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Evaporation and fate of dilatonic black holes
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We study both spherically symmetric and rotating black holes with dilaton coupling and discuss
the evaporation of these black holes via Hawking's quantum radiation and their fates. We find that
the dilaton coupling constant o. drastically aKects the emission rates, and therefore the fates of the
black holes. When the charge is conserved, the emission rate from the nonrotating hole is drastically
changed beyond n = 1 (a superstring theory) and diverges in the extreine limit. In the rotating cases
we analyze the slowly rotating black hole solution with arbitrary o. as well as three exact solutions:
the Kerr-Newman (n = 0), Kaluza-Klein (o. = v 3), and Sen black hole (n = 1 and with axion field).
Beyond the same critical value of o. ~ 1, the emission rate becomes very large near the maximally
charged limit, while for 0, ( 1 it remains finite. The black hole with 0. ) 1 may evolve into a naked
singularity due to its large emission rate. We also consider the efFects of a discharge process by
investigating superradiance for the nonrotating dilatonic black hole.

PACS number(s): 04.70.Dy, 04.50.+h, 04.62.+v

I. INTRODUCTION

The unification of all fundamental interactions includ-
ing gravity is one of the final goals of theoretical physics.
The electromagnetic and weak interactions were uni-
Ged by Weinberg and Salam, and grand unified theo-
ries (GUT's) have been proposed as a unification model
of three fundamental interactions. In this unification
scheme, all interactions are described by gauge fields.
Furthermore, supersymmetry is proposed to unify inter-
action (bosons) and xnatter (fermions), and gravity could
be included in a supergravity theory. Such unified theo-
ries are sometimes discussed in higher dimensions. Then,
the idea of superstrings arises as an approach to the uni-
fication of all interactions and particles, giving a "theory
of everything. "

Then we have recognized that gravity is one of the
most important keys for unification. In order to under-
stand the role of gravity in a fundamental unified theory,
it is necessary and helpful to study concrete physical phe-
nomena with strong gravity such as cosmology or black
holes. We find new aspects of gravity and other fun-
damental fields through such theoretical studies, which
might give us hints about unification.

In the effective theories derived &om the higher-
dimensional unified theories [1), the dilaton field couples
to other known matter fields. The coupling constant de-
pends on the fundamental unified theory and the dimen-
sionality of spacetime. Thus it is important to study how
the coupling a8'ects physical phenomena. The coupling
plays some important roles in black hole physics [2] as
well as in cosmology [3]. In this paper, we further study
efI'ects of a dilaton Geld on black hole physics, and in
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where P and F„„area dilaton field and U(l) gauge field,
respectively, with a coupling constant n [4]. For a su-
perstring, we may also include an axion field H&„z. The
action is then

S= d xQ —g B —2(V'P) —e ~F1

16m

——e 4&H'1 4

12 (1.2)

The action (1.1) reduces to the Einstein-Maxwell the-
ory when the coupling constant 0, = 0. The black hole
solution for this case is the well-known Kerr-Newman
family. The case of n = ~3 corresponds to the
four-dimensional efI'ective model reduced from the five-
dimensional Kaluza-Klein theory. The action (1.2), in
which the dilaton coupling constant a to the U(1) gauge
Geld is unity, is a bosonic part of the low energy limit of
superstring theory.

The exact spherically symmetric dilatonic black hole
solution with arbitrary coupling constant n is known [2,
5]. They have some interesting thermodynamical prop-
erties, which are not found in the conventional charged
(Reissner-Nordstrom) black hole. In particular, the tem-
perature of the black hole in the extreme limit depends
drastically on o.. If o. ( 1, the temperature of the black
hole vanishes in the extreme limit, as does that of the
Reissner-Nordstrom black hole. On the other hand, the
temperature of the extreme black hole with o. & 1 di-

particular we will analyze the role of Hawking's quan-
tum radiation.

We consider the model with a dilaton Geld coupled
to a U(1) gauge field, i.e. , the Einstein-Maxwell-dilaton
theory. The action is

1S = d xQ gR —2(—V'P) —e ~F
16m
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verges. For n = 1, it is a nonzero Gnite value. This new
thermodynamical property implies that the emission rate
of Hawking quantum radiation may be completely diR'er-

ent, depending on the coupling constant. We expect that
when o. & 1 the emission rate diverges in the extreme
limit, because the temperature diverges. The black hole
may evaporate very rapidly. However, it was pointed out
[6] that for n ) 1, the effective potential, over which
created particles travel to an asymptotically Hat region
to evaporate, grows infinitely high in the extreme limit.
Hence, Holzhey and Wilczek expected that the emission
rate will be suppressed to a finite value. Since these two
features are competing processes in Hawking radiation, it
is not trivial to decide whether or not the emission rate
f'rom the extreme dilatonic black holes with n & 1 di-
verges. Thus, we analyze the emission rates numerically
under the assumption that the charge is conserved, and
clarify what happens in the extreme limit. This is the
main purpose of the present paper.

