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The quantum entanglement entropy of an eternal black hole is studied. We argue that the relevant
Euclidean path integral is taken over fields defined on an a-fold covering of the black hole instan-
ton. The statement that the divergences of the entropy are renormalized by the renormalization of
gravitational couplings in the effective action is proved for nonminimally coupled scalar matter. The
relationship of entanglement and thermodynamical entropies is discussed.

PACS number(s): 04.70.Dy, 11.10.Gh

I. INTRODUCTION

According to the thermodynamical analogy one can
apply the laws of thermodynamics that are valid for large
statistical systems to the description of a single black hole
[1]. The key idea of this approach is that a black hole has
an intrinsic entropy proportional to the surface area of
the event horizon ¥. This idea has found strong support
in Hawking’s discovery [2] of the thermal radiation of
a black hole that allowed one to determine the entropy
precisely as S = Ax/4G. However, the microphysical
explanation of the black hole entropy as a counting of
states is still absent, though many attempts have been
made (see recent review [3]). One possible way is to as-
sociate the entropy with a thermal bath of fields propa-
gating just outside the horizon [4]. Recently, it also has
been proposed to treat black hole entropy as an entan-
glement entropy [5, 6]. Starting with the pure vacuum
state one traces over modes of a quantum field propa-
gating inside the horizon and obtains the density matrix
p. The entropy then is defined by the standard formula
S = —Trplnp. It measures the number of inside modes
which are considered as internal degrees of freedom of
the hole. In a similar manner, Frolov and Novikov [7]
suggested to trace over modes outside the horizon.

Calculations for the Rindler space and black holes
[8-16] have shown that entropy is divergent. This is es-
sentially due to the short-distance correlations between
the inside and outside modes.

The purpose of this paper is to demonstrate, following
previous investigations [10-12], that this divergence is re-
ally the ultraviolet one typically appearing in quantum
field theory and it can be removed by standard renor-
malization of the gravitational couplings in the effective
action. In an earlier paper [17] we have given a proof
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of this for a minimally coupled scalar field and noted
that the nonminimal coupling needs special considera-
tion. The reason for this is that there exists a d-like
potential in the field operator due to the scalar curva-
ture R behaving as a distribution on a manifold with a
conical singularity. Below we consider this in more de-
tail. We start in Sec. II by formulating the Euclidean
path integral which is relevant to the calculation of the
entanglement entropy of a black hole. In Sec. IIT we for-
mulate the statement about the renormalization of black
hole entropy. The proof of it for a nonminimally coupled
scalar field is given in Sec. IV. We conclude in Sec. V
with some remarks concerning the relationship of the en-
tanglement (statistical) and thermodynamical entropies.
The Appendixes A and B contain basic formulas for cur-
vature tensors and heat kernel expansion on manifolds
with conical singularities obtained in a previous study.

II. EUCLIDEAN PATH INTEGRAL FOR
ENTANGLEMENT ENTROPY

The horizon surface ¥ naturally separates the whole
space-time of a static black hole! on the regions R, and
R_, the free information exchange between which is im-
possible. This is obviously due to the fact that the global
Killing vector £; = 0;, generating translations in time, be-
comes null, £ = 0, on the horizon. Therefore, any light
signal emitted from any point on the horizon or behind it
never can reach an outside observer. So events happening
in the part of the space-time beyond the horizon are un-
observable for him in principle. This concerns excitations
of quantum fields as well. They are naturally separated
on “visible” (propagating in the region R;) and “invisi-
ble” (propagating in the R_ region) modes. The partial
loss of information about the microstates composing the
concrete macrostate typically appears in a statistical de-

!We do not consider here the case of a stationary (rotating)
black hole where the situation seems to be more complicated.
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scription of systems with a large number of degrees of
freedom. We can see that a similar phenomenon natu-
rally happens for a black hole. This fact certainly lies in
the principles of the thermodynamical analogue allowing
one to apply the laws of thermodynamics to a hole.

