
PHYSICAL REVIEW D VOLUME 52, NUMBER 12 15 DECEMBER 1995

Black hole horizons and complementarity

Youngjai Kiem
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 085//

Herman Verlind. e
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 085//

and Institute for Theoretical Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam,
Noord-Holland, The Netherland8

Erik Verlinde
TH-Division, CERN, CH-2222 Geneva 28, Switzerland

and Institute for Theoretical Physics, University of Utrecht, P. O. Box 80.006, 8508 TA Utrecht,
Utrecht, The Netherlands
(Received 2 June 1995)

We investigate the effect of gravitational back reaction on the black hole evaporation process.
The standard derivation of Hawking radiation is reexamined and extended by including gravitational
interactions between the infalling matter and the outgoing radiation. We 6nd that these interactions
lead to substantial effects. In particular, as seen by an outside observer, they lead to a fast growing
uncertainty in the position of the infalling matter as it approaches the horizon. We argue that this
result supports the idea of black hole complementarity, which states that, in the description of the
black hole system appropriate to outside observers, the region behind the horizon does not establish
itself as a classical region of space-time. We also give a new formulation of this complementarity
principle, which does not make any speci6c reference to the location of the black hole horizon.

PACS number(s): 04.70.Dy, 04.62.+v

I. INTRODUCTION

Ever since the discovery of black hole evaporation [1]
there has been a continuing debate on the relevance of
the gravitational back reaction to the Gnal quantum state
of the radiation. The central question is whether back re-
action eBects could, even in principle, bring out the infor-
mation about the initial quantum state of the matter that
has formed the black hole. The answer to this question
would be no, essentially by assumption, if one accepts
that the state of the radiation is reliably computed us-
ing &ee propagation of quantum fields on a Gxed classical
background geometry, and that the gravitational eKect of
the quantum radiation is accurately described via an adi-
abatic change of the background geometry and the mass
of the black hole. According to this scenario, which has
in particular been advocated by Hawking, strong gravi-
tational efFects take place too late or too far behind the
horizon to be able to bring out the initial information.

An opposite point of view has been put forward by
't Hooft [3], who pointed out that f'rom the perspective
of the outside observer strong gravitational interactions
take place near the horizon between the infalling matter
and the outgoing virtual particles describing the Hawking
radiation. He argued that this interaction could dras-
tically change the standard semiclassical picture of the
evaporation process, and in particular may give rise to

For more recent explanations of this point of view, see [2].

a complementarity between the physical world of the in-
falling observer and that of the outside observer. Indeed,
for the infalling observer the horizon represents a smooth
region of space-time, but the Hawking particles are not
measurable to him. To the outside observer detecting the
Hawking radiation, on the other hand, the horizon be-
comes a strongly interacting region, while the black hole
behind it never seems to establish itself as a classical part
of space-time. According to this alternative physical pic-
ture, which recently has also been advocated by several
other authors [4—8], there is no longer any a priori reason
why quantum coherence should be destroyed during the
evaporation process.

To investigate the possibility of this second scenario,
we will in this paper reexamine the derivation of Hawk-
ing radiation and present a new procedure for studying
the onset of gravitational back reaction effects on the
radiation spectrum. Specifically, we will study the prop-
agation of a quantum state &om an initial Cauchy sur-
face Z;„;t,. ~ located some finite distance outside the event
horizon to a Gnal Cauchy surface Zg„~ located at a later
time and much closer to the event horizon (see Fig. 1).
Both surfaces are spacelike everywhere and can roughly
be thought of as constant-time slices as seen by an out-
side observer. Eventually, we will be interested in the
time evolution of the state on Z~„~, as the outside part
of it starts to contain more and more of the outgoing
thermal radiation.

Since both Cauchy surfaces are far away &om the black
hole singularity, it would at first sight appear to be suf-
ficient to use free Geld theory in a Gxed background to
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relate the physical observations made on each of these
surfaces. We will Bnd, however, that this naive expec-
tation is incorrect. Instead we will show that gravita-
tional interactions, which take place between the modes
as they propagate from the initial to final Cauchy sur-
face, become increasingly significant as the tixne on Zg„~
progresses. These interactions are associated with two
types of collisions, namely, between the infalling and vir-
tual outgoing particles near the horizon, and secondly
between the outgoing virtual particles themselves. The
interaction regions of these two types of virtual processes
are schematically indicated in Fig. 1(a). In this paper we
will mostly be concerned with the Brst type of interac-
tions.

Typically, the in- and outgoing particles involved in
these processes propagate through the horizon at differ-
ent angular directions. Hence, while the center of mass
energies can be huge, the momentum transfer during
these virtual collisions is typically small. In this spe-
cial kinematical limit, there exists a rather large range of
collision energies for which the quantum gravitational in-
teraction between the particles is well controlled and can.
be described by means of semiclassical techniques [10].

This paper is organized as follows. To set up some no-
tation, we brieBy summarize in Sec. II the relevant formu-
las describing free Beld propagation in a fixed black hole
background. In Sec. III we write the classical equations
describing the gravitational interaction between in- and
outgoing particles near the horizon. In Sec. IV we present
a new procedure for including the quantum mechanical
effects of the back reaction. Starting from the original
formulas of Hawking, we will includ. e a small quantum
contribution to the infalling matter that creates the black
hole, and compute its effect on the relation between the i n
and out modes. Finally, we will then consider the effect
of these interactions on the calculation of the outgoing
state.

But first we present a somewhat more concrete form
of the complementarity principle put forward in [4—6].
Whether this principle is indeed dynamically realized de-
pends on the yet unknown details of Planck scale physics,
although the calculations of this paper provid. e some sup-
porting evidence. An important advantage of our formu-
lation is that it does not need to make any explicit refer-
ence to the location of the black hole horizon, and does
not strictly rely on the assumed existence of a black hole
S matrix.

A. The complementarity principle

PIG. 1. (a) In this paper we will study the efFect of back
reaction on the propagation of quantum states in a black hole
formation geometry. We will find that even for regular initial
data on the initial Cauchy surface Z;„;&,. & the virtual gravi-
tational interaction between the in- and outgoing modes, as
well as among the outgoing modes themselves, will become
increasingly important with time on the final Cauchy surface
Zs„~. (b) This figure shows two spacelike separated observ-
ables defined on Z&„& of typical wavelengths A;„and A „&.
The field modes associated with these observables have col-
lided in the past with a center of mass energy that grows as
exp(At/8M). The proposed complementarity principle states
that observables for which this collision energy exceeds some
(possibly macroscopic) critical value do not simultaneously
exist as mutually commuting operators.