In addition to the spherically symmetric black hole,
rotating dilatonic black holes also have similar thermo-
dynamical properties [7—9]. We considered superradiance
around the rotating dilatonic black holes in the previous
paper [9] and showed that there is a critical value (n 1)
beyond which the emission rate changes drastically. In
this paper, we extend our analysis to include the role of
the temperature, i.e., Hawking quantum radiation, which
automatically includes a superradiant effect, and discuss
the fate of rotating black holes due to the evaporation
process. We only know two exact rotating black hole so-
lutions for the action (1.1): the Kerr-Newman (n = 0)
and Kaluza-Klein solutions (n = v 3) [10]. In the super-
string case (n = 1), Sen [8] derived a rotating black hole
solution for the action (1.2). This solution is not exactly
the same as those in the model (1.1), but we expect that
the existence of the axion Geld will not drastically change
the dependence of the emission rate on the dilaton cou-
pling. Hence, we analyze these three black hole solutions
and compare their emission rates. In addition to these
exact solutions, we consider an approximate solution of
slowly rotating black holes with arbitrary coupling n [7,
11].

All rotating dilatonic black holes reduce to the Kerr
solution when their charges vanish. We expect that the
coupling constant dependence is most noticeable when
the black hole is highly charged. We therefore analyze
Hawking radiation &om highly charged black holes. As
we know, a charged black hole generally emits its charge
at a high rate in the process of evaporation and so its
charge will be quickly lost, unless the charge is conserved.
Because we are now interested in the effect of the dilaton
coupling on the emission rates, we first assume that the
charge is conserved, which is true for a central charge.
We then study the discharge processes to see how it is
affected by the dilaton coupling.

This paper is organized as follows. In the next section,
we study Hawking radiation for a spherically symmetric
dilatonic black hole and analyze the behavior of the emis-
sion rate in the extreme limit. The emission rates from
rotating black holes are presented in Sec. III. It is as-
sumed that the charge of the black hole is conserved. We

discuss the evolution and fate of these black holes. The
effects of the discharge process are considered by calcu-
lating superradiance in the spherically symmetric black
hole in Sec. IV. Finally, we give our conclusions and
remarks in the final section.

II. HAWKING RADIATION
FROM SPHERICALLY SYMMETRIC

DILATONIC BLACK HOLES

where

1+n'
& p) (2 1)

&(p) = (p —p+) (p —p-)

( ) cx /(i+n )

&(p) =pi1-
(2.2)

and Aq is the t component of the gauge potential A„.
The outer and "inner" horizons p+ and p are given by
the mass M, the electric charge of the black hole Q, and
o; as

(1 + n ) [M + QM2 —(1 —n2) Q2]

(1+n )

p = p is the curvature singularity for n g 0. The max-
imum value of the charge is Q „—:v 1+n2M. When

~Q~ = Q „, p+ and p coincide, and we call it an ex-
treme black hole. However, it has to be emphasized that
when p+ ——p, a naked singularity appears at p = p+
and the area of black hole vanishes for n g 0, and it is
therefore not a black hole solution [2].

The temperature T of the black hole is given as

y
(i— )/(i+ )

47lpy ( p+)
(2.4)

It possesses an interesting property [2]. When n ( 1, T
in the extreme limit vanishes, whereas it diverges in the
case of n ) 1, and has the nonzero finite value 1/8aM
(as the Schwarzschild black hole) for n = 1.

Here we consider a neutral and massless scalar field
which does not couple to the dilaton field [13], which is
described by the Klein-Gordon equation

iP 0)P (2.5)

The energy emission rate of Hawking radiation is given
[14] by - ~(1 —IXI')

dt 2vr 0 exp [~/ T] —1
(2.6)

where l, m, are the angular momentum and its azimuthal

We first consider spherically symmetric dilatonic black
holes. In this case we know the exact solution with arbi-
trary coupling constant n [2, 5], which is given by

ds2 = — dt + dp + R (p)(de + sin 8dy ),
Zp
&'(p) &(p)
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component, u is the energy of the particle, and ~A~ is a
refIection coeKcient in a scattering problem for the scalar
field 4. The Klein-Gordon equation (2.5) in this black
hole spacetime can be made separable, by setting

10

104

1 I

]
I I I

[
I I I

]
I I I

J
- (4)

&(p*) ~(g),
R(p)

(2 7) 10' (2)
'

&3)

Then, Eq. (2.5) is reduced to the Legendre equation for
S(8) and the radial equation

10-6 I I I I I I I I I I I I I I I

2

&+~' —&'(p) ~(p*) =o (2.8)
0.0 0.2 0.4 0.6 0.8 1.0

where

A(p) l(t+ 1) 1 d t' E(p) dR(p) )
R2(p) R2(p) R(p) dp (R2(p) dp

(2 9)
R (p) „
&(p)

Q / Qmax

FIG. 1. The emission rate for the nonrotating dilatonic
black holes. The charge Q is normalized by Q~~„and the
emission rate dM/dt —is normalized by M. Each line corre-
sponds to (1) o. = 0, (2) o. = 0.5, (3) o = 1, (4) n = 1.5, and
(5) n = 2, respectively.

