginary unit
charge plays the role of a generalized chemical potential
on the manifold of positive energy solutions for the real
scalar field (the chemical potential has no meaning for
the full field, since particle numbers are not conserved).
Suppose now that one defines the analogue of the Geld
strength tensor

f~v BgsQv C)vQp ~ (154)

In many cases one will have f„„=0, thus one can "gauge
transform" the Geld. , which maps

P(k) m P(k)e~ ~d*

y(k)
—f (F„—0„N„P„)dz"— —

y(k) s~ f (N„+P„—)dz"— (155)

This shows the explicit decay (amplification) of the kth
field mode. The latter relation shows that this process
involves an increase in the effective oscillator entropy of
the system.

In terms of the above formulation, the spectral content
of the bosonic theory reduces to the problem of finding
the eigenvalues of the operator D2. In particular, one
can use the body of experience gained in the study of
gauge theories to attack the problem. With an adiabatic
approxiination for f(X, k), a„has a series expansion in
powers of x. Thus for quasistatic systems

(co + cix+ ' ' ') p ~ (156)

The efFective field strength f„„need not always be zero.
Two situations might arise: (i) the Wigner function
might contain a logarithmic singularity, as in the case
where vortices are present, and (ii) the source p„could
contain components which specifically drive the macro-
scopic field in a given way. A simple example of the
latter is the analogue of Rabi oscillations in the laser, in
which the Geld oscillates between two states in a regular
way. Here, this oscillation is driven by the source p„or
perhaps by a pulsation of the inhomogeneity scale, and
occurs f'rom the linear terms in Eq. (156). The current

J = P2 D Pi behaves like a magnetic influence on the
system (doing no net work). Simplifying to the case of a
(1+ 1)-dimensional system, one may write

+p 17lep (157)

for constant IpI and p, v = 0, 1. This corresponds to a
harmonic "Hip-Hop" motion between Geld and source. It
is also directly analogous to the well known problem of
Landau levels in an effective magnetic field IpI.

The localization in spacetime resulting from the inho-
mogeneity scale suggests that such oscillations may take
place locally in cellular regions. A simplified model for
this is to impose periodic boundary conditions on the
cells, generating a kind of global field coherence (this is
admittedly motivated by technical simplicity rather than
physical reasoning). One is therefore led to the study
of Landau levels on the torus, a system which has been
studied at some length [18,17], and which will not be
reanalyzed here.

A significant feature of the Landau problem on the



QUANTUM FIELDS IN DISEQUILIBRIUM: NEUTRAL. . . 7119

torus is that the periodicity enforces a flux quantization
condition on the field. Here this translates into the fol-
lowing relation:

8OH(A:, x)BiH(k, x) ~p~
= 27m

for integer n. This relation indicates that nearest neigh-
bor cells might engage in cooperative oscillations (i.e. ,
the size of cells is quantized in units of the local inhomo-
geneity scale). This is clearly a far less stringent condi-
tion here than in the case of a true periodic torus, since
the inhomogeneity scale varies in space and time so that
the meaning of strict quantization is lost. However, it
indicates that one can expect a tiling of spacetime by os-
cillation cells. Since the size of the cells might be highly
irregular, the tiling behavior is most likely to be chaotic
unless special geometrical boundary conditions can en-
force a regularity on the field. This is an alternative ex-
pression of the behavior deduced from the Green function
in Eq. (113).

VIII. CONCLUSION

Schwinger's closed time path action principle has been
applied to the neutral scalar meson, ofI' equilibrium, in
the presence of long-range, inhomogeneous sources. The
method of dispersion relations is used to find formal ex-
pressions for Green functions which reflect the absorba-
tive and amplifying processes in the normal modes of the
field. In the case of self-interacting theories, the sources
can be thought of as representing P interactions to one-
loop order, efI'ecting a resummation of the theory. The
effect of rapid transport (large I"„)is to induce a change
in the sign of the mass squared, indicating a second-order
phase transition and anomalous dispersion.

