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We review scenarios that have been proposed to solve the cosmological problem caused by
moduli in string theory, the postmodern Polonyi problem (PPP). In particular, we discuss the
difhculties encountered by the apparently "trivial" solution of this problem, in which moduli masses
are assumed to arise from nonperturbative, SUSY-preserving, dynamics at a scale higher than that
of SUSY breaking. This suggests a powerful cosmological vacuum selection principle in superstring
theory. However, we argue that if one eschews the possibility of cancellations between different
exponentials of the inverse string coupling, the mechanism described above cannot stabilize the
dilaton. Thus, even if supersymmetric dynamics gives mass to the other moduli in string theory, the
dilaton mass must be generated by SUSY breaking, and dilaton domination of the energy density
of the Universe cannot be avoided. We conclude that the only proposal for solving the PPP that
works is the intermediate scale inflation scenario of Randall and Thomas. However, we point out
that all extent models have ignored unavoidably large inhomogeneities in the cosmological moduli
density at very early times, and speculate that the effects associated with nonlinear gravitational
collapse of these inhox ~geneities may serve as an eKcient mechanism for converting moduli into
ordinary matter. As an important by-product of this investigation we show that in a postinflationary
universe minima of the effective potential with a negative cosmological constant are not stationary
points of the classical equat'ons of scalar field cosmology. Instead, such points lead to catastrophic
gravitational collapse of that ~..~t of the Universe which is attracted to them. Thus postinflationary
cosmology dynamically chooses non-negative values of the cosmological constant. This implies that
supersymmetry mn8t be broken in any sensible inflationary cosmology. We suggest that further
study of the cosmology of moduli will lead to additional important insight about cosmology, SUSY
breaking, and the choice of the vacuum in superstring theory.

PACS number(s): 98.80.Cq, 11.27.+d, 12.60.3v

I. INTRODUCTION

The modular problem of string cosmology [1,2] is a
modern version of the cosmology difFiculties created by
the Polonyi field in the earliest versions of spontaneously
broken supergravity [3]. One may call it the postmodern
Polonyi problem (PPP). Briefly, in hidden sector models
of supersymmetry (SUSY) breaking (with gravitational
strength forces playing the role of messenger [4]) there
often exist scalar fields with masses on the order of the
weak scale and gravitational strength coupling to ordi-
nary matter. Even in inflationary cosmologies these fields
behave like nonrelativistic matter just after inflation and
dominate the energy density of the Universe until it is
too low for nucleosynthesis to occur.

In generic hidden sector supergravity models, such
fields are needed to generate gaugino masses of order the
weak scale. One can eliminate them by choosing a model
in which SUSY is broken at low energies. In string the-
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ory we have no such luxury. Massless moduli fields ex-
ist in all known string ground states. They parametrize
the continuous ground-state degeneracies characteristic
of supersymmetric theories. Even if one were to find
a ground state with no geometrical moduli one would
still have the model-independent dilaton superfield. If
these moduli fields, which are massless to all orders in
perturbation theory, get their mass from the same non-
perturbative mechanism which breaks SUSY, and if the
SUSY-breaking I" term is & 10 —10 GeV, as it is in all
known models of SUSY breaking, then the moduli pose

We use this phrase to describe moduli associated with the
internal conformal field theory of a string ground state which
is the tensor product of four flat spacetime dimensions and a
conformal field theory with a discrete spectrum of conformal
dimensions.

. . . with the possible exception of models with continuous
noncompact global symmetries that have been discussed by
Binetruy and Gaillard [5]. These models cannot be exact con-
sequences of string theory, but is possible that discrete rem-
nants of the noncompact symmetries used by these authors
are sufBcient to obtain their results.
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a cosmological problem.
In this paper we will survey attempts that have been

made to resolve this problem. In our opinion, no com-
pletely satisfactory resolution of the cosmological moduli
problem has been discovered, although the proposal of
Randall and Thomas seems promising. Nonetheless, all
extent models require new and interesting phenomena to
occur, both in the realm of cosmology and in the theory
of SUSY breaking. We view this as an indication that
a correct theory of the cosmology of moduli will have
important, and probably testable, consequences.

In Sec. II of this paper we review existing proposals
for solving the cosmological moduli problem, including
an unpublished (because unworkable) proposal by Co-
hen, Nir, Moore, and one of the present authors [6]. The
proposal of Randall and Thomas [7] is reviewed. It seems
to solve successfully the PPP and can be made techni-
cally natural by imposing a certain discrete B symmetry
on their model. Louis and Nir [8] have investigated mod-
els which incorporate at tree level the mechanism pro-
posed by Binetruy and Gaillard [5]. They show that, in
generic vacuum states, radiative corrections drastically
limit the separation that one can achieve between the
moduli masses and the weak scale. The allowed sep-
aration is marginally satisfactory from the cosmological
point of view but all of these Inodels have flavor-changing
neutral currents that are too large to be compatible with
experiment. We briefly discuss the question of whether
there are specific vacuum states in which radiative cor-
rections to the Binetruy-Gaillard mechanism are hierar-
chically small.

We then turn to proposals for giving mass to the mod-
uli at a scale higher than that of nonperturbative SUSY
breaking. This turns out to be more dificult than it
sounds. In supergravity the manifold of chiral superfields
must be a Kahler manifold, and the effective potential
has the form

V = e [D;WD; WK" —3/W/ .
] .

Here K is the Kahler potential, D; the corresponding
Kahler covariant derivative, and R' the superpotential.
In order to have a supersymmetric ground state with
vanishing cosmological constant, the superpotential and
all of its erst derivatives must vanish at the minimum
of the e8'ective potential. This is a nongeneric condi-
tion, involving n+ 1 equations for n unknowns. It can
be satisfied "naturally" if both supersymmetry (which
requires the Kahler derivatives of W to vanish) and a
complex R syinmetry (which requires the superpotential
to vanish) are preserved. We argue that in the context
of the conventional gaugino condensation description of
nonperturbative effects in string theory the vanishing
of the superpotential can only occur at points in moduli
space where chiral multiplets charged under the hidden
sector group become massless. No such poini, s have been

The arguments are definitely more general than this, and
probably apply to a wide range of nonperturbatively gener-
ated superpotentials in SUSY-gauge theories.

found on any of the submanifolds of moduli space yet
explored.

Thus, while there are examples of nonperturbatively
generated superpotentials which give rise to stable, su-
persymmetric ground. states, these ground states generi-
cally break all B symmetries. The superpotential is non-
vanishing at the potential minimum. As a consequence
such a state will exhibit a large negative cosmological
constant.