Complementarity is a fundamental aspect of quantum
mechanics, with familiar manifestations such as particle-
wave duality and the uncertainty relations between mo-
mentum and. position operators. It arises from the fact
that a single quantum state occupies a finite volume of
the classical phase space. This basic property of quan-
tum mechanics also applies to a scalar field P propagating
on a dynamical black hole geometry. The back reaction
of a classical P configuration can change the background
geometry, and thus quantum states are in principle sup-
ported on different classical geometries. However, we can
usually ignore this fact, because we can in most situations
safely truncate the Hilbert space to a subspace in which
quantum gravitational interactions are guaranteed to be
small, e.g. , by restricting all modes of P to &equencies
sufFiciently smaller than the Planck &equency.

Concretely, we can imagine introducing some position-
dependent cutofF scale e(x) on the Cauchy surface Z. We
can then represent the corresponding truncated Hilbert
space on Z by means of all states supported on field
configurations with wavelengths larger than this cutofF
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scale. For normal, regular Cauchy surfaces it is reason-
able to expect that a constant cutoff e of the order of
the Planck length will still be sufIicient to eliminate all
strong coupling gravitational effects. However, in case
the Cauchy surface contains different regions that are re-
lated via large relative boosts (such as Zs„~ in Fig. 1), it
is conceivable that a much stronger restriction of the &ee
field Hilbert space may be needed to achieve a reliable
semiclassical description.

To address this question, let us first formulate in a
somewhat more precise way the criterion we would like
to impose on the cutoff' length scale e(x). A first key
point is that to a given cutoff e(x) we can associate a
corresponding size of stress-energy fluctuations. These
stress-energy fluctuations are a necessary consequence of
the presence of all modes of the second quantized scalar
Geld up to the cutoff scale. Their typical size is deter-
mined by the behavior of the regulated expectation value
(T„(x)z)„and from free ffeld theory we deduce that the
quantum Quctuations of T~„ typically grow like e(x) as
the cutoff gets smaller.

Via the Einstein equations, this will result in corre-
spondingly large quantum fluctuations in the local back-
ground geometry on the Cauchy surface Z. For a given
cutoff and Cauchy surface Z, one can in principle cal-
culate these by integrating the cumulative gravitational
effect of the local stress-energy fluctuations. It is clear
that when these geometry fluctuations become too large,
relative to the cutofF scale, the semiclassical description
of the Hilbert space as the space of states on a given
Cauchy slice breaks down. We will call a cutoff violating
this bound 8upercritical, and we will call it Subcritical or
semiclassical if the fluctuations of the geometry are con-
trolled in this sense. It is clear from the above discussion
that semiclassical cutofFs have a minimal size.

The question arises, however, how such a semiclassical
truncation of the Hilbert space must be interpreted at a
fundamental level? On the one hand, any short distance
cutofF would appear to constitute an unacceptable viola-
tion of Lorentz invariance (= frame independence), since
different observers will in general be inclined to truncate
the Hilbert space in difFerent ways. On the other hand,
there is no correspondence principle that tells us that the
Hilbert space must extend into this supercritical regime.
On the contrary: if we were to assume it does extend into
the supercritical regime, we would need to explain why
there are no large space-time fluctuations at scales much
larger than the Planck scale.

Thus it seems we are faced with a dilemma: appar-
ently we must either give up strict Lorentz invariance,
or Gnd a way to deal with a Hilbert space supported on
Geld configurations with arbitrarily high frequencies. A
way out of this dilemma is provided by the black hole
complementarity principle proposed in [3,6,5].

We now propose a new formulation of this principle,
which we name apace-time complementarity, because its
formulation and possible consequences are in principle
not restricted to the black hole context. The spirit in
which this principle is meant is as a proposal for a reason-
able efFective description of some underlying, consistent
theory of quantum gravity, such as the one provided by

string theory. Clearly, however, a much more detailed
knowledge of thus underlying fundamental theory is nec-
essary to verify and quantify this effective description.

Space-time complementarity: A variable cutog scale
e(x) on a Cauchy surface Z provides a permissible semi
classical description of the second quantized Hilbert space
only when the quantum fluctuations of the local back
ground geometry induced by the corresponding stress-
energy fluctuations do not exceed the cutog scale it
self Al.l critical cutoff scales that saturate this require
ment provide complete, complementary descriptions of
the Hilbert space.

The key step here is that, while difFerent observers may
under certain circumstances be inclined to use very differ-
ent cutoffs, and thus very different bases of observables
for doing measurements, the Hilbert space spanned by
these different bases is assumed to be the same. The
consequences of this assumption are particularly striking
in a situation with two different observers whose refer-
ence frames are related by very large red- or blueshifts,
such as the infalling and outside observer on a black hole
background.

To illustrate this, let us consider the simultaneous mea-
surement of an outside observable Op, , supported on
free field configurations of typical wavelength A „&, and
an inside observable Op, near or just behind the hori-
zon, of typical wavelength A;„. [See Fig. 1(b).] One would

expect that such a simultaneous measurement should in-

deed be possible, since the two observables on Zg„ i are
spacelike separated.

To accurately compute transition amplitudes involv-

ing these operators, however, we must consider their past
history. In the Grst instance, we can try to compute this
past history using the free field propagation of the modes
contained in these observables. We then discover that
the past history of these observables in fact contains an
ultrahigh energy collision very close to the horizon, with
a center of mass energy that grows exponentially in the
outgoing time. While it is true that this interaction takes
place between virtual instead of real particle excitations,
the absurd magnitude of the collision energy nevertheless
indicates that the classical geometry is no longer the ap-
propriate setting for considering the simultaneous mea-
surement by these two observables.