The reHection coefficient ~A~2 can be calculated by solving
the wave equation (2.8) numerically under the boundary
condition

y —+e '~ +Re'~
y-+Be ' ~

as p M oo,
as p* M —oo. (2.11)

The dependence of the temperature T on o. might be
expected to imply that the behavior of Hawking radia-
tion, which is thermal and has an emission rate propor-
tional to T, is drastically affected by the dilaton cou-
pling, particularly for o. ) 1, for which the temperature
T diverges in the extreme limit. However, as Holzhey
and Wilczek [6] pointed out, since the effective poten-
tial V [Eq. (2.9)] for cr & 1 grows infinitely high at the
horizon in the extreme limit, the transmission probability
1 —

~A~ for particles to escape to infinity is suppressed.
These two tendencies have opposite effects on Hawking
radiation, and it is not clear whether or not the emis-
sion rate is actually suppressed. Here, we solve the wave
equation (2.8) numerically to get the spectrum, and in-
tegrate Eq. (2.6). In this and subsequent calculations,
we consider only the dominant modes with l & 1 since
the contribution &om higher angular momentum modes
is suppressed by the centrifugal barrier. We integrate Eq.
(2.6) numerically to u „(u „=25T for the present
nonrotating case), which is justified since the spectrum is
suppressed at the high energy regime by the exponential
decay in the Planck distribution.

To see how the emission rate varies as the black hole
reaches to the extreme limit, we plot the emission rate,
normalized by mass of the black hole M, against Q/Q
for five values of the coupling constant: o. = 0, 0.5, 1,
1.5, 2. It is shown in Fig. 1. Here, we assume the charge
of the black hole is positive, without loss of generality.
In this figure, we see that although the emission rates
for each value of o. coincide at Q = 0, since the black
hole solution, with any o, , is identically the Schwarzschild
spacetime for Q = 0, the difference becomes large as
the charge increases. In particular, the emission rate for

1 blows up near the extreme limit. This means
that the divergence of the temperature T in the extreme
limit overcomes that of the potential V. Furthermore,
the emission rate (2.6) of the extreme black hole with
o. & 1 is exactly zero because the temperature vanishes,
and that for o. = 1 is nonzero but finite, as we see in the
figure. Therefore, we may conclude that the behavior
of the emission rate in the extreme limit changes dras-
tically at the value of o. = 1, as we naively expect 6.om
the behavior of the temperature, despite the effect of the
potential barrier. We may also speculate that nearly ex-
treme black holes with o; ) 1 are not stable objects.

III. HAWKING RADIATION PROM ROTATING
DILATONIC BLACK HOLES

A. Rotating dilatonic black holes

Next, we consider Hawking radiation &om rotating
black holes. In the rotating case, we know only two exact
solutions in the model (1.1): the Kerr-Newinan (n = 0)
and the Kaluza-Klein (a = ~3) solutions [10]. In addi-
tion to these two, in the o. = 1 case, an exact rotating
black hole solution is derived by Sen [8] i i the model
(1.2). We first suinmarize these exact solutioas and their
thermodynamical properties.

First, the Kerr-Newman black hole solution is ex-
pressed as

L —a2sin 0
Z

2a sin' 8 (r'+ a' —a)
dt dp

(r'+ a')' —aa'sin'0
+ sin 0 dyZ

Q& aQr sin 0
t )-z =-

z 7
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where the functions L and Z are de6ned by

4—:r —2Mr+a +Q, Z=r +a cos 0. (3.2)

where

T =—1 QM2 —a2 —Q2

27t p + a
a~a=

r~~ + a2

(3.3)

(3.4)

The coordinates r and p in the previous section are re-
lated by r = p —p in the spherically symmetric case.
The temperature T and the angular velocity OH are given
by

r~ = M+ QM~ —a2 —Q2 (3.5)

is the horizon radius, and M, Q, and J = Ma are the
mass, the charge, and the angular momentum of the black
hole, respectively.

Second, the Kaluza-Klein black hole solution is de-
rived by a dimensional reduction of the boosted Gve-
dimensional Kerr solution to four dimensions [10, 12]. It
is given by

a —a'sin'e, . , 1 Z
dt —2asin 8 dt dp—+ B (r + a ) +. a sin 8 —sin 0 d&p

2 2 2. 2 Z . 2 2

] —v2B B
dr2 + BZ d02,

(3.6)

where

4—:r —2pr+ a Z=r +a cos 8, Z=, B—:
i
1+21jr ( v Z

Z' ( 1 —v2 (3.7)

The physical mass M, the charge Q, and the angular momentum J are expressed by the parameters v, p, and a, as

v2
M=@ 1+,Q=, J=

2(1 —v2) '
1 —v2 '

The horizon radius is given by

- =a+ v'w' — ',
and then the regular horizon exists if

p2 Q a2

pa
gl —v' (3.8)

(3.10)

and this condition may be rewritten as

t' J i' 1 (Ql' (Q~' (Ql'+2 1+2
I

—
IgM2p 4 qM) qM) gM)

(3.11)

v2 gp2T =
27t p + a

(3.12)

a 1 —v

r~2 + a2 (3.13)

The parameter range of the condition (3.11) is shown in
Fig. 2. It should be noted again that the solutions with

~Q~ = Q „(= 2M) are not black hole solutions and
these points are indicated by small circles in Fig. 2.