In Sec. III, probably the most important section of this
paper, we show that a negative cosmological constant is
more than just a phenomenological embarrassment. A
universe that has undergone inQation cannot settle into
a minimum of the potential with negative vacuum en-
ergy. Instead, it undergoes a violent recontraction on
microscopic time scales. Thus, if a system has several
minima of its effective potential, some of which have neg-
ative energy, cosmological evolution will favor those with
non-negative energy.

The argument described above is based on the classi-
cal equations of cosmological evolution. States with non-
negative vacuum energy are potentially unstable to decay
into negative energy states via quantum tunneling. We
show that in theories of moduli, and more generally in
"natural" models of inBation, the tunneling amplitudes

poloare less than e per unit space time volume, and
might be identically zero. A zero energy ground state
in such a theory has a lifetime for decay into hypotheti-
cal negative energy states, which is much longer than the
age of the Universe. This implies that even though our
own universe might be unstable in such a model, we have
no need to worry about living in such an unstable world.

In Sec. IV we return to an examination of super-
symmetric ground states which can freeze the moduli in
string theory. We argue that the restriction to states with
vanishing cosmological constant is indeed very strong in
this context. As mentioned above, the requirement ap-
pears to force us to sit at a point in moduli space where
extra chiral multiplets charged under the hidden sec-
tor gauge group become massless. There are no known
points where this occurs. We discuss the implications,
and provide a favorable interpretation, of this negative
result. It suggests that the search for supersymmetric
ground states with nonperturbatively vanishing cosmo-
logical constant may lead to isolated points in string
moduli space. Thus, the cosmological selection of such
states becomes a dynamical vacuum selection principle
for string theory.

We point out that the mechanism under discussion can
probably not give mass to the dilaton. Finally, we exam-
ine the generation of a dilaton mass by SUSY-violating
phenomena, and confirm that all known mechanisms for
SUSY breaking still lead to cosmological disaster.

In passing, we provide a mechanism for cancellation
of the cosmological constant in scenarios of low energy
SUSY breaking. We show that it requires the existence
of a light weakly coupled field (the dilaton in our case)
with a mass of order 10 —10 eV. In the presence of
such a field, the cancellation of the cosmological constant
in theories with low-energy SUSY breaking is no more un-
natural than it is in hidden sector models. In addition,



52 COSMOLOGICAL MODULI PROBLEM, SUPERSYMMETRY. . . 707

the dynamics of a field with such a small mass might
conceivably explain the 6ne-tuning of the cosmological
constant to levels consistent with observation. Unfor-
tunately, it is precisely this light field which dominates
the energy density of the Universe in these models, lead-
ing to a PPP. In this case, the ideas of [6] can be made
to work, saving nucleosynthesis. However, the ratio of
nonrelativistic matter to radiation in the present era is
predicted to be many orders of magnitude larger than it
actually is.

In Sec. V we present a highly speculative scenario
which might resolve the cosmological moduli problem in
a novel way. We point out that in all extant models, mod-
uli do dominate the energy density of the Universe for a
long time after inflation. Since they behave like nonrela-
tivistic matter, inhomogeneities in the moduli fields grow
with the expansion. We show that they go nonlinear long
before the moduli decay. This leads us to speculate that
nonlinear processes associated with gravitational collapse
(e.g. , the formation of stable, gravitationally bound mod-
utar stars ) could lead to an enhancement in the decay of
moduli into ordinary matter, thus eliminating the mod-
uli before the era of nucleosynthesis. At present, we do
not know how to calculate in this complicated nonlinear
regime, so we cannot assess the viability of this proposal.

Finally let us note the recent paper of Bento and Berto-
lami, which also treats the Polonyi problem in string the-
ory [9].

II. SOME MODEST PROPOSALS

The general argument that moduli fields dominate the
energy density of the Universe has a number of loopholes,
and proposals to avoid the problem have tried to exploit
most of them.

A. Intermediate scale inflation
as a solution to the PPP?

We begin by reviewing the work of Randall and
Thomas (RT) [7], who suggested inflation with a weak
scale Hubble parameter as a mechanism for diluting the
moduli. If the Hubble parameter is of the order of the
modular masses then their energy density indeed red-
shifts away exponentially during inflation. Randall and
Thomas estimate that 7 to 10 e-foldings are suKcient to
reduce the modular energy density to an acceptable level.
They call their proposal weak scale inflation, but we pre-
fer the name intermediate scale inflation (ISI), because
the intermediate scale +M~M~ is the fourth root of the
inflationary vacuum energy in this model.

RT note that intermediate scale inflation produces den-
sity fluctuations many orders of magnitude smaller than
those required by observations of inhomogeneities in the
cosmic microwave background. To resolve this, they in-
voke a previous era of inflation, with a higher vacuum
energy density. They claim that the requirement that the
primordial Huctuations responsible for the observed mi-
crowave background distribution not be blown up larger
than our horizon volume by the second stage of inflation,

is that there be fewer than 25—30 e-foldings of ISI. This
is compatible with the amount of inflation necessary to
eliminate the moduli.

Unfortunately, the RT proposal appears to have a nat-
uralness problem. Indeed, such proposals were consid-
ered and telegraphically dismissed by Nelson in a cryptic
footnote in [I]. The problem is that in order to obtain
sufficient reheating (i.e. , in order for the Randall-Thomas
inflaton not to pose the same kind of problem as the
moduli), one must couple the inflaton to ordinary mat-
ter via renormalizable couplings. Generically, this would
lead to a renormalized efFective potential for the inflaton
field which varied when the inflaton field changes by an
amount of order the weak scale. Such a potential cannot
lead to inflation.

Randall and Thomas propose to deal with this problem
by invoking SUSY nonrenormalization theorems. They
would like to have a term in the superpotential cou-
pling the inflaton I to low-energy fields in a renormal-
izable way, but no terms in the superpotential that de-
pend only on I. Neither can they afFord to have soft
SUSY-breaking terms containing only a single power of
the SUSY-breaking E term multiplied by a function of
I/M~. Any superpotential term or soft SUSY-breaking
term of this type will generate a potential much larger
than the fourth power of the intermediate scale. If no
such terms occur, then the potential for I can vanish up
to linear order in E, at the minimum for the other fields.

The solution they find to this infinite set of conditions
is clever and probably unique. A discrete B symmetry
under which I is neutral forbids all the relevant terms. In
addition one must assume no elementary fields, 42 with
B charge 2, to prevent the appearance of terms of the
form 4'2G(I/Mp) in the superpotential. Finally one must
worry about the necessary breaking of the B symmetry.

Surprisingly, this does not pose any problems. Generic
nonrenormalizable hidden sector (NRHS) [1] models con-
tain a strongly interacting sector which breaks all com-
plex B symmetries at a scale M~ related to the SUSY-
breaking scale by MR (PM~) ~ . This is necessary in
order for the cosmological constant to be zero. The field
whose E term breaks SUSY carries B charge zero (and
so its E term carries R charge —2) because it is a flat
direction of the tree level potential, whose vacuum ex-
pectation value (VEV) is being fixed by nonperturbative
physics at scale M~. The B symmetry is a valid symme-
try along this flat direction only if the superGeld carries
B charge zero.