In the following sections we will make this intuition
more explicit, by showing that the relevant transition
amplitudes or correlation functions indeed always involve
very large stress-energy fluctuations, which collide near
the horizon [see Fig. 1(b)]. The fact that this stress-
energy is associated with virtual particles implies that it
is of purely negative frequency in a local inertial frame.
Although this means that the in-in expectation value of
the stress-energy remains small, we will show that its

L. Susskind has also advocated that a complementarity
principle of 'the type formulated in this section may be re-
alized in string theory. There indeed exist several indications
that, compared to local 6eld theory, string theory has drasti-
cally fewer degrees of freedom at short distances.
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large quantum Buctuations still lead to nontrivial quan-
tum gravitational effects that affect the calculation of the
outgoing state.

Moreover, at a more fundamental level, this observa-
tion suggests that something could actually be wrong in
the assumption that both these observables must be si-
multaneously present in the Hilbert space as two mu-
tually commuting operators. Again, as before, there is
no longer any correspondence principle that tells us that
this has to be the case. Instead it seems to us that a
strong case can be made for the opposite assumption,
which provides the basis for the second formulation of
the complementarity principle.

Space-time complementarity (kinematical) . Different
microscopic observables that are spacelike separated on a
Cauchy surface Z, but have support on matter field con
figurations that, when propagated back in time, have col-
lided ivith macroscopically large center of mass energies,
are not simultaneously contained as commuting operators
in the physical Hilbert space. Instead such operators are
complementary.

Let us end this section with a few short comments.
It is important to emphasize that in both formulations

of the complementarity assumption no specific reference
is made to the presence of the black hole horizon, nor to
its location. The horizon region is therefore not consid-
ered differently &om any other region of space-time.

Nevertheless, the complementarity assumption will
have drastic consequences for the horizon region as seen
by an observer who stays outside the black hole. This is
particularly evident &om the second formulation of the
complementarity principle, since it immediately implies
that, to an outside observer, the part of the Hilbert space
that is associated with the region near or behind the hori-
zon must be much, much smaller than would follow &om
&ee field theory. It is clear that this will have important
consequences for the computation of quantities like the
black hole entropy (cf. Ref. [11]).

While the kinematical and dynamical formulation are
very similar in spirit, it is not immediately obvious that
they are equivalent. To establish this equivalence, one
would have to show that the above kinematical comple-
mentarity restriction is dynamically implied by the first
principle. In other words, one would need to show that
the simultaneous existence of operators like the in- and
outside operators in Fig. 1(b) inevitably results in macro-
scopically large space-time Huctuations, thereby violating
the restriction formulated in the first form of the com-
plementarity principle. The aim of the following sections
is to present evidence that this is indeed the case.

II. SCALAR FIELDS IN A BLACK HOLE
GEOMETRY

stant mass M, while inside the matter distribution the
metric is assumed to be regular, and not very different
from Minkowski space. It is convenient to introduce the
advanced and retarded time coordinates v and u which
in the Schwarzschild region are defined by

u=t —r*, v =t+r*, (2.1)

with

rr* = r + 2Mln —1 —2M,
2M

where r and t represent the usual Schwarzschild radial
and time coordinates. In terms of the Kruskal coordi-
nates x+ = e"~ and x = —e ~ the metric outside
the collapsing matter is given by

32M3
ds2 e ~l™dx+dx + r2d2 (2.2)

where d 0 = de + sin Odp is the line element on the
sphere.

Now consider the classical propagation of a scalar field

P on this geometry. Following [1] we want to determine
the relation between a given outgoing wave and the corre-
sponding initial wave that is obtained by propagating the
former backwards in time through the collapsing matter.
We may concentrate our discussion on the region close
to the horizon, where the Klein-Gordon equation for the
field P takes the form

xrg(u, v, 0) = 0, (2.3)

(e—u)/4M (( ]

and thus the wave equation (2.3) simplifies to B„B„Q= 0.
In this way we find that near the horizon the field P is
decomposed into an incoming and an outgoing wave

(2.4)

where L~ denotes the scalar Laplacian on the two-
sphere. For our purpose we need to consider field config-
urations that have a finite &equency with respect to the
Schwarzschild time t and a finite angular momentum.

Since an outgoing wave P „, with a finite frequency
at X+ oscillates extremely rapidly near the horizon (see
Fig. 2), one may apply the geometric optics approxima-
tion to derive the form of the incoming wave P;„ in the
asymptotic past [1]. In terms of the above wave equa-
tion, this procedure becomes exact in the region r + 2M,
where we have

In this section we consider the propagation of a &ee
scalar field on the time-dependent geometry of a black
hole that is being formed by gravitational collapse of a
spherical body of matter. Here we will ignore back re-
action. The metric outside the collapsing body is given
by the Schwarzschild metric for a black hole with con-

By matching the in and out signals near the region
where the horizon is formed in the initial stages of the
gravitational collapse, one then finds that these in- and
outgoing waves P;„and P „i are related via a simple
reparametrization

(2.5)
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singularity
P;„(v, )=) (a, e' "+a ) e ' ")

27cld
)m

xvi (n). (2.8)

For each given initial state ~@);„,we would like to cal-
culate the quantum state ~@)s„on a final Cauchy slice,
which asymptotically approaches the Cauchy surface
Z+ U '8+, formed by asymptotic future infinity and the
event horizon.

We can expand the outgoing field on 2+ as

(2.9)

y.„,(u, n) =) (b, e' "+bt, e ' ")
27Bd

)m

xr, (n)

FIG. 2. The Penrose diagram for a black hole that is
formed through spherical gravitational collapse. The addi-
tional lines near the horizon and v = vo indicate the light
rays of a test wave that is used to determine the form of the
outgoing state of the scalar 6eld.

to obtain the creation operators that generate the out
Hilbert space. Ignoring the back reaction, these out
modes can be expressed in terms of the in modes, by
expanding the relation (2.6) describing the propagation
backwards in time to X in modes. One finds the linear
relation

b, = did(n .a ) +p a, , ),
0

(2.1O)

where 0:—(8, p) and +0 denotes the corresponding an-
tipodal point on the two-sphere, i.e. , 0—:(m —8, a+ y).
For large u, the reparametrization u(v) takes the asymp-
totic form

ulna ( ~~' ur'lna + ~~~' ~'&~) '
0

Up to some irrelevant phase, the Bogolyubov coefEcients
have the asymptotic form

(Vo —V
u(v) = vo —4Mln

~ ~
+ const,

i 4M (2 6) ,( )„e2 ~ I'(1 —i4M(u)

27l /id((d + xe)
where vp is the limiting value for the null coordinate v
describing the location of the incoming radial light ray
that eventually coincides with the global event horizon.
The constant on the right-hand side of (2.6) depends on
the details of the gravitational collapse, and is of order
M. In the following we will drop this constant, because
it will not be important for our discussion. The first term
vp is necessary to ensure that our equations are invariant
under time translations which act as simultaneous shifts
of u, v, and vp. We note that the coordinate relation
(2.6) is noninvertible, since it maps the domain v ( vo
onto the complete range —oo ( u ( oo. The equations
(2.5) and (2.6) play a central role in the derivation of
Hawking radiation [1].