As for the thermodynamical properties of this black
hole, we find that the temperature T and the angular
velocity O~ are given as

The temperature T in the limit of ~Q~ -+ Q „ for the
nonrotating black hole diverges, as was pointed out in
the previous section. However, the temperature T of the
extreme rotating black hole (p = ~a~) vanishes from Eq.
(3.12). When we take the limit ~Q~

—+ Q „,keeping the
black hole extreme with J g 0 (whereas J -+ 0 in the
limit), the limiting value is still zero, and different from
that of the nonrotating case. That is, the temperature is
discontinuous at ~Q~ = Q „where a naked singularity
appears. A similar feature is found in the behavior of
O~. If we take a limit ~Q~ ~ Q „, O~ of a rotating
black hole diverges, whereas O~ of a nonrotating black
hole is zero. The fact that J vanishes while O~ diverges
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w here the functions 4 Zs, , and A are defined by

4 —=r —2pr+ a Z —=

+ pr(r +u)sinh P+4 r4 ( 2 2 ~ 2
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2M — —4J

4vrM 2M —Q + (2M —Q ) —4J

(3.19)
M 2M2 —Q2 + (2M2 —Q2) —4J2

out loss of generality. The Klein-Gordon equation (2.5)
for the neutral massless scalar field is separated into the
spheroidal equation

—
~

sing —
~

— a ts sin 8+ s ) S(8)
1 d (. d) 22. 2 m

«) sin 0

= —AS(8) (3.20)
and these quantities are discontinuous at

~ Q ~

= Q „(=~2M), although they never diverge but ap-
proach finite values. The behavior of these quantities is
shown in Fig. 4.

These discontinuities indicate that the emission rate of
Hawking radiation may be completely different &om that
of the nonrotating case. In addition to the thermal effect
of the temperature and the effective potential, which we
considered in the previous section, new effects by the
angular velocity are important in the rotating cases: in
other words, superradiance.

and the radial equation

by setting

&(r')
S(0)..

R(r)

Here the tortoise coordinate r' is defined by

(3.21)

(3.22)

B. Hawking radiation of rotating black holes

Here, we discuss the radiation &om rotating dilatonic
black holes when the black hole charge is conserved.
Hereafter, we can assume that Q and J are positive with-

R2(r) „
&(r)

(3.23)

The functions 0, B, and V are defined for the Kerr-
Newman black hole as

A(r) =(2Mr —Q ), R (r) =—Z~s p
—r +a2,

R4 r

A(r) A 1 d A(r) dR(r)
R2(r) R2(r) R(r) dr R2(r) dr

for the Kaluza-Klein black hole as

m a (r*+ a' —Qs+ 2Mr) ),Rs r (3.24)

2

1 —v~ R4 r g 1 —v2r2+a2)

A(r) A

and for the Sen black hole as
a

D(r) = 2pr cosh P

A(r) A

R (.)+

1 d A(r) dR(r)
R(r) dr R2(r) dr

m2a2 C, 2 2prr +a +Rs(r) ( 1 —v')

1 d A(r) dR(r)
R(r) dr R2(r) dr

m a
(r +a +2isrcash2S)).

R (r)—:Z~s p ——r + a + 2pr sinh P,

(3.25)

(3.26)

The emission rates of energy and angular momentum [14] are given by

(1 —l~~')
dt 22r -

p exp [(~ —mA~) / T] —1
7

m (1 —~W~')

dt 2vr p exp [(u —mO~) / T] —1
(3.27)

The reffection coefficient ~A~2 is calculated by solving the wave equation (3.21) under the boundary condition

y —+e '" +Re'"
ymBe

as p Moo)
as r* M —oo, (3.28)
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where u = u —mOH. We
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( + 1)(2l + 3)'(2l + 5)

A l(l 1)
1 (2m —1)(2m+ 1) 2 2 1 & —m-— )(™)(+ — )( +

—1)'(2l + 1)

(S.29)
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Fig. 2. Because of this, we consider the black holes with a
small angular momentum, which is Gxed at J = 0.01M~,
and vary the charge to see how the emission rates for
each solution change in the extreme limit. The result is
shown in Fig. 5. The charge is normalized by the maxi-
mal value Q,„for the black hole with 2 = 0.01M2, which
is a little less than Q „(see Fig. 2). The values of Q,„
are 0.999Q „,0.995 Q „,and 0.972 Q „for the Kerr-
Newman, the Sen, and the Kaluza-Klein black holes, re-
spectively. In Fig. 5, we see the Kaluza-Klein black hole
radiates much more energy and angular momentum near
the extreme limit than the Kerr-Newman and the Sen
black holes. The behavior of the energy emission rates
[Fig. 5 (a)] is very similar to that of nonrotating black
holes, except in the vicinity of the extreme limit. This
is because we have chosen a very small value for the an-
gular momentum. However, in the Kaluza-Klein black
hole, the emission rate drops a little near the extreme
limit and does not diverge; so we 6nd a difFerent result
&om the nonrotating case. This is because the tempera-
ture of the rotating Kaluza-Klein black hole vanishes in
the extreme limit whereas that of the nonrotating case is
divergent in the same limit.