In any such model, all B breaking terms in the action
of the field I will have their origin in its coupling to the
strongly interacting sector at M~. If all such couplings
are nonrenormalizable (which is automatically the case
if the strongly coupled theory is a pure SUSY-gauge the-
ory or one with matter in purely chiral representations),
the B breaking superpotential induced for I will have the
form M&sm(I/MJ ) and will give an intermediate scale po-
tential (remember that in such theories M&2 M&/M~).

Renormaliz@tion of the Kahler potential of I by weak
scale loops will modify this potential in the regime whereI is much smaller than the Planck scale and inflation
will not occur when I is in this regime. However, the
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asymptotic behavior of these corrections for large I will
be of the form

8V lni 2 V,
Sar 2 (M~2

where A is the renormalizable Yukawa coupling of I to
weak scale matter. For a reasonable range of small values
of A, these corrections are negligible compared to V itself,
even when I is a few times the Planck scale.

Thus, the imposition of a discrete B symmetry makes
the Randall-Thomas proposal technically natural within
the framework of NRHS theories. It remains to be seen
if one can actually And a string vacuum state with a field
with the properties of I. One must further study the
eKect on this proposal of the early gravitational clumping
of moduli that we will discuss in the final section. With
these caveats in mind, however, one can conclude that
intermediate scale inflation is an acceptable solution of
the PPP. It remains to be seen whether such a model can
be derived from string theory and whether the double
inflation scenario invoked by Randall and Thomas truly
emerges naturally &om the dynamics of a specific model.

B. Can one have a hierarchy between squark
and m.oduli InassesY

A second loophole in the argument that moduli domi-
nate the energy density of the universe is the assumption
that the highest scale of SUSY breaking F is related to
the squark masses by P & M&Msq The motivation for
this assumption is the fact that one can write dimension-6
operators invariant under any compact symmetry which
couple the super6eld whose E term breaks SUSY, to the
quark superfields. These terms generate squark masses
when SUSY is broken. It is reasonable to assume that
the relevant scale for these nonrenormalizable couplings
is not larger than the Planck mass, whence the bound.
Binetruy and Gaillard [5] have suggested that noncom-
pact global symmetries can suppress squark masses by
higher powers of the Planck scale. The continuous global
symmetries that they invoke cannot be exact symmetries
of string theory, but one might hope that some discrete
remnant of these symmetries could do the job.

One cannot hope for such a mechanism to be stable un-
der radiative corrections in a theory in which SUSY solves
the hierarchy problem. Stability of scalar masses under
gravitational radiative corrections bounds the gravitino
mass by about 10 GeV. Louis and Nir [8] have stud-
ied the one-loop radiative corrections to vanishing scalar
masses around conventional string vacua. They find that
generically, the one-loop corrections due to light field
with gauge charge are nonvanishing. Thus, in the vac-
uum states they studied, the inequality relating the high
scale of SUSY breaking to the squark masses can only
be weakened by a single factor of ns/vr. This may al-
low us to raise the moduli masses high enough to allow
for nucleosynthesis. It is certainly not enough to allow
the temperature to which the Universe is reheated after
modular decay to be high enough to ignite weak scale
baryogenesis. We will see below that this may not be too
much of a problem.

Unfortunately, I ouis and Nir also showed that models
of this type have large flavor-changing neutral currents
as a consequence of string loop corrections. They are un-
likely to be compatible with experiment. We note, how-
ever, that Louis and Nir studied generic vacuum states
which have noncompact continuous symmetries at the
tree level. We know that these symmetries are broken
by loop corrections, but some discrete noncompact sub-
group might be preserved in particular vacuum states.
It is conceivable that in such special vacuum states the
radiative corrections to squark masses are hierarchically
small, as suggested by Binetruy and Gaillard. Perhaps
the flavor problems are also mitigated in vacuum states
invariant under noncompact discrete groups.

C. Saviors of the Universe Y

We now turn to the proposal of [6] for solving the re-
heating problem. Although unsuccessful, it illustrates
some interesting features that may reappear in a more
robust theory of moduli. The value we have been using
for moduli Inasses is an order of magnitude estimate. Let
us assume that for one or more of the moduli fields, this
estimate is ofF by the rather large factor of 30. Then
some of the moduli will have a reheat temperature of
order a few MeV, hot enough for nucleosynthesis. More
importantly, until the energy density falls to this value,
the heavy moduli (which we will dub the saviors) behave
just like the light ones. The ratio of energy densities
in heavy and light moduli is of order 1 at the end of
inflation, and remains constant until the saviors decay.
Thus, if the initial ratio is somewhat larger than 1, we
will have a radiation-dominated universe at the energy
density relevant for nucleosynthesis.

Of course, the temperature will never be high enough
for even weak scale baryogenesis, but this is unneces-
sary. All of the moduli have only Planck scale couplings
to ordinary matter, and it is perfectly consistent with
all data on baryon number conservation to assume that
these couplings violate baryon number and CP. Thus,
baryogenesis could arise from the (obviously out of equi-
librium) decay of the saviors. The baryon to photon ra-
tio produced in this decay process would be the inverse
savior mass, measured in MeV, times the asymmetry in
a given decay. Thus, a factor of 10 —10 in the baryon

We use the phrase reheat temperature of the moduli to refer
to the temperature of the gas of light particles produced by
thermalization of the products of modular decay.

The proposal to solve the Polonyi problem by raising the
Polonyi mass above the weak scale was apparently erst made
by the authors of [10]. Recently Yamaguchi et o/. investigated
a similar suggestion for solving the Polonyi problem in a more
general context [11].

Actually it is more like the ratio of the number of fields of
each type. This leads one to search for string ground states
with a small total number of moduli, something that may be
called the minimum modulus principle.
Making them the creators of all matter as well as its saviors.
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to entropy ratio just represents the small ratio between
the reheat temperature and the mass of the saviors. The
rest of the observed suppression of the baryon-to-photon
ratio could come from a weak-coupling factor. The de-
cay of the heavy savior into conventional matter can be
computed in the parton model in terms of the matrix
elements of the leading operator which causes the de-
cay. In order to see a CP-violating phase and obtain
an asymmetry one must interfere tree level and higher-
order diagrams and pay the price of a loop factor. It is
not implausible then that such a model could reprod. uce
the observed baryon asymmetry.