To describe the quantum physics near the horizon, the
classical field variables (b; (v, 0) and P „q(u, 0) are re-
placed by second. -quantized field operators. The stan-
dard &ee field canonical commutation relations for the
incoming fields take the form

[$~~(vl) Ql)& Be~I'in(V2& 02)] —27l Zb(v12)8 (012) )

(2.7)

and a similar commutation relation holds for the outgoing
fields. The initial Hilbert space on X is generated by the
creation operators obtained &om P;„:

+,.( + )„e 2 M F(l —i4M~d)

27I g(d (ld —M)

(2.11)

This relation between the asymptotic modes completely
determines the asymptotic form of the outgoing state on
future infinity 2+. It is described by a mixed state, since
the outgoing fields on X+ cover only part of the final
Cauchy surface. We refer to Hawking's original paper [1]
for a more detailed discussion of the properties of this
mixed state.

III. CLASSICAL BACK REACTION

One of the central assumptions in the standard deriva-
tion [1] of the outgoing radiation spectrum is that the
incoming and outgoing fields can to a very good approx-
imation be treated as 6.ee fields. In particular, it is as-
sumed that the commutator between them

[P (v Oi) Po t(u 02)]

vanishes for v & vp. The underlying classical intuition is
that the fields P;„(v,0) with v ) vo will propagate with-
out much disturbance into the region behind the black
hole horizon, and thus become unobservable &om the out
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side. However, this intuition ignores the gravitational in-
teractions between the in- and outgoing particles. Our
aim in the following is to investigate the consequences of
these interactions for the derivation of the final state.

First let us brieBy recall why in principle one could
expect that gravitational interactions can become im-
portant. An important feature of the mapping (2.5) is
that an outgoing wave with a certain frequency u trans-
lates into a in wave with infinitely many oscillations along
v = vp. For example, in the 8-wave sector we have

Event
Horizon

Trajectory Outgoing
Particle

) —4 i M(u

( 4M )
(3.2)

Hence a generic out wave, when propagated back in time,
carries a very large outgoing stress-energy near the hori-
zon. Although for the propagation of a nonsingular initial
state this stress-energy manifests itself only in the form
of virtual fluctuations, i.e., of purely negative frequency
in a local inertial kame, it can in principle still lead to
nontrivial gravitational effects. In order to investigate
this point, we will begin with a description of these in-
teractions at the classical level.

ing
cle

v =v
p

v =v +5v

FIG. 3. An infalling shell of matter changes the position of
the horizon by a small amount, but due to the redshift it has
a large efFect on the trajectories of outgoing light rays.

A. Classical dynamics of the horixon

—(vg —v() )/4M (3.3)

Even though this variation seems negligible, it leads to a
significant effect on outgoing light rays. As illustrated in
Fig. 3, a light ray that originally would have reached the
outside observer at some retarded time u will as a result
of the shift

Vp M Vp+6vp

As a preparation, let us study the effect of a spherical
shell of matter with energy bM that falls into the black
hole at some late advanced time vq. In particular, we
want to know how this in8uences the advanced time vp

at which the global event horizon forms. It is clear that
due to the additional matter the Schwarzschild radius
of the black hole increases by an amount 2hM, and so
after v = vq the global event horizon coincides with the
new black hole horizon at r = 2M + 2bM. By tracing
the corresponding light rays back to the origin r = 0
we discover that the global event horizon originates at a
time vp + bvp that is slightly earlier than vp (see Fig. 3).
Explicitly, we find

zon and be trapped inside the black hole horizon. It
follows that an outgoing wave P „t(u, 0) corresponding
to a given incoming wave P;„(v,0) is transformed, as a
result of the additional infalling matter, into

P „~ -+ P „t(u+ hu(u), n),

vy +ivy
bM= dO dv T„„(v,0) .

Vy

(3.5)

where bu(u) is given above. This is quite a dramatic
effect for a generic out wave.

Let us now turn to the question of how to incorporate
the gravitational self-interactions of P into the descrip-
tion of the wave propagation. The basic observation is
that the presence of the scalar field P also leads to small
changes in the black hole mass M and in the position of
the horizon due to incoming energy Aux carried by the
T component of its stress-energy tensor. It is easy to
show that the stress-energy T„„=—

2 (B„P;„)2in a small
interval between vq and v~+ Lvq induces a change in the
mass M equal to

arrive at a much later time u+ hu. Using (2.6) one easily
shows that

bu(u) = —4Mln
i
1+ e"hv

4M
(3.4)

Notice that even for a very small perturbation bvp ( 0
the tiine delay hu(u) becomes infinite at a finite time
ui; —vp —4M 1n(~hvp~/M). The physical interpreta-
tion of this fact is that a light ray that is on its way
to reach the asymptotic observer at some time u ) u~;
will as a result of the infalling shell cross the event hori-

Just as in the case of an infalling matter shell, this leads
to a small correction bvp in the formation time vp. At
first it may seem a good idea to describe this effect by
substituting (3.5) into (3.3). However, an important dif-
ference &om the previous situation is that the incoming
stress-energy T„ is not necessarily spherically symmet-
ric, and therefore it is reasonable to expect that the shift
bvp depends on the angular direction O. Indeed, within
a certain linearized approximation of the Einstein equa-
tions one can derive, along the lines of [9], the following
expression for bvp.
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bvo (0,) = 8 J d og f( o„op)p;, ( 0),

P, (O) = dvei ' "l~ T„„(v,O),
&0

where f (O, O') satisfies

(An —1)f (Oi) O2) = —2vrb~ l (Oi2) . (3.7)

played by the in- and outgoing components of the stress-
energy tensor. Recall that as quantum operators T and
T not only measure the energy Aux, but are also the
generators of coordinate transformations in the v and u
coordinates. For example, the commutation relation of
T„„with P;„reads

[T„„(vi,Oi), p;„(v2, O2)]

(O»)~(v»)ov~i~(v~O~) ~ (4.1)

Here L~ denotes the Laplacian on the sphere. The func-
tion f(Oi, O2) describes the response of the position of
the horizon at angular direction Oq, due to a localized
stress-energy inQux &om the direction 02. Notice that
the expression (3.6) contains the same exponential fac-
tor as in (3.3), and thus for field configurations with a
6nite energy only represents a very small correction to
vo. The derivation of the result (3.6) is summarized in
the Appendix.