There appears to be a critical value of the dilaton

coupling constant at a 1, although we cannot give a
definite critical value from our analysis of exact black hole
solutions. However, there is another way to investigate
such a critical value in the extreme limit. The tempera-
tures of rotating black holes vanish in the extreme limit,
and it is known that Hawking radiation becomes purely
superradiant [16]; that is, the emission rates (3.27) are

dM
dt

~ (I&l —1) d~,

dJ
dt

(lxl' —1) d (3.30)

In the previous paper [9], we analyzed superradiance of
the rotating dilatonic black holes, which we will brieHy
summarize. To see how superradiance depends on the
dilaton coupling constant, we considered the slowly ro-
tating approximate solution with arbitrary coupling con-
stant [7, 11],which is given by adding an angular momen-
tum perturbation to the spherically symmetric solution
(2.1), as well as the three exact solutions. This solution
is expressed, in the same coordinates as the spherically
symmetric solution in Sec. II, as

ds = — dt + dp + R (p)(d8 + sin Odrp ) —2a f(p) sin 0 dt dp,
R'(p) &(p)

Aq ———, A~ = —asin 0—,Q
P P

where

pln 1—1+a ( p) (3.31)

( ) n /(1+~ )

&(p) =—(p —p+) (p —p ), R(p) —= p-I 1—
E

(1 ) ( ) ( ) '/( + ') f
f(p) =—

(1 — ')(1 —3 ') Ep-r p)

x1+, , I I+(1+a') & p&' 1+a' ( p&
(1 — ')(1-3 ') &p-)

(3.32)

and

(1+a2) [M + QM2 —(1 —a2) Q2] 2(1+ a2) J
(1 + a2) (1+a )p+ + (1 —a'/3) p

Thi.s solution is valid only when the parameter a is
sufficiently small. Although f(p) seems to diverge at
a = 1/~3, a = 1, or p = 0, f(p) approaches a fi-
nite limiting value when we expand this function around
each point.

The Klein-Gordon equation is now separated into the
Legendre equation and the radial equation

d2
+ [(u —mA(p)] —V (p) y(p') = 0, (3.34)

dp

where
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uf (p)
A(p) —= (3.35)

A(p) l(l+ 1) 1 d ( A(p) dR(p)1
&'(p) &'(p) &(p) dp 0&'(l) dp ). '

(3.36)

and p' is de6ned by

Bz(p)
dp = dp. (3.37)

The emission rates by superradiance for this approximate
black hole solution are shown in Fig. 6, with the cal-
culations using the three exact rotating black hole so-
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FIG. 6. Superradiance from slowly rotating black holes.
(a) and (b) show the energy emission rate dM/dt, and the-
angular momentum emission rate dJ/dt, respectively. —Each
line corresponds to (1) o. = 0, (2) a. = 0.5, (3) n = 0.9, (4)
n = 1.1, (5) oI = 1.5, (6) n = V 3, and (7) n = 2. In addition,
we plot the results for three exact solutions (the circles for
the Kerr-Newman, the squares for the Sen, and the triangles
for the Kaluza-Klein black holes). The charge is normalized
by qmax.

lutions. We And that the emission rate &om the large
coupling constant black holes blows up as the black hole
approaches the extreme one, whereas with small o., the
emission rate remains quite small. These two types of
behavior are divided by a value of the coupling constant
of about unity.

Again we cannot determine the exact value of the
critical coupling constant, for the following reason. As
we mentioned before, this approximate black hole solu-
tion is valid only when the angular momentum is suf-
ficiently small. In addition to this condition, there is
another requirement that must be satisfj. ed, namely, that
the black hole charge should not be so large. This is
found by observing that the maximally charged black
hole (Q = Q „) in the approximate solution can carry
an angular momentum, while the exact solution cannot
(e.g. , consider the Kerr-Newman black hole). Quanti-
tatively, the angular velocity O~ = O(p+) of the black
hole is divergent in the extreme limit for n ) I/~3 and
vanishes for smaller coupling constants, but this critical
value is derived &om the approximate solution and may
differ from the value of the exact solution, which we do
not know. In fact, the angular velocity in the extreme
limit of the Sen black hole, which is a solution of the
model (1.2) (n = 1), is finite and nonzero, although this
solution is obtained from a difFerent action &om the Kerr-
Newman and the Kaluza-Klein black holes. The qualita-
tive behavior of the angular velocity in the approximate
solution seems to follow that of the exact solution closely,
although that of the temperature does not. Hence we
may give a qualitative discussion of superradiance by us-
ing this approximate solution.