The problem of this model comes with the decay of
the light moduli. Although the entropy produced in their
decay does not wash out the baryon asymmetry, the de-
tails of the decay process completely change the element
abundances produced in the (presumed successful) nu-
cleosynthesis that followed savior decay. Moduli are very
heavy, and their decays will produce hard photons and
hard hadron jets. These will thermalize their energy, ini-
tially through hardonic collisions, but in the process will
first produce large numbers of photons capable of disin-
tegrating deuterium. Dimopoulos et at. [12] have studied
this problem in great detail for gravitinos, and have come
to the conclusion that the fraction of energy density in
heavy decaying particles in such a situation cannot be
larger than 10 . In the model of [6] we cannot reason-
ably expect this &action to be smaller than one-tenth.

To summarize, although several ideas have been pro-
posed for resolving the cosmological moduli problem,
only intermediate scale in8ation appears to hold out any
promise. The models discussed so far retained the as-
sumption that the physics responsible for moduli masses
was also the agent of dynamical SUSY breaking. At
Brst sight, the most reasonable resolution of-the whole
problem would seem to be decoupling these two nonper-
turbative effects. Moduli get their mass from dynam-
ics at a higher scale than SUSY breaking. This seems
particularly plausible in view of the fact that we have
two hints in the present data of the existence of a new
scale of physics at 10 —10 " GeV. These are the "ob-
served" unification of couplings, and the vacuum energy
density required to explain the Cosmic Background Ex-
plorer (COBE) microwave background anisotropy data in
inBationary cosmology. If physics at such a scale gener-
ated moduli masses, the moduli would decay long before
the beginning of the classical period of cosmic history.

It is somewhat surprising to find that this simple so-
lution does not really work. More precisely, we show be-
low that the nonperturbatively generated superpotential
for moduli must vanish in the vacuum in order to have
an acceptable cosmology. This nongeneric condition is
not satisfied by any know superstring vacuum. Further,
we argue that a SUSY-preserving superpotential cannot
stabilize the dilaton unless we are willing to imagine the
cancellation of two effects which are of different order in
the weak-coupling expansion.

Before proceeding to demonstrate these facts, we must
pause for an act of iconoclasm. Our discussion will hinge
on the fact that typical supersymmetric minima of the
potential have negative vacuum energy. Everyone would

agree that this is not good for phenomenology. What
we will d.emonstrate is that in the context of inBationary
cosmology, such minima do not even correspond to sta-
tionary states of the system. This will lead to a powerful
cosmological selection principle for superstring vacua.

III. THE IMPQKTANCE
QF BEING NQN-NKG ATIVE

All systems seek their state of lou(est energy, is a maxim
that physicists learn sometime in their preschool years.
Like most convenient aphorisms, it summarizes the be-
havior of an often complicated set of rules in a way that is
easy to remember and easy to apply. The utility of this
principle in physics has been so great that it is some-
what shocking to Bnd that there are systems, such as
spin glasses, to which it does not apply. It is little won-

der than that most discussions of fundamental cosmology
assume that the Universe is tending towards a stable vac-
uum state as time goes on, and that this state has the
lowest energy density allowed by the basic Lagrangian.

Andrei Linde pointed out long ago that observations
do not require such absolute stability [13]. If one wants
to place a rigorous theoretical lower bound on the mass
of the Higgs boson by requiring that the standard model
vacuum be stable, the most one can honestly ask for is
that its lifetime be longer than the observed "age of the
Universe. " Linde's calculations referred to a tunneling
instability, in which weak couplings can easily explain a
very long lifetime.

Despite these observations, there has been a certain
amount of unease in the astroparticle community about
the prospect that the state of the Universe in which
we Bnd ourselves is not absolutely stable. Perhaps the
strongest concrete reason for this unease has to do with
the genericness of initial conditions. We know that our
Universe once had a much larger energy density than it
does today. If the barrier that prevents the classical de-
cay of our hypothetically false vacuum was smaller than
the available energy density in thermal motions at any
time in the phase history of the Universe, it is very hard
to understand how we came to rest at this false minimum.
The Universe should "overshoot" the false vacuum and
end up in the true minimum of the potential. This ex-
pectation is based on the maxim with which we began
this section.

The main thing that we wish to demonstrate in this
section is that this argument is false, if we assume certain
natural conditions.

(1) The present history of the Universe was preceded
by a period of inHation, during which all spatial curva-
tures and scalar Beld inhomogeneities were washed out.

(2) The cosmological constant in the hypothetical false
vacuum in which we live is zero. Our results are not

More precisely, "the age of our current horizon volume ac-
cording to conventional cosmology. "
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changed very much if we assume a positive cosmological
constant.

Assume that the scalar field potential of our model has
a locally stable minimum with zero cosmological constant
and one or more minima with negative cosmological con-
stant. Then we will show below that the only stable fixed
point of the equations of motion is one in which the scalar
field sits at its zero energy minimum and the Universe
is flat and static. Solutions with generic initial condi-
tions are not attracted to this fixed point. Instead, they
lead to a situation in which the Universe contracts irre-
versibly (we assume it is initially expanding). No solution
comes to rest in the minimum energy density state. This
means that if we assume some probability distribution
for the initial conditions, the only solutions which lead
to a stable evolution of a large Universe are those which
asymptote to the false vacuum. The criterion for classi-
cal stability in a postinflationary expanding Universe is
very difFerent than that in flat space.

Our observations do not change the considerations of
Coleman and DeLucia about the quantum-mechanical in-
stability of the false vacuum. However, if we restrict at-
tention to the class of models of modular dynamics which
we have been studying, then the tunneling amplitudes
are very small. In these models the dynamics of the early
Universe is dominated by a set of scalar fields which have
only string scale nonrenormalizable couplings in the fun-
damental I agrangian and to all orders in perturbation
theory. At an exponentially lower scale M nonpertur-
bative dynamics gives these fields a potential of order
Ms/M~2.

In this general class of models, a simple scaling ar-
gument shows that the instanton action which controls
the instability of the false vacuum is of order (M&/M)
where M~ is the string scale. Thus for all reasonable val-
ues of M the lifetime of the false vacuum is enormously
longer than the age of our horizon volume.

A. Scalar fields in a postinfiationary era

The equations of motion for a set of scalar fields in a
postinflationary cosmology with Robertson-Walker scale
factor B are

d ~ 2
1—[MpG;z(z)z'] + 3HMpG, ~(z)z~ + BV/Bz' = 0,
P

(3.1.)

As a consequence of the friction in an expanding Universe,
this is a set of nonzero measure in the space of all initial
conditions, with respect to a Bat probability distribution.

It seems to us that the maximum reasonable value for M is
that which leads to the vacuum energy scale (10 —10 GeV)
required by the in6ationary explanation of the observed Buc-
tuations in the microwave background. This gives a tunneling

—10amplitude of order e per unit Planck volume.