Let us make a short comment about the choice of the
lower integration limit at v = vo. In reality this lower
limit is not sharply determined, because we should also
take into account the gravitational back reaction due to
infalling particles for v ( vo. As a practical way of
dealing with this technical complication, we will in the
following simply adopt as a model that all gravitational
interactions are simply turned off below the critical line
v = vo. Classically, this indeed seems a reasonable proce-
dure, since incoming particles at v ( vo will not fall into
the black hole (provided their energy is not too large)
and will therefore not generate any shift in the critical
time.

Now let us return to the problem of wave propagation
on the black hole background. As reviewed in Sec. II,
the outgoing fields are related to the in fields P;„(v) for
v & vo via the time evolution &om Z to X+. We now
propose to incorporate the effect of the back reaction
in the relation between P;„and P „tvia the substitution
vo ~ vo + hvo(O) in Eq. (2.6). In this way we obtain

and a similar relation holds between T„„and the outgoing
field P „,.

A. The algebra ef in and cut fields

An immediate consequence of the gravitational back
reaction is that it invalidates the assumption that the
asymptotic in- and outgoing fields P;„(v, O) at v ) vo
and P „t(u, O) can be treated as independent, commuting
variables. As we will now show, the interaction described
above implies that this commutator is in fact replaced by
a nontrivial and nonlocal "exchange algebra. "

We will assume that the gravitational interaction can
be incorporated in the relation between quantum opera-
tors P;„and P „t via the semiclassical procedure described
above, by including the correction (3.6) to the critical
time vo. The correspondence principle guarantees that,
within a reasonable energy range, this is a valid approx-
imation. The diffeomorphism between the asymptotic
in and out waves thus depends on the quantum stress-
energy tensor T„„=—

2 (oj„p;„) contained in bvo. This
implies that, as a quantum operator, the new critical line
vo+ h'vo(O) no longer commutes with the incoming fields.
Using (3.6) and (4.1), we find

[h vp (Oi), P;„(v, O2) ]

= —16vrif(Oi, O2)e "' " B„P;„(v,O2) . (4.2)

where

P „t(u, O) = P;„{v(u)+ bvo(O), ~O)

v(u) = v —4Me "'

(3 8)

(3.9)

It will be useful, therefore, to make the dependence of
the outgoing variables on hvo(O) explicit. To this end,
we note that the relation (3.8) and (3.9) can formally be
inverted as

and bvo(O) is given above.
&P „,(u, O) = exp[ —ei" "'l~ bvo(O)B„]

xP;„{v(u), O) . (4.3)
IV. QUANTUM MECHANICAL BACK

REACTION When we combine this relation with (4.2), a straightfor-

In this section we will study how these interactions can
be incorporated at the quantum level. In particular, we
are interested in how they affect the propagation of the
P quantuin state. The idea will be to follow the original
work of Hawking [1] as much as possible, except that we
replace the relation (2.5) between the in- and outgoing
waves by its corrected version (3.8). Hence the relation
between the asymptotic in and out waves becomes non-
linear.

In the following discussion, an important role will be

The fact that bvo is an operator-valued quantity in principle
could introduce a problem with normal ordering at higher or-
ders in this expansion. In the 6rst instance, however, we will
ignore this point and simply exponentiate the linearized inter-
action between the in- and outgoing modes. This procedure
amounts to the ladder or eikonal approximation to linearized
gravity, which, in the kinematical regime of interest, is known
to provide the correct leading order result [10].
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ward calculation shows that the incoming and outgoing
6elds satisfy the exchange algebra

P.„,(u, A, )P;„(v,A, )

= exp[ —16mif(A„A2)e&" "l~ 0„0„]

that the relation (4.6) manifestly respects the canonical
commutation rules for P „t and P;„.

An equation of the form (4.6) would indeed im-
mediately help us in finding the field Ph, near the
horizon, since one deduces &om it that the operator
MP;„(v, A)U commutes with P „i for v ) vp. This
suggests that we should take

x P;„(v, A2) P „i(u, Ai) . (4.4)
Pi, ,(v, A) = MP;„(v, A)Q, v ) vp, (4.7)

This result is valid for v sufficiently later than vo and for
Oq not too close to 02.

The above formula (4.4) is closely related to 't Hooft's
two-particle S matrix for Planckian scattering [10] in the
limit of low momentum transfer. Note that it is symmet-
ric in P; and P „i, even though the starting point (3.8)
seemed to be asymmetric. A possible way to understand
this fact is that the exponentiation in (4.4) results from
summing the contributions Rom multigraviton exchange
in the eikonal approximation [10]. It is further important
to note that the result (4.4) only represents the onset of
the gravitational interaction between the infalling mat-
ter and the outgoing radiation. The result is valid in a
limited regime, because when the center of mass energy
between the in and out particles gets too large (or when
the angular positions Ai and A2 come too close) nonlin-
ear higher order efFects will become dominant.

B. The Seld operators at the horizon

The fact that P;„and P „& do not commute is physi-
cally reasonable, because the infalling matter that is in
the causal past of the operator P „i in principle infiuences
the geometry on which the outgoing 6eld has propagated.
However, the above result not only represents the effect
of the infalling matter on the outgoing wave, but it also
implies that there is a nontrivial back reaction effect on
the infalling matter due to the presence of the outgo-
ing 6elds. As the infalling wave approaches the horizon,
causality dictates that the local field operator P must
commute with asymptotic operators P „i that describe
the outgoing radiation. From this we may conclude that
the incoming field P;„and the field at the horizon are
not the same operator, but are related via a nontrivial
evolution operator.