We may conclude &om the above that the critical cou-
pling constant at which the behavior of the superradi-
ant emission changes exists and is about unity. As we
have already shown, the behavior of the emission rate by
thermal radiation from the nonrotating black hole also
changes at n = 1. Naively speaking, Hawking radiation
for the rotating black hole consists of two components,
that is, thermal radiation and superradiance. So we natu-
rally expect that the emission of Hawking radiation &om
rotating black holes is drastically changed at o, 1.

C. Fate of dilatonic black holes

The dependence of the emission on the coupling con-
stant leads to a difference in the evolution of black holes
by evaporation. To investigate the evolution of the three
exact rotating solutions above, we describe the black hole
state by a pair of quantities (Q/M, J/M ), and analyze
their time variations, which are given by the emission
rates as

(3.38)

d ( J l 1 dJ J dM
dt iM ) M dt M dt

for the three exact black hole solutions. We recognize
these two quantities as a vector field on the Q/M —J/M
plane shown in Fig. 2, and show it in Fig. 7. Since we



52 EVAPORATION AND FATE OF DILATONIC BLACK HOLES 7075

assume that the black hole charge is conserved. , and the
black holes lose mass energy, Eq. (3.38) is always posi-
tive; so Q/M increases and the black hole approaches the
extreme state. In Fig. 7, near the extreme lines, each
vector points to a direction inside the extreme line; so
the black hole does not evolve beyond the extreme line
and eventually approaches the Q = Q „state. From
the figure, we can see that the Kerr-Newman black hole
stops its evolution as it approaches Q = Q „whereas
the evolution of the Kaluza-Klein black hole is acceler-
ated as Q/M increases, and in particular, the evolution
is very fast near Q = Q „.This is because the emission
rates of the Kaluza-Klein black hole near Q = Q „state
are very large. As we mentioned before, the Q = Q
state is not a black hole solution and'a naked singularity
appears at this point. So it is indicated &om our analy-
sis that the Kaluza-Klein black hole evolves rapidly into
a naked singularity. As we have already seen, the area

of the Kaluza-Klein black hole vanishes as Q -+ Q
This situation is quite similar to the evaporation of the
Schwarzschild black hole, for which the area of the black
hole vanishes and the emission rate increases infinitely
large in the final stage, where a naked singularity might
appear. The Sen black hole shows an intermediate be-
havior between that of the Kerr-Newman and the Kaluza-
Klein black holes.

IV. DISCHARGE OF DILATONIC BLACK
HOLES BY SUPERRADIANCE

So far, we have considered only the case where the
charge of the black hole is conserved. Usually, however,
black holes may create charged particles and lose their
charge. In this section we study the discharge process by
superradiance of a charged scalar field described by the
equation of motion
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FIG. 7. The evolution of three types of
black hole. Each figure represents (a) the
Kerr-Newman, (b) the Sen, and (c) the
Kaluza-Klein black holes. The arrow shows
the direction and magnitude of the evolu-
tion of the black hole by Hawking evapora-
tion at each point. The scale of the arrow
is enlarged 2500 times. Although the arrows
near Q = Q „are very sinall for the Kerr-
Newman and the Sen black holes, those in
the Kaluza-Klein black hole are considerably
larger.
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(V" + ieA") (V'„+ ieA„) —p C = 0, (4 1)

where e and p are the charge and the rest mass of the
particle, respectively. Shiraishi [13] analyzed superradi-
ance of a charged scalar field 4 coupled to the dilaton P
in the spherically symmetric dilatonic black hole. Here
we do not consider such a coupling because we are only
interested in the pure quantum properties of the dilatonic
black hole, but not the extra efFects on the quantum ra-
diation, which come from a direct coupling between 4
and the dilaton Geld.

The time scales of the loss of energy, angular momen-
tum, and charge depend on the temperature T, the an-
gular velocity OH, and the electric potential 4~ in the
Planck distribution of Hawking radiation as

1

exp [(~ —mA~ —eOIt. ) /T]
(4.2)

If the electric potential is large enough compared with
the temperature and the angular velocity, the dominant
component of the emission is that of the superradiant dis-
charge process. In order to estimate how important the
discharge process is in Hawking radiation, we calculate
the superradiant emission rates in a spherically symmet-
ric dilatonic black hole, in which the electric potential
40 is

consider only the dominant mode of l = 0.
The wave equation (4.6) is not invariant under rescal-

ing by the black hole mass M, in contrast to the case
of the massless Beld considered in the previous sections.
The first and the last terms in the square brackets in
Eq. (4.6) are roughly proportional to M 2, whereas the
second and the third terms are independent of the mass
scale. This results in that the transmission probability
lAl —1 depends explicitly on the mass of the black hole.
Hence we have to calculate the emission rates for each
mass scale and analyze the mass dependence of the emis-
sion, in addition to the coupling constant dependence.