H = — =
~ 2 ~

[2M~(G,,z'H) + V] . (3.2)
I'a&' r I ~,
(a) (M~)

Here z' = P'/M~ are dimensionless scalar fields, and G;~
is the metric on the space of fields . Note the absence of a
spatial curvature term in Einstein s equation, which sig-
nals that we have undergone a period of inflation. From
the second of these equations it follows immediately that
there are no solutions with P; coming to rest at a min-
imum with negative value of the potential. What then
is the typical behavior if the potential has a local zero
energy minimum and a global minimum with negative
energy?

Combining the two equations we obtain

E:—H = 2HH = —3G;,-Z'Z~ (3.3)

In an expanding Universe, H is positive. Equation (3.3)
says that it decreases in magnitude as the Universe ex-
pands. What happens when H reaches zero? Equation
(3.2) says that this can only happen at a place where
the potential is less than or equal to zero. In particular,
H vanishes if we are sitting at rest in the zero-energy
false vacuum. It is easy to see that this is an exact solu-
tion to the equations of motion. Since, in an expanding
Universe, we are dealing with a system which has folic
tion, a finite volume in phase space will be attracted to
this fixed point. Generically, solutions with initial con-
ditions outside this volume will stop expanding when H
hits zero, as long as any field velocity is nonvanishing.
Equation (3.3) shows that H will then change sign and
the Universe will begin to contract. H increases with-
out bound, and the Universe rapidly contracts back to a
singular state. In eKect, for initial conditions which lie in
the basin of attraction of the negative energy minimum,
inflation is never successfully completed. If different re-
gions of the Universe exit inflation with difFerent initial
conditions for the scalar fields, only those regions which
are attracted to the zero-energy minimum will remain
large for any substantial period of time.

There are solutions with finely tuned initial conditions
for which all velocities vanish at a nonstationary point on
the potential surface with V = 0. The system then enters
a limit cycle, moving on the negative part of the potential
surface, with total energy equal to zero. This limit cycle
is an exact solution of the full equations of the system,
but an unstable one. Generic small perturbations of it
drive one to a collapsing state.

We see that in a postinflationary Universe, minimizing
the energy is not the way to achieve classical stability. It
should be emphasized that there is nothing in this argu-
ment that depends strongly on the fact that the energy
in the false vacuum is zero. If it is positive there will be
an abstractive "fixed point" solution in which the fields
are at rest in the false vacuum and the metric is de Sitter
type. Our arguments explain the classical stability of a
flat vacuum state relative to one with negative cosmolog-
ical constant, but do not provide any obvious clue as to
why the cosmological constant must vanish.

The foregoing line of reasoning does not imply the
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quantum-mechanical stability of the false vacuum state.
Indeed, decay of the false vacuum proceeds by quantum
tunneling in a finite-sized bubble. A prior era of infla-
tion does nothing to erase the spatial curvature inside
this bubble, and a local, anti —de Sitter metric is still the
proper geometry of the bubble interior after its forma-
tion. The analysis of Coleman and DeLuccia [14] remains
valid, and their generically gloomy prediction of the con-
sequent fate of the world is unaltered.

The probability of tunneling is of course highly model
dependent. If we restrict attention to Lagrangians for
string theory moduli, the characteristic form of the effec-
tive potential is

V,g =
2 V(z'), (3.4)

where M~ is the string scale. The fields z' are assumed
to be canonically normalized at z' = 0. At other points
in field space they have a kinetic term

Zk;„= 2MJ, G;~(z')7'z'V'z~ . (3.5)

V'(G, , (z)z~) = -Ms/M~4V;(z) . (3.6)

The solutions will have the form

z* = f'
i

x (3.7)

where the functions f'(x) do not depend on either M or
M~. As a consequence, it is easy to see that the instanton
action is of the order of

In the class of models in which M is the scale of non-
perturbative physics which is responsible for inflation,
M~/M & 105~s and the vacuum tunneling probability
per unit space time volume is of the order of

These formulas follow from the fact that the potential
is generated by a strongly interacting supersymmetric
gauge theory with scale M and the moduli ar'e coupled
to the strongly interacting fields only through irrelevant
operators scaled by the Planck mass.

Assume now that the effective potential has a zero en-

ergy minimum at z' = 0, and another one with nega-
tive energy. If we assume that the potential contains no
particularly large or small dimensionless constants, the
second minimum is at z' 1 and the negative vacuum
energy of order M /M&.

The equation for the flat space instanton which con-
trols the tunneling rate from the false to true vacuum
is

cosmological models that undergo inflation can thus live
happily in a false vacuum, with no fear of instability.

In fact, it is possible that the false vacua in these mod-
els are absolutely stable. Coleman and DeLucia showed
that in many cases no instanton exists for tunneling from
a space with a non-negative cosmological constant into
anti —de Sitter space [15]. Heuristically this occurs be-
cause the spatial sections of anti —de Sitter space have
constant negative curvature. Thus, an anti —de Sitter
bubble has constant surface-to-volume ratio as it grows,
and energy balance does not automatically induce the
growth of large enough bubbles.

It is easy to see that even in the presence of gravity, all
small parameters scale out of the equations of motion
which determines the existence of instanton solutions.
Thus, the existence of instantons depends on dimension-
less numerical constants in the Lagrangian. It is con-
ceivable that in the modular Lagrangians determined by
string theory these constants are such that no instanton
exists, and the zero-energy vacuum is absolutely stable.
We emphasize, however, that this hypothetical possibility
is in no way necessary to our argument. Even if modular
instantons exist, the tunneling rates which they predict
are too small to be of interest on time scales of the order
of the age of our Universe.

We believe that the instability of negative energy rain-
ima of the potential in postinflationary cosmology is an
important clue about the nature of the Universe. In the
next section we will show that it can be the basis of a
powerful vacuum selection criterion in superstring theory.

IV. MASSLESS MULTIPLETS
AND MASSIVE MODULI

The results of the preceding section put strong con-
straints on the idea that supersymmetric nonperturbative
dynamics gives mass to the moduli. Mass generation for
the moduli can only occur if a nonperturbative superpo-
tential is generated. If SUSY is preserved, the stationary
point of the supergravity potential will have a negative
cosmological constant of the form —3/M&~W;„~ . We
have seen that fields lying at rest in the minimum of the
potential will not be a stationary solution of the postinfla-
tionary cosmological equations unless W;„=0. We can
phrase this important result in terms of symmetries: In
postinPationary cosmology, breakdown of Q symmetry~~

imp/ies that SUSY must be broken in a stabte (Minkowski
or de Sitter) vacuum state.

Now consider the form of the nonperturbatively gener-
ated superpotential in a string theory ground state. We
will assume for simplicity that at generic points in moduli
space, the strongly coupled gauge theory which generates
the superpotential is a pure, N = 1, SUSY-gauge theory.