If significant inhomogeneities or long range interactions
exist, the field naturally forms localized cells with (to
lowest order) a periodic relationship to the natural inho-
mogeneity length or time scale. This is shown from the
viewpoint of the Green functions and by recourse to an
analogy with Landau levels on the torus. Since the length
scale is determined by nonlinear considerations, one can
expect chaotic behavior with islands of order (stable fixed
points) along the approach to equilibrium. A simple ana-
logue of Rabi oscillations in the laser is shown to arise as
a leading order behavior in x.

The method used in the this work has the advantage of
combining the fundamental aspects of an operator field
theory with the usefulness of the action principle. The
use of generating functional ultimately leads to functional
integral forms, as used almost exclusively in the litera-
ture. However, the introduction of the functional integral
is scarcely necessary using the present method and often
has the undesirable efI'ect of turning the discussion of
causality into one of complicated paths of integration in

I

the complex plane.
Comparison to other works reveals both difI'erences and

similarities. Lawrie [3], for example, treats the quantity
p" as an explicitly written imaginary part of the spec-
trum of excitations. He ignores E~, but does not ig-
nore 0„. This is a somewhat difI'erent approximation
which has a more distant relationship to classical trans-
port theory. In fact, since the appearance of E„and 0„
in a„ is identical, up to a sign, the form of dynamics
might well be independent of the approximation used in
this work, understandable as a reparametrization of an
equivalent problem. Lawrie further considers P theory
and uses a renormalizationlike philosophy to determine
the sources self-consistently, thereby effecting a resum-
mation as noted in Eq. (138). Calzetta and Hu [1] use
a variational principle to determine the efI'ective action
for a self-interacting boson theory. This is the same idea
as in Ref. [3], expressed in extremely aesthetic formalism
and containing important insights into the subject; the
solution to their method is, in practice, more difIicult to
attain however, and thus results are mainly formal. Nei-
ther of these works considers the implications of nonlocal
efI'ects. Another interesting approach is the Schrodinger
quantization approach in Ref. [11]. This makes a con-
tact with the Schwinger action principle at a more subtle
level and, focusing on somewhat different issues, uncovers
features absent in other formulations of nonequilibrium
physics.

It will be important to extend the present analysis
to include both fermions and spin-1 bosons (true gauge
fields). The latter is probably a diKcult task in view
of the problems which can arise in gauge fixing. Again,
the action principle approach, starting &om the opera-
tor field theory, is likely to be the most informative ap-
proach. The appearance of discrete spectra and magnet-
like effects makes the present work very interesting to the
study of the fractional quantum Hall eKect. In particular,
the pseudo-gauge field formulation might have interest-
ing connections with the statistical gauge field employed
in the Chem-Simons gauge theory picture. The present
formalism might also be useful for describing many situa-
tions in nonlinear optics, such as the localization of light.
These and other outstanding issues will be discussed in
future work.
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APPENDIX: RETARDED 1V-POINT FUNCTIONS

The retarded n-point functions are defined by

(n = O) B(x) = = P(x)
(n = 1) Z(x, x, ) = = —ze(x —x, )[y(x), y(x, )]

P;
(A1)
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Z...(x) = (Tte '~~) (Te'~4')b

8J(x) (A2)

generates the n-point functions according to the rule

where P, signifies all the permutations of the indices on
x;. This is strictly defined only when all the x; are dif-
ferent. The coincidence limit is often defined by recourse
to the momentum representation.

The retarded functions have the following properties:
(i) R(x, xi. . .x„) vanishes if any x, ) x (with respect
to the time), (ii) R(x, xi. . .x„) is a symmetric function
of xi. . .x, and (iii) the retarded Green functions are
always defined with respect to a special point z which is
later than all other points.

It may be verified explicitly that the Schwinger-
Symanzik generating functional

h b l" . „bR(*» "* ) I ~J +~J l (—i)"~J (01o)+

(A4)

Finally, it can be observed that the Hermite polyno-
mials are generated by the generating functional

H„(z) = (-I)"e' edz" (A5)

The step functions are enforced by explicit cancellation
of field operators for times outside the bounds of the
constraints. The above generating functional is clearly
related to the closed time path generator, and it is easy
to see that one may also write

R(x, xi. . . x„) = (—i)" Z,.g(x)
J=O

and can therefore be expected to play an important role
in the computation of the transformation function for a
quadratic theory.
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