First we consider the Planck mass black hole (M =
Mpi) . We show the emission rates in Fig. 8 for four
values of the coupling constant: n = 0, 0.5, 1, 1.5. Q is
now normalized by the mass of the black hole M, but not
Q „,because Q itself is essential in this process, but not
Q/Q „.We set the particle mass y, = 0.001Mpi. From

2.0 10

1.5 10

(4.3)

The horizon radius p+ is given by Eq. (2.3). If superradi-
ance is large compared to the emission calculated in the
previous sections, where we assumed that the charge is
conserved, the discharge process is important and should
not be ignored, while, if it is small, the discharge process
is not essential in Hawking radiation.

The emission rates are

1.0 10

5.0 10

0.0 10
0.0 0.5

(2}

/

(3}

(4}

1.0 1.5 2.0 2.5

dM
dt

L,m, e

(IAI' —1) d (4.4)

5.0 10

dQ 1
dt 2' ) ~ (IAI' —1)

l,m, e

(4.5) 4.0 10

where the reflection coefficient lA[2 is obtained by solving
the radial wave equation

Q&' 2 &(p)., +
l

~ —e —
I

—p', —&'(p) ~(p*) = odp' E p ) &'(p)

(4 6)

which is derived by setting in the same way as Eq. (2.7),
under the boundary condition of

3.0 10
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1.0 10
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0.0 0.5 1.0

(3}

~ (4}

1.5

Q/M

(b)

2.0 2.5

gee '~ +Re'~

ymBe

as p* —+ oo,

as p M —oo (4.7)

where ~ is now defined as w = u —eC ~, and the tortoise
coordinate p*, functions R(p) and A(p), and the poten-
tial V are the same as those in Sec. II. Here we consider

FIG. 8. Discharge by superradiance from nonrotating
black holes with mass M = Mpi (a) and (b) show the energy
emission rate dM/dt and the char—ge emission rate dQ/dt-
normalized by the Planck mass Mp~, respectively. Each line
corresponds to (1) n = 0, (2) a. = 0.5, (3) n = 1, and (4)
o. = 1.5.
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this figure, we 6nd that the emission rates are greater
in the black hole with the smaller coupling constant, in
contrast to the results of the previous two sections. In
particular, emission &om the highly charged black hole
with larger coupling constant is very small. There are
two reasons for this. One is the behavior of the electric
potential 4Ir. From Eq. (4.3), we can see the electric
potential becomes smaller when the coupling constant o.
increases. The second reason is that the effective poten-
tial in Eq. (4.6) is very high near the extreme limit for the
black hole with n ) 1 and the transmission probability
becomes much smaller, as in the previous cases.

Now we analyze the dependence of the emission rates
on the mass of the black hole. To see how the emission
rate changes, we calculate the case of M = 10Mp1 and
show the result in Fig. 9. Comparison with Fig. 8 shows
that the emission rates generally increase when the mass
increases. This tendency is clearer in the highly charged

black holes with a larger coupling constant. The depen-
dence on the coupling constant is smaller than the case
of M = Mp~. This is because the height of the efFective
potential, which is roughly proportional to M, is e8'ec-
tively lower than that in the case of a Planck mass black
hole. In particular, the emission of a highly charged black
hole with large mass becomes insensitive to the coupling
constant because the potential barrier gets small, com-
pared with the case of a Planck-mass-scale black hole
where the potential is very high for the large coupling
constant and the emission is suppressed near the extreme
limit. Consequently, we expect that the coupling con-
stant dependence of the emission rate will become smaller
as we increase the mass of the black hole.

For a black hole larger than 10Mp~, the numerical cal-
culation becomes diKcult because we have to deal with
a very large scale black hole and a very small scale parti-
cle simultaneously. Fortunately, for a massive black hole
with small charge, the V2 term in Eq. (4.6) is very small
and can be neglected. Furthermore, the rest of the poten-
tial terms (the second and the third terms in the square
brackets) in Eq. (4.6) vary very slowly; so we can use
the WEB approximation to calculate the transmission
probabilities, as in Refs. [13,17].

When the black hole mass M is suKciently large and
Q/M is small, the radial wave equation (4.6) is approxi-
mated by

d2 ( Q)' 2 A(p), +
I

~ —e—
I

—V', X(p') = o,
p ) &'(p)

(4.8)

and the transmission probability ~A~
—1 can be estimated

&om

Pg
—1=exp —2 V'IWI dp*

P1

where

P2 B~= exp —2 g~W~ dp
P1

(4.9)
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/
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/

- (3)

W= /cu —e —
/

—p
~ &(p) (4.10)

E p) &'(p) '

and pz and p2 (pz ( p2) are the corresponding tortoise
coordinates to two roots pq, p2 of W(p) = 0.