To distinguish P;„ from the field at the horizon, let us
denote the latter by Pi, , We will try to determine the
proper definition of the field Pi, , in terms of P;„by the
condition that Ph „at least formally, satisfies

as the relation de6ning the 6elds at the horizon.
Before we determine the operator M, we want to point

out that by assuming the existence of relations of the
form (4.6) and (4.7) we implicitly assuine that all infalling
modes that are supported at v ) vo also fall into the
black hole, and produce corresponding horizon modes.
We will see momentarily that this assumption can only
safely be made, within our approximation scheme, when
we restrict ourselves to infalling modes at sufficiently late
times v ) vo+ Lv.

A useful clue that will help us 6nd the operator M is
the apparent symmetry of the algebra (4.4) between the
incoming fields P;„and outgoing fields P „i. We can make
this symmetry more manifest by introducing, besides the
operator P;„(A) defined in (3.6), a similar expression

p...(n)= f due'" '"~T (u, n).. (4 8)

in terms of the outgoing 6elds. By using the commutator
relation

[P „t(Ai), p „i(u, A2))

= -2~ie~2l(A»)e~"-" l~'Ma„y.„,(u A, ) (4.9)

we can now replace the differential operator in the ex-
ponent of (4.3), and formally rewrite the basic relation
(3.8) between P;„and P „i precisely as in (4.6), with the
operator M given by the expression

M = exp i dOyd02Pout ~& ~].&~2 Pin

(4.10)

Inserting this result into (4.7) gives the formal definition
of the 6elds at the horizon.

It is instructive to work out the right-hand side of
Eq. (4.7) using the commutation relation (4.1). A simple
computation gives

[who. (v Ai) po i(u A2)] = 0 ~ (4 5)
Qh, (v, A) = $;„(v —Av(v, A), A), (4.11)

The idea for finding such operators Pi, , is to look for an
interaction representation of the out 6elds of the form where

P „,(u, A) = UP;„(v(u), A)M ', v ( vp, (4.6) Ev(v, A) = 4M in~ 1+ e~"'

with v(u) defined in (3.9) and where U is some operator
acting on the in Hilbert space representing the gravita-
tional correction. Intuitively, we may think of M as the
time-ordered exponential of interaction Hamiltonian that
describes the gravitational self-interaction of P. Note

x d 0' n, n' P~ut 0' (4.12)

A more direct derivation of Eq. (4.11) is given in the Ap-
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pendix, where it is shown to represent the e8ect of met-
ric fluctuations close to the horizon. As we see &om this
equation, the infalling matter fields close to the horizon
are related to the original in fields via an operator-valued
shift v ~ v —Lv. The magnitude of this shift is deter-
mined by the outgoing stress-energy fiux Eq. (4.8). It
will become clear in the following that, for as long as our
approximation scheme is valid, the quantum mechanical
uncertainty in this quantity Lv will grow very fast.

A second important comment about (4.11) is that it
indicates that our description of the gravitational inter-
action near the horizon can only be trusted as long as the
argument of both Ph, and P;„ is (sufficiently) larger than
vp. In other words, the definition (4.11) of the infalling
field at the horizon requires that

, U=CD

V )Vp+LV. (4.18)

What this means is that for initial infalling fields
P;„(v,0) closer to vp we can no longer say with certainty
that these will reach the black hole horizon. A more care-
ful analysis of the interactions in the region near v = vp
will be required to determine the fate of these fields.

C. Back reaction of the Hawking state

We will now describe how these results can be used
to investigate the efFect of back reaction on the propa-
gation of a quantum state. To this end, we return to
the setup as described at the end of Sec. II, where we
introduced oscillator bases for the asymptotic in and out
Hilbert spaces. The out modes 6 do not generate the
complete final Hilbert space, however, and thus we will
now also introduce a mode basis of the Hilbert space near
the horizon '8+. A convenient definition of modes is

FIG. 4. In our model we assume that the interaction region
between the in- and outgoing modes is bounded by the critical
line v = vo, the initial cauchy surface at 2, and the final
Cauchy surface near 'R+ U 2+.

where o. and P are given in (2.11). The form of
the outgoing state corresponding to the initial vacuum
state is now easily found. The first expression for the
annihilation mode u shows that the final state ~@)fi„ i
corresponding to the a vacuum ~0);„satisfies

(b
—4vMa& t )~—1

~y) 0

(4.17)
(bt —e™c)M '~g)fi„ i = 0.

These equations can be readily solved, if we assume that
~@)fi„ i lies in the tensor product of the Fock spaces for
the 6 and c modes. One finds

&&&, (v, n) = ) fl,m

X (
i~u(v) + t i&vu(v)

)
y—.

(g)
(4.14)

~4') final = +~ P)Hawking & (4.18)

where M is the gravitational high energy S matrix given
in (4.10) and

where

u(v) = 4Mln(v —vp). (4.15) (4.19)

~ @)Hawk'nS P ) &vbn &t l, —&n

~m

XI0)b 10).

'u M = Cku'[n', (b —e ct, )
0

P (bt 4m M&v'
) ]

a~A= d~'o. i 6, —e c

pe (b
4»M&v' t

)j

(4.16)

Combined together, the two sets of b and c modes gen-
erate the complete final Hilbert space, and thus the in
modes can be expressed in terms of them. Using stan-
dard results as summarized in Sec. II together with the
above interaction representation of the back reaction, one
finds after a straightforward calculation (suppressing the
I, m labels)

where N is a normalization constant.
Equation (4.18) for the gravitationally corrected final

state is still rather formal. In the first place, we need to
be more specific about the integration region in the (u, v)
plane that is used in the definition (4.10) of U. The
idea of our approximation procedure is to only include
the gravitational shift interaction between the in and out
modes very close to the horizon, and as stated before
we simply wish to ignore all interactions near and below
v = vp. Moreover, we have assumed in our description
that the shift interaction extends all the way to v = vp.
The integration region in the (u, v) plane that we will
use, therefore, is as indicated in Fig. 4.