The situation, when a part of the states of the system
is unknown, in quantum mechanics is usually described
by a density matrix. Assume that the quantum field ¢,
being considered on the whole space-time, is, in a pure
ground state,

\IJO = ‘IJO(¢+7 ¢—-),

which is a function of both visible (¢.) and invisible (¢_)
modes. For an outside observer it is in the mixed state
described by the density matrix

(2.1)

p(#.02) = [[Do-wy(@h 6 W0 6),  (22)
where one traces over all invisible modes ¢_. Then the
entropy, defined as

Sgeom = —Trplngp, p= (2.3)

P
Trp’
is the so-called entanglement (or geometric) entropy
5-7].

[ Applying this construction to a black hole, we identify
all the invisible modes with internal degrees of freedom
and (2.3) with the entropy of the hole. The ground state
of the black hole is given by the Euclidean functional
integral [18] over fields defined on a manifold E’ which is
the half-period part of the black hole instanton with the
metric

ds% = B%g(p)de?® + dp® + r%(p)d?Q, (2.4)

where the angle variable ¢ lies in the interval —5 < ¢ <
us

%+ The inverse Hawking temperature By is determined
by the derivative of the metric function g(p) on the hori-
zon [g(pr) = 0], By = Wih—)' The ¢4 and ¢_ which
enter as arguments in (2.1) are the fixed values at the
boundaries ¢, = ¢(p = §), ¢_ = ¢(p = —F), giving
the boundary condition in the path integral. The den-
sity matrix p(¢},$?%) obtained by tracing the ¢_ modes
is defined by the path integral over fields on the full black

hole instanton E (—%1‘( <ep< %1‘() with a cut along the
¢ = 3 axis and taking values q,')i’z above and below the
cut. The trace Trp is obtained by equating the fields
across the cut and doing the unrestricted Euclidean path
integral on the complete black hole instanton E. Anal-
ogously, Trp™ is given by the path integral over fields
defined on E,, the n-fold cover of E. Thus, E, is the
manifold with Abelian isometry (with respect to angle
rotation 8,) with the horizon surface ¥ as a stationary
set. Near ¥ F,, looks like a direct product F,, = ¥ ®C,,,
where C, is a two-dimensional cone with an angle deficit
6 = 2m(1 — n). This construction can be analytically
continued to arbitrary (not integer) n — a = ﬁ%

Define now the partition function
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Z(B) = Trp~, (2.5)
which is a path integral over fields defined on E,, the a-
sheeted covering of E. Then the geometric entropy (2.3)
takes the standard thermodynamical form
Sgeom = —Tr(plnp) = (—ady + 1) In Z(a)|g=1, (2.6)
being expressed via the partition function Z. We see that
B plays the role of the inverse temperature. After all cal-
culations one must put 8 = By in (2.6). Assuming that
the dynamics of matter fields is determined by a differ-
ential operator A we obtain that the relevant partition
function (2.5) is given by the determinant
Z(B) = det ~Y/2A (2.7)
considered on E,. It is essential that E, is a manifold
with a conical singularity since, namely, the singularity

produces in the effective action W(a) = —In Z(a) terms
proportional to (1 — a) that contribute to the entropy
(2.6).

One can see that the partition function (2.5) looks like
a thermal one:

2(8) = Tre =", (2.8)
with 3 playing the role of inverse temperature, and H
being a relevant Hamiltonian. This fact was previously
observed in [9] for Rindler space and was supposed to
be general. The relevant Euclidean path integral for the
entanglement entropy of Rindler space was found in [8].
The exact construction of the wave function of a black
hole was proposed in [18]. The thermality of the corre-
sponding density matrix was established in [19].