In the o. = 0 case, in which the black hole is described
by the Reissner-Nordstrom solution and
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Eq. (4.9) is integrated, giving
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FIG. 9. Discharge by superradiance from nonrotating
black holes with mass M = 10Mp~ (a) and (b) show the
energy emission rate dM/dt and the char—ge emission rate

dQ/dt, respe—ctively. Each line corresponds to (1) cx = 0, (2)
o. = 0.5, (3) n = 1, and (4) n = 1.5.

where

k = g(d —/l2 (4.13)

Prom this, we find Schwinger's formula for the emission
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rate dQ/dt:

dQ
dt

e4Q3
exp

P+
(4.14)

in the small charge limit [17].
We can also explicitly calculate the transmission prob-

ability in the superstring case (n = 1), in which

(4.15)

It gives exactly the same result as Eq. (4.12). In addi-
tion, for the case of small charged black holes with an
arbitrary coupling constant, we can use the approxima-
tion

(4.16)

and so p+ )) p; then

q
(&—~ )/(&+~ )

P P+ P
R'(~) « /) ( /)

where

p )(( p

/)« /) (4.17)

1 —0!2
P— 1+0!2 P— (4.18)

and we find the same transmission probability as Eq.
(4.12). Hence, for the dilatonic black hole with a fixed
mass and charge, the transmission probability of the par-
ticle with the same energy is hardly influenced by the
coupling constant. As for the total emission rate, the
black hole with the larger coupling constant emits a lit-
tle bit less energy, because the energy range of the su-
perradiant modes, i.e., p & u & e4~, becomes narrow as
the coupling constant increases. When the charge of the
black hole increases, the emission rate increases. In the
extreme limit, the black hole with larger coupling con-
stant can carry a larger charge. Hence we may expect
that the nearly extreme black hole with a larger coupling
constant emits larger energy than that with a smaller
coupling constant. However, near the extreme limit for
o. ) 1, the WKB approximation breaks down and the
effective potential becomes very steep. As a result, emis-
sion may not increase so much. So we expect that the
dependence of the emission on the coupling constant be-
comes smaller for a more massive black hole. This has
been con6rmed by our numerical calculations.

V. CONCLUSION AND DISCUSSION

In summary, we first studied the evaporation of dila-
tonic black holes under the assumption that the black
hole charge is conserved, and analyzed its dependence on
the dilaton coupling constant. We found that the emis-
sion rate of the nonrotating black hole changes drastically
at n = 1, which is the value predicted by superstring the-
ory. In the case of the coupling constant below unity, the

emission rate vanishes in the extreme limit, while the
black hole with o. ) 1 emits a large amount of energy
in the same limit, even though the potential barrier be-
comes infinitely high in this case. This means the effect
of the temperature on the emission is stronger than that
of the potential barrier.

As for rotating black holes, the temperature is zero
for the extreme black holes and the thermal emission
also vanishes for all known exact black hole solutions.
However, in the maximally charged limit Q m Q
of the Kaluza-Klein black hole, while the angular mo-
mentum itself is still small, the angular velocity of the
black hole becomes very large and the effect of superra-
diance becomes important. In superradiance, we also find
the critical value of the coupling constant o. 1, above
which the emission rate increases rapidly as the black
hole approaches the maximally charged state. Therefore,
we may reasonably conclude that a 1 is the critical
coupling constant together with the thermal component
of the quantum radiation.

As a result, a highly charged Kaluza-Klein black hole
(n = ~3) is inevitably accelerated towards evaporation
into a naked singularity. This situation is very similar
to the final stage of the evaporation of the Schwarzschild
black hole where the emission blows up and the area of
the black hole vanishes. We expect that black holes with
o. ) 1 show a similar evaporation process to the Kaluza-
Klein case, since the emission rates for such black holes
are very large in the maximally charged limit.

We have also considered the discharge process by cal-
culating superradiance for nonrotating dilatonic black
holes. If the mass of the black hole is on the Planck
scale, the emission is suppressed for large coupling con-
stants, compared with the Reissner-Nordstrom black hole
(n = 0), especially near the extreme limit. Hence, the
effect of the discharge may not be so important for highly
charged black holes with a ) 1. As the mass of the black
hole increases, however, the dependence of the emission
on the coupling constant becomes small and a black hole
with any o. will discharge efBciently.

Holzhey and Wilczek [6] pointed out that, in the maxi-
mally charged limit of the dilatonic black holes, the ther-
modynamical interpretation breaks down. The solution
of the maximally charged limit represents a naked singu-
larity, and the higher order quantum effects will become
important near this limit. This means that the black hole
thermodynamics may deviate from the conventional ap-
proach, which is based on the semiclassical treatment of
Hawking radiation. We should make some comments on
this point. The problems related to this paper are the fol-
lowing. (1) The emission rate becomes very large; so we
have to consider the back reaction of the quantum effects
on the metric. (2) The area of the black hole vanishes
in the maximally charged limit, which means we have to
deal with a horizon radius smaller than the Planck scale.
(3) To clarify the coupling constant dependence, we dis-
cuss the Planck-mass-scale black hole. In order to study
such problems properly, we may need quantum gravity.
However, before investigating the full quantum theory,
we first have to clarify the behavior in the semiclassical
regime.
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