Secondly, there are subtleties that arise &om the op-
erator nature of the stress-energy tensors contained in
M. In particular, we need to prescribe a specific operator
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ordering. The appropriate prescription here seems to be
to use time ordering, as is dictated via the identification
of 0 as the time-ordered exponential of the gravitational
interaction Hamiltonian. Adopting this prescription, we
write Q as

Lt = T exp
~

~ f dt H& t
~

=T exp ~ dudve~"- ii'
vp

x dOid02T„„u, Oi O»02 Tvv v&~2

to the transition element;„(Olrp), evaluated in the free
scalar field theory on the black hole background. The
transition element can be represented as a functional in-
tegral over all fiuctuations of the scalar field P with spe-
cific boundary conditions at 2 and 2;+U'R+ ('R+ denotes
the event horizon) determined by the initial state;„(Ol
and final coherent state Iip). Imposing vacuum boundary
conditions at T implies that P has no positive energy
modes, while at X+ U R+ the negative frequency part of
P is prescribed by the coherent state Iy).

The expression So(p) can be identified with the classi-
cal &ee field theory action of the saddle-point configura-
tion P,~ associated with the coherent state Iy):

(42o) ~o(V) = ~r-.(4.i) (4.24)

where the symbol T in &ont denotes time ordering. This
formula summarizes the leading order gravitational inter-
action between the in- and outgoing fields at low momen-
tum transfer, as obtained via the eikonal approximation.

As it stands, however, this expression still contains in-
finities that arise &om the singular short distance expan-
sion of T „and T„„with themselves. In the following
we will assume that these infinities are regularized with
the help of some proper distance cutoff4 e. We will com-
ment further on this procedure and its physical meaning
in Sec. IVE.

with P,~ given by the matrix element

& ~= -(01&l~). (4.25)

—4i M(u

&'.7(~) =
4M )+

4iM(ufv —vo)
4M (4.26)

We find that the relevant classical solution associated
with the overlap (4.22) is given by

D. Fluctuations of the Hawking state

We would eventually like to get some insight into the
size of the gravitational corrections we just calculated.
To this end, we first consider the magnitude of the stress-
energy Quctuations in the Hawking state, i.e. , the final
state, before including the back reaction. For this pur-
pose, it will be convenient to choose as a basis of the
final Hilbert space the coherent state basis for the b and
t" modes:

OO

Iv) = exp d~(~-b.'+ ~--c'.) 10)s Io)' (4»)
0

These satisfy the relations b Iy) = Ip Iy) and c ly) =
'p ~ I p).

Using the expression (4.19) for the Hawking state,
one easily computes that (to simplify the expressions we
again suppress the angular dependence of the fields)

OO ]gP(u)= der [(p e' "+e y e ' "],
0 (d

where the subscript + indicates that the corresponding
function is defined to be analytic in the upper half com-
plex v plane. These configurations should be thought of
as the quantum fluctuations that are responsible for the
production of the Hawking radiation.

The magnitude of the stress-energy tensor T„„(P,~) de-
pends on the value of the parameters y, but also on the
behavior of the modes e' " and (v —vo) ™in the var-
ious regions of the black hole geometry. The components
that potentially become large are T„„and T„„.We first
consider the behavior of the T component associated
with the incoming field P'"(v). We find

16M2 (~o —v l
T„„(g,i) =

V —Vp p 4M p+

with

1
(&H.„„„sl~)= y exp['S, (v)] (4.22)

where

) 4iM~
+T .

I

"
4M )+

(4.27)

So(y) = d~e ' M p p
0

(4.23)
T~ = d(d 2 /cd (Ld —ld )(p~~(p~ ~r

0
This result can in fact be rederived &om a semiclassical
saddle-point approximation. The overlap (4.22) is equal d(u'e 4 M Q(u'(~+(u')(p p + (4.28)

0

This short distance cutofF must regulate the short distance
singularities in the longitudinal (u, e) plane, as well as in the
transverse 0 direction.

and a similar expression can be given for T (~ ) 0).
We see that for finite nonvanishing values for the pa-

rameters p the stress-energy tensor is in general singu-
lar near v = vp. The T„„component, representing the
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outgoing stress-energy flux, is related to T„„by reflec-
tion off the r = 0 boundary. In the Kruskal coordinate
x = —e "~ M the outgoing stress-tensor is generically
also singular near the horizon as soon as the y differ
by a small amount &om their exact expectation value.
It is easy to convince oneself that such fluctuations are
also really present. The average magnitude of p in the
Hawking state lv/i)H~~k;„s is

(4.29)

and this indicates that the fiuctuations of the (abso-
lute value) of p are comparable to the fiuctuations in
the particle number density observed in the out state.
Thus for generic coherent out states the parameters p
will indeed differ by a finite amount from their average
value, and this will result in large, super-Planckian stress-
energy fluctuations near the horizon.

E. Gravitational corrections and complementarity

We will now comment on the expressions (4.18)—(4.20)
for the corrected final state. The following remarks will
be mostly qualitative, as some of the relevant calculations
are left for a future publication.

Let us erst slowly turn on the back reaction. Using
the expressions (4.18) and (4.20), we obtain the leading
order correction to the final state Eq. (4.22), by adding
to the classical &ee field action S~„,(g, i) an interaction
term

(4.30)

with S;„i ——J dtII;„t, as given in Eq. (4.20). In lead-
ing order, this interaction term can be evaluated on the
unperturbed classical field configuration P,i.

How large is this leading order correction? This turns
out to be a somewhat subtle question. In principle, one
can explicitly compute this correction term by inserting
(4.27) and (4.28) in our expression (4.20) for S;„i. One
then finds, however, that the magnitude of the correc-
tions critically depends on how one treats the end points
of the integration over the u and v coordinates. If one
defines the integration region, as indicated in Fig. 4, to
have in6nitely sharp boundaries at the horizon u = oo
and the critical line v = vo, one will find that the cor-
rections to the final state on 'R+ U X+ in fact become
very large. (This can easily be seen &om the above ex-
pressions for T„„.) However, if instead one cuts ofF the
interactions at some finite distance from the horizon, as
measured in some local coordinate system, one will find
that the corrections are bounded, and, because of the ex-
ponentially growing redshift, will eventually get smaller
with time for the final state on X+.