P —(M /M} ( (024 —ao' M4
Mi2

This is so small that it is of no conceivable relevance to
physics as measured by local observers in our Universe.
The false vacuum is essentially stable. Moduli-dominated

To be precise, of any R symmetry larger than a Z~ R par-
ity. We remind the reader that any R symmetry larger than
Zz implies the vanishing of the superpotential at a symmetric
minimum of the potential.
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We believe that our results are more general than this,
but it would take us too far afield to delineate the pre-
cise class of theories for which our discussion is valid. For
pure gauge theory, the exact form of the superpotential
is known to be

M4 —bs —rI(e, )Np— (4 I)

We are well aware that this argument is at best a good
excuse. The program that we are outlining requires us to
at least prove the existence of these special points in moduli
space. We have so far failed to do so.

Here, S(= Sm jg + io) is the dilaton superfield, 4'; are
the moduli, and 6 is related to the one-loop P function for
generic values of the moduli. II is the moduli-dependent
one-loop renormalization of the coupling coming from
(generically) massive modes. At nonzero values of g,
(4.1) will only vanish if, at some point in moduli space,
II diverges. This means that extra massless Belds ap-
pear at this point. If we want to reduce the value of the
superpotential, then these must be matter fields rather
than gauge Acids. Indeed, the example of SUSY @CD
shows us that an increase in the number of massless chi-
ral multiplets can lead to vanishing of the nonperturba-
tive superpotential. This theory has a nonperturbative
superpotential for Nt„- ) N~, but not for N~ & N~. We
will assume that there are points in string moduli space
where such an increase in the number of matter multi-
plets in the hidden sector occurs. We do not know of an
example of such a point, but, as we will see, this fact may
be interpreted in a positive manner.

At these points, C, the superpotential will vanish like
a power of 4, —4, (II will blow up logarithmically as a
consequence of the existence of new massless states). If
this power is greater than 1, then BC,, R' will also van-
ish and SUSY will be preserved. Under these conditions,
string theory will have a locally stable supersymmetric
ground state. (Of course, SUSY can be broken by dy-
namics at a lower scale. ) If the point in moduli space
where extra massless nonsinglet chiral multiplets appear
is isolated, then the Huctuations in all of the moduli fields
apart Rom the dilaton will be massive, with masses of or-
der e M~. It would appear desirable then that the spe-
cial points where massless chiral multiplets are present
are dimension zero submanifolds of moduli space, so that
we can give mass to all the moduli. This might explain
why a survey of known ground states, which explores a
submanifold of moduli space with large codimension, fails
to reveal such a point.

The paragraph above is the promised vacuum selec-
tion principle for superstrings. Four-dimensional classical
ground states for string theory, with non-Abelian low-
energy gauge fields, will often lead to nonperturbative
superpotentials for the moduli fields, and to spontaneous
violation of all complex R symmetries. Supersymmetric
"ground" states will generically have a negative vacuum
energy and will, as we have seen, not be stationary states
of a postinBationary Universe. The hypothetical points
in moduli space where the superpotential vanishes will

be dynamically chosen by the equations of cosmology.
The above discussion assumed that SUSY was not

spontaneously broken by the nonperturbative dynamics.
We note in passing that the above arguments may also
provide a hint of the explanation of why SUSY is broken
in the real world. The minimization of the potential and
the vanishing of the superpotential are n + 1 complex
equations for n unknowns. It may be that for the full
low-energy superpotential, they have no common solu-
tion. This would mean that R symmetry is spontaneously
broken. A successful inQationary cosmology would then
require that SUSY be broken as well.

As an example of how this could happen, imagine a
class of string ground states for which the low-energy hid-
den sector gauge theory was (at generic points in moduli
space) a pure gauge theory with a product of two groups
SU(K) and SU(L) with N ) L. Suppose that, for SU(K)
there exists an isolated "magical" point in moduli space,
at which N~ & N massless chiral multiplets in the N+ N
appear. Assume that these are singlets under the second
factor in the gauge group. The argument above implies
that the theory will have a supersymmetric ground state
at this point, and that it will be cosmologically chosen
in preference to other possible supersymmetric minima
of the potential for moduli.

Apart from the dilaton, the moduli will all be massive
at this point. Thus, below the first "conBnement" scale,
the low-energy theory will consist of a dilaton, a pure
SUSY SU(L) gauge theory, and some massless fields asso-
ciates with the chiral symmetries of the massless matter
in the Brst factor of the gauge group. The superpotential
for these SU(L) singlet fields will have a supersymmetric
minimum, at which the superpotential vanishes. Gaugino
condensation in SU(L) will now generate a superpoten-
tial e ~+ for the dilaton below the SU(I) confinement
scale. The structure of the dilaton potential will be

(4.2)

In the present state of our knowledge of string theory we
can give only the first term, —In(S + S) of the large S
asymptotic expansion of the Kahler potential K. Thus
we can only speculate about the existence of possible
stable cosmological solutions of the equations of gravity
coupled to the dilaton in this model. However, we can be
sure that no such solution is supersymmetric. Hypothet-
ical supersymmetric vacua at finite 8 will have negative
vacuum energy and sufFer from the instability described
above. The state at inBnite S sufFers from the Dine-
Seiberg instability. Any stable solution of this system
violates SUSY.

This example teaches us another lesson about our at-
tempt to freeze the moduli. Even if our hypothetical
points in moduli space exist, the superpotential given
above cannot completely finish the job of giving mass to
the moduli at a supersymmetric minimum, for the su-
perpotential vanishes for all values of the dilaton Beld if
it vanishes at all. This result is quite general and could
only be averted if the superpotential had a complicated
dependence on the dilaton, which seems unlikely in the
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weak-coupling region. The dilaton mass must come
from SUSY-breaking dynamics, and we are not yet out
of the modular woods.

A. The dilation mass and the mechanism
for SUSY' breaking

Perhaps the simplest way to break SUSY and give the
dilaton a mass is the one described in the preceding sec-
tion. The moduli are frozen by supersymmetric dynamics
at a high scale, and we assume another gaugino conden-
sate at a scale e / M~. Since the other moduli are
assumed to be frozen out at the higher scale e /'M~,
this would give rise to a dilaton potential

(4 3)

Note that the minimum of this potential is not the same
as that of Vy defined in the previous footnote. If we ac-
cept the assertion [17] that we do not currently know
how to calculate K for the relevant values of S, then it
is not implausible that VD has a stable minimum with
zero cosmological constant (we disregard the fine-tuning
of the cosmological constant). This can only happen if
SUSY is spontaneously broken, and hypothetical super-
symmetric minima of VD would not be stationary points
of the equation of motion after inQation.

Variations on this scheme are possible in which dynam-
ics more complicated than gaugino condensation gener-
ate the dilaton potential. All one needs is a supersym-
metric gauge theory which in the absence of the dilaton
(i.e., when the coupling constant is a constant) generates
a nonvanishing, nonperturbative superpotential, and is
characterized by a single energy scale. All such theo-
ries give rise to what were referred to in [1] as nonrenor-
malizable hidden sector (NRHS) models. In such mod-
els SUSY breaking will be communicated to the stan-
dard model by gravitational scale dynamics, and the non-
perturbative scale e R '/ M~ must be of order 10
GeV. As a consequence, the dilaton will get a mass of
order 1 TeV and the cosmology of the model will suer
&om the PPP. One is led to consider the possibility of
low-energy SUSY breaking.

Many popular models of the dilaton potential assume can-
cellations between difFerent exponentially small terms in the
string coupling. While no definitive argument that such mod-
els are incorrect exists, we 6nd them unpalatable.

Note that, during in8ation when Wo is nonzero, the dila-
ton may be quickly driven to a "minimum" of the potential
Vi = Woe ~ + ii [K

I

—1/K+BsKI +K" B,(lnWO+
K)B~~ (inWo' + K) —3 [16]. This is unlikely to be the true
minimum of the full dilaton potential and so the dilaton will
generally start out its postinQationary motion a distance of
order M~ from the minimum. Dine, Randall, and Thomas
suggested this temporary inBation-generated potential as a
way to solve the problem of moduli, but no one has come
up vrith a plausible way to ensure that the minimum of the
potential during in8ation is the same as that in the vacuum
state.

B. A digression an the cosmological constant
in theories with low energy SUSY breaking

One serious problem with low-energy breaking of
SUSY is the cosmological constant. In NRHS models
the cancellation of the cosmological constant is "natu-
ral in order of magnitude" [I]. That is, the two terms
which must cancel in order to give a zero cosmological
constant naturally have the same order of magnitude.
This is because the breaking of B symmetry responsible
for the negative term in the potential is the trigger for
the breaking of SUSY which gives rise to the positive
term. The latter is a gravitational strength reaction to
the former.

In theories with low-energy SUSY breaking, this is not
the case. The breaking of SUSY is a Hat space efFect and
the negative term in the supergravity potential is nom-
inally subleading by two powers of the low-energy scale
over the Planck mass. Conventionally this is "fixed up"
by adding an appropriate constant to the superpotential,
but this is a very suspicious procedure in string theory.
According to the rules of perturbative string theory, the
constant term in the superpotential is quantized in units
of the cube of the inverse compacti6cation radius, which
is itself close to the string scale. All other terms in the
superpotential are field dependent.

In the present context, in which the low-energy the-
ory contains a dilaton in addition to the low-energy de-
grees of freedom which break SUSY, this problem may
be solved. Let us suppose that the low-energy theory
has a nonperturbative scale p, given in terms of the dila-
ton by p = e / Mp. p is the scale of dynamical SUSY
breaking. The effective action for the Goldstino has the
form

Goldst ino— d 0 (X, X*)

+p d OX+He. (4.4)

The Kahler potential is chosen so that the scalar partners
of the Goldstino all have mass of order p. It has the form
XX*k(X/p, X*/IJ). In the absence of a dilaton, this
Lagrangian would give a positive cosmological constant of
order p when plugged into the supergravity formula for
the potential. The negative term in the formula is smaller
than the positive term by a factor of order p2/M&. In the
presence of a dilaton coupled to A via the S dependence
of p however, we are free to add a purely S-dependent
term to the superpotential. This would come from, for
example, gaugino condensation in some strongly coupled
gauge theory with a scale higher than p.

The dilaton will also control the coupling of this second
gauge theory. If we assume that the second theory has
a P function one and a half times as large as that of the
low-energy SUSY-breaking theory, then the (positive and
negative) contributions to the dilaton potential from the
more strongly coupled theory will be of the same order
of magnitude as the SUSY-breaking E term. The cancel-
lation of the cosmological constant will no longer require
the introduction of a constant superpotential with un-
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explained (and in string theory, unexplainable) order of
magrutude. The 2 ratio between P functions that is re-
quired in this approach could naturally arise from group
theory. The search for pairs of theories with the required
properties might be an interesting constraint on string
vacua.

We emphasize that our considerations do not explain
the precise Gne tuning of the cosmological constant, but
are only order of magnitude predictions. However, mod-
els of low-energy SUSY breaking lead to an interesting
range of dilaton masses. Depending on the mechanism
for transmit ting SUSY breaking to the standard model,
the scale p can range &om 1000 to 1 TeV. This leads to
dilaton masses between 100 and 10 eV. The lower end
of this range is of considerable interest. General renor-
malization group arguments suggest that a local field
theoretic explanation of the vanishing of the cosmolog-
ical constant could only make sense if there existed a
scalar with mass less than or equal to (the fourth root
of) the observational bound on the cosmological constant,
or about 10 eV. This could arise in the present con-
text from a SUSY-breaking scale less than about 10 TeV.
While we have not demonstrated a mechanism by which
such a light dilaton could cancel the cosmological con-
stant, at least the possibility is not ruled out by general
renormalization-group arguments.

C. After the digression, the problem remains

Unfortunately, the entire range of dilaton masses com-
patible with low-energy SUSY breaking appears to be
ruled out by conventional cosmology. In this mass range,
the dilaton lifetime is longer than the age of the Universe
and it leads to a postmod. em Polonyi problem. We can
try to resolve this problem by invoking the "savior" G.eld
of [6], although we would now have to complicate the
theory iri order to explain the origin of a savior 6.eld with
the right mass. Now the nuclei produced in the aftermath
of savior decay will not be destroyed by the subsequent
decay of dilatons. However, the dilatons will come to
dominate the energy density of the Universe shortly af-
ter nucleosynthesis, at an energy scale of order 0.1 MeV.
They would be a form of dark matter. In such a cosmol-
ogy the ratio between dark matter and radiation energy
densities at the present epoch would be 10, while mea-
surernents of the present temperature and density of the
Universe bound this ratio by something of order 10 . One
would have to invoke the generation of large amounts of
entropy after nucleosynthesis to make the model consis-
tent with this observation, but that would also dilute the
baryon content of the Universe, and. would again make
the model inconsistent with the data.

Indeed, the "savior" idea seems to run into either
the nucleodestruction problem or the above dark mat-
ter domination problem, for any values of the moduli
masses. Nucleodestruction will be a problem if the mass

These arguments are due to L. Susskind, and have not
been published.

is significantly higher than an MeV. Particles with mass
lighter than an MeV and gravitational couplings will have
lifetimes of order 10 sec or more. This is seven orders
of magnitude longer than the age of the Universe. Such
particles will dominate the energy density at the present
era to an extent ruled out by our knowledge of the dark
matter content of the Universe.