A similar cutoff dependence arises if one tries to com-
pute higher order corrections by further expanding the
exponent in (4.20). In this case, additional sho"t distance
singularities arise because of the time-ordering prescrip-
tion. In principle, in a finite consistent theory of gravity,
such as perhaps string theory, these singularities should

be smoothed out by the short distance gravitational dy-
namics. However, given our lack of understanding of this
short distance theory, it seems a reasonable procedure to
represent its efFect by introducing some cutoff scale e(x).

To understand this procedure somewhat better, let us
recall the discussion of Sec. IA on the space-time com-
plementarity principle. There we also introduced a cutoff
scale e(x). The point of that discussion was that a rea-
sonable gravitational cutoff must not only regulate the
integrals of T„„but must also act at a more fundamen-
tal level and truncate the Hilbert space by eliminating all
states with wavelengths smaller than the cutoff scale. In-
deed, the short distance singularity in the operator prod-
uct relation between two stress-tensor operators arises
due to the contribution of intermediate states with arbi-
trarily short wavelengths. Regulating the singularity in
the operator product expansions (OPE's) of T„ is there-
fore equivalent to throwing out these singular states.

What does this cutoff procedure imply for the calcula-
tion of the gravitational corrections to the Hawking spec-
trum? Suppose we take for e some proper distance cutoff
in the region very close to the horizon. This will indeed
ensure that we can find a reasonable and controlled an-
swer for the form of the final state on 'R+. However,
we immediately run into trouble if at the same time we
want to calculate the form of the outgoing state on 2+,
because practically all states on 2+ correspond to singu-
lar states near the horizon that were thrown out by our
cutoff procedure. A proper distance cutoff near the hori-
zon is therefore not suitable for computing the outgoing
spectrum (see, e.g. , [12]).

Instead, to calculate the state on 2+, we are forced
to choose a cutoff that allows the Hilbert space to con-
tain very high &equency outgoing modes near the hori-
zon, since the corresponding quantum fluctuations were
used in the zeroth order calculation. The price one pays,
however, is that these modes interact violently with all
infalling particles, via the stress-energy fluctuations com-
puted in Sec. IVD. This will in turn result in a fast
growing quantum uncertainty in the geometry near the
horizon, which is most clearly exhibited by inserting the
expression for T„„,as obtained from (4.27) and (4.28),
into Eq. (4.11). If we nevertheless insist on producing a
reliable semiclassical description of the entire final state
on '8+ U 2'+, we are forced to truncate the Hilbert space
of the matter near the horizon so that it contains only
very low frequency incoming modes. In this Hilbert space
we can reasonably trust the calculations of the outgoing
state, and we find that the corrections are finite. Qual-
itatively the outgoing state will look very much like the
thermal state as derived by Hawking. However, it is clear
that due to the necessary truncation of the Hilbert space
the entropy associated with the black hole is drastically
reduced compared to the conventional &ee field result.

Summarizing, we tnus propose that the calculation of
the outgoing state can be performed in a controlled fash-
ion by working in a theory with such a truncated Hilbert
space, with the idea that this procedure represents a rea-
sonable effective description of some underlying consis-
tent theory of quantum gravity. By regulating the cal-
culation in this way, one produces a 6nite result for the
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gravitationally corrected Gnal state, which, however, crit-
ically depends on the choice of cutoff.

V. SUMMARY

We have presented a method for computing the gravi-
tational corrections to the emission spectrum of an evap-
orating black hole. In this procedure we included grav-
itational interactions between the matter Gelds as they
propagate &om initial Cauchy slice near X to a Gnal
slice near 'R+ U 2+. Contrary to common expectations,
we find that the gravitational interactions that play a
role in this calculation are not suppressed, and can lead
to potentially large physical effects.

It is clear that some parts of our approximation scheme
can be improved. In particular, it should in principle be
possible to compute exactly the leading order correction
to the Gnal state, which results &om single graviton ex-
change between the in- and outgoing virtual particles.
This will in particular clarify some issues of our calcula-
tion related to the interactions near v = vo.

In going to higher orders, conventional Geld theoreti-
cal methods will become inadequate, because gravity is
nonrenormalizable. Thus in any approach based on lo-
cal Geld theory one is forced to introduce some effective
description by introducing a cutoff. The physical picture
that emerges &om these considerations is described in
Secs. IA and IVE.
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Using the fact that [V+, V'
] = 0, one sees that the clas-

sical solutions again separate into a sum of an incoming
and an outgoing part: P = P;„+P „i, with V+/~„t ——0
and V' P;„= 0. Solving these first order differential
equations for P;„and P „t, one finds that the outgoing
field P „q must be of the form

APPENDIX: DERIVATION OF (3.8) AND (4.11)

ds = ds, )+ h,„dx"dx (AI)

In the Grst approximation h~ satisfies the linearized Ein-
stein equations with source equal to the stress-tensor T~
of the scalar GeM. Hence, h~„may be expressed as

We start &om the assumption that the back reaction
effects are small, and therefore we allow ourselves to work
in the weak field approximation. Weak gravitational
fields are represented by small perturbations around the
classical metric

(A7)

Here we have chosen our integration limits such that for
x+ —+ oo there is no shift in the argument. The matching
with the in Geld occurs near the point xo+ = e"'~ . In-
serting the expression (A5) for h++, taking x+ ~ oo,
and translating the result back to the u, v coordinates
produces the result (3.8).

Similarly, the infalling matter is also sensitive to the
metric fluctuations induced by the outgoing matter. The

(A2)

where D"„(x,y) denotes the propagator for the graviton
Geld on the classical black hole background. Next one
should substitute this perturbation back into the scalar

Note that vie are indeed only considering the interactions
that take place in the horizon region 2:+ & e" . For val-
ues of x+ near the critical time the dynamics is rather more
complicated.
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equation of motion for infalling waves reads

8 P;„(x+,x, O) = h (x+, A)B+Q;„(x+,x, O) (AS)

and can in a similar way be formally solved via

(Ao)

Substituting x = 0 and reexpressing the result in u, v
coordinates leads to Eq. (4.11). Finally, we want to re-
peat that the solutions of the linearized Einstein equation
and scalar wave equation that we just described are valid
only in the close neighborhood of the black hole horizon.
We have ignored all other components of T„„except T~~,
and therefore strictly speaking our analysis applies only
to classical fields P for which these other components are
not too large.
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