Intermediate scale inflation cannot remove a light dila-
ton from the Universe either, since the weak scale is much
larger than the dilaton mass. Thus, the RT solution to
the cosmological moduli problem is an argument in favor
of hidden sector models for SUSY breaking.

V. A SPECULATIVE PROPOSAL

All the models that we have considered were based on
the standard equations of homogeneous isotropic cosmol-
ogy. We would now like to show that in the context of
modular physics, the standard assumptions of homogene-
ity and isotropy are untenable. The moduli may or may
not dominate the energy density of the Universe just af-
ter inflation. However, they certainly dominate it from
about the time that the energy density is M /M& (the
moduli masses are M /M&) until they decay. During
this period the Universe is matter dominated, and fluc-
tuations can grow. 8p/p will grow like the scale factor
R on all scales inside the horizon. It would not be sen-
sible to take the initial value of Sp/p in modular energy
to be less than the 10 value of primordial fluctuations.
This means that modular inhomogeneities will go non-
linear when the scale factor has increased by a factor of
10 from its value when the Universe became dominated
by moduli. At this time, the energy density will have
decreased by a factor of 10 . On the other hand, the
energy density at the time of modular decay is m &/M&,
which is a factor of (m d/Mr ) times the energy den-
sity when the moduli begin to dominate. This is less
than 10 . Thus the modular energy density fluctua-
tions go nonlinear long before moduli decay. We have
been, for the most part, conservative in these estimates.
In fact, the moduli could dominate the energy d.ensity
right after inflation, as they would in models in which
the moduli themselves are the inflatons. Furthermore, in
models with low-energy SUSY breaking, the modular life-
time is longer than the age of the Universe, and modular
energy density surely goes nonlinear before the rnoduli
decay. The only place in which we may have made an
overestimate, is in our "sensible" estimate of the initial
inhomogeneity in the moduli. However, the discrepancy
between the scale at which moduli gravitationally col-
lapse and that at which they decay is so large that we
do not believe that initial conditions could substantially
alter our qualitative conclusion.

All discussions of modular cosmology must face up to
the prediction of a very early stage of the formation of
collapsed objects. We emphasize, however, that the scale
of these inhomogeneities is extremely small, and that if
we successfully get rid of moduli before nucleosynthesis,
they will have no effect whatsoever on large-scale mea-
surements of the structure of the microwave background.
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We have only the most preliminary remarks to make
about what appears to be a very complicated dynami-
cal problem. The two most likely results of gravitational
collapse of moduli are the formation of stable modular
stars, and the formation of black holes. The formation
of modular stars could possibly alleviate the problem of
modular domination of the Universe. The modular field
strengths inside such objects could well be very large, and
lead to a substantial enhancement of the decay probabil-
ity of modular matter into ordinary particles. We may
expect moduli to have (for example) couplings to photons
of the form (P/MI )F . In the core of a modular star,
the modular field amplitude 4 might be much larger than
the Planck scale, enhancing the coupling of this field to
photons. A modular star could well explode into a burst
of photons, quarks, and leptons, soon after it forms.

Stable gravitationally bound configurations of moduli
may not exist, or may not be the fate of all large-density
Huctuations. An alternative would be collapse towards
a black hole. However, the work of [18] suggests that if
the spectral index of primordial density Huctuations is
near 1 (as it is expected to be if the Auctuations origi-
nate from inflation), then very few black holes will form.
We do not understand what the evolution of the system
would be if local analysis were to preclude the existence
of localized stationary solutions of the coupled gravity-
moduli system, while the global analysis of [18] rules out
the formation of black holes.

Thus, nonlinear gravitational effects in the modular
medium might provide a mechanism for solving the mod-
ular dominance problem, but our understanding of this
complicated nonlinear regime is sketchy. It seems clear
then that all conclusions about the viability of a cosmol-
ogy which includes moduli must await the resolution of
the complicated dynamical problem of modular collapse.

VI. SUMMARY AND CONCLUSIONS

In summary, our investigation of the modular cosmo-
logical problem has taught us a number of interesting
things about cosmology and SUSY breaking. The inter-
mediate scale inHation scenario of Randall and Thomas
seems to solve the problem if SUSY is broken by a non-
renormalizable hidden sector mechanism. Attempts to
solve the problem by attributing mod. uli masses to SUSY
preserving high-scale dynamics led to a number of inter-
esting conclusions: Generic supersymmetric stationary
points of the effective potential are not stationary points
of the equations of cosmology in a postinHationary Uni-
verse. InHation can create large long-lived smooth re-
gions of the Universe only if the cosmological constant
is greater than or equal to zero, which means that ei-
ther SUSY is broken or B symmetry is preserved. B-
symmetry preservation is a very strong constraint on
the strongly coupled dynamics which is supposed to give
mass to the moduli. If, at a generic point in. string mod-
uli space, the strongly coupled sector is a pure gauge the-
ory, then B symmetry can only be preserved at special

We use this symmetry statement as a synonym for the
vanishing of the superpotential since without R symmetry
the superpotential could only vanish by fine-tuning.

points in moduli space where massless chiral multiplets
with hidden sector gauge charge appear. There are no
known points in moduli space where this happens. Even
if one could be found, strongly coupled SUSY-preserving
dynamics cannot give mass to the dilaton.

The postmodern Polonyi problem posed by string the-
ory moduli seems to us to be a serious but potentially ex-
citing crisis for string theory. Although attempts to solve
this problem have led to a number of interesting ideas
about string vacuum selection, SUSY breaking, and the
notion of stability in postinflationary cosmology, the only
acceptable solution in sight is intermediate scale inHation
(ISI). It is important to investigate the consequences of
this scenario and to search for its origins in an explicit
string vacuum solution.

We note, however, that extant attempts to resolve the
PPP have completely ignored the gravitational collapse
of mod. ular energy-density Huctuations which we demon-
strated to be important in the very early Universe (ac-
cording to string theory). It is not clear whether the
dynamics during this era eliminates moduli without ISI,
or whether it instead leads to further problems that can-
not be solved even by ISI. Clearly, closer investigation of
this primordial matter-dominated era is called for. We
hope to return to it in a future paper.

Finally, we wish to emphasize that although we have
posed the PPP in the context of inHationary cosmology,
it, is equally serious in any big bang cosmology. InHa-
tion with a Hubble constant higher than the weak scale
gives us specific predictions about the initial conditions of
moduli fields, but any model in which the energy d.ensity
is of order (10~ GeV) at some period in cosmic history
will also predict that the moduli start the conventional
Robertson-Walker era displaced from the minimum of
their potential. The postmodern Polonyi problem can-
not be evaded by rejecting inHation.
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