III. STATEMENT

As defined in the previous section entanglement en-
tropy is not free from the ultraviolet divergences. They
result from the corresponding divergences of the effective
action W(a). It was shown for the minimally coupled
scalar matter [20] that the divergent part of the effective
action on E, is really sum of volume and surface terms:

Waiv (@) = WIS + WikT. (3.1)
The volume term in (3.1) is a standard one. It is propor-
tional to a not contributing to the entropy. The second
term is given by an integral over the singular surface
3. It is proportional to (1 — a) and hence contributes to
the entropy, resulting in its divergence [13]. The origin of
these divergences lies obviously in the short-distance cor-
relation between “visible” and “invisible” modes which is
concentrated at the surface ¥ separating regions R, and
R_.

However, it was proposed in a number of papers that
the divergences of entropy can be removed by the stan-
dard renormalization of the gravitational couplings. In-
deed, the higher curvature terms are necessarily gener-
ated by quantum corrections . Therefore, such R? terms
must be added from the very beginning with some bare
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constants (c1,B, ¢2,B, ¢3,B) (tree level) to absorb the one-
loop infinities. The bare (tree-level) gravitational func-
tional thus takes the form?

1
4 2 2
We: = / Vad= <_ TonGp * T 0Bl +e2nf

+cs, BRﬁmﬁ) . (3.2)

The corresponding tree-level entropy can be obtained
within the procedure considered in the previous section
as replica of the action (3.2) on introducing of the coni-
cal singularity. The conical singularity at the horizon X
manifests itself in that a part of a curvature tensor for
such a manifold E, behaves as a distribution having sup-
port on the surface ¥ [21, 22] (see Appendix A). Hence,
the action (3.2) being considered on E, has volume and
surface terms:

Wil Ea] = WPl [Ea/T] + W [T], (3.3)
where the volume part is given by integral (3.2) over the
regular part of the manifold E,. This part is obviously
proportional to WY°!' oc a. So the whole contribution
to the entropy comes from the surface term. Using the
formulas of Appendix A [(A2)—(A5)] we obtain finally,
for the tree-level entropy [17, 22],

1
S(GB,C,',B) = EAE —_ L (871’01’BR+ 47TCZ’BR,‘,'

+87FC3‘BR,'J','J') . (34)

We see that the classical law S = Z'léAE gets modified due
to R? terms in the action (3.2). The additional term now
depends on both the external and internal geometries
of the surface X. It should be noted that (3.4) exactly
coincides with entropy computed by the Noether charge
method of Wald [23].

The main point now is that the divergent part of the
entanglement entropy (2.6) is such that its sum with the
tree-level entropy (3.4),

S(G37 Ci,B) + Sdiv(f) = S(Grena Ci,ren), (35)
takes again the tree-level form S(Gren, Ci ren), €xpressed
through the renormalized constants Gien, Ciren- They
are related with the bare constants by usual equations
originated from the one-loop renormalization of the ac-
tion

Wgr(GB’ Ci,B) + Wdiv(f) = Wgr(Grena Ci,ren)7 (36)

20f course, we assume an addition to (3.2) due to a classical
matter which can be in principle rather complicated.
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being considered on regular space-times without hori-
zons.

Thus, divergences of the entanglement entropy are re-
moved by the standard renormalization of the gravita-
tional couplings. So no special renormalization procedure
for entropy is required.

This statement for the Newton constant G has been
advocated in [10, 11] which considered divergences of en-
tropy of the Rindler space-time. The necessity of renor-
malizing also the higher curvature couplings was argued
in [12] for the entropy of the Schwarzshild black hole.
For minimal coupling this statement was proved in [17]
for a general black hole metric. In a recent paper [24] this
procedure was checked for the Reissner-Nordstrém black
hole. Below we demonstrate this statement for the non-

minimally coupled scalar matter generalizing the result
of [17].

IV. HEAT KERNEL EXPANSION

For a nonminimally coupled scalar field the curvature
directly enters into the matter action:

1

Winat = 5 / [(V$)? + ERg?]. (4.1)
Considering (4.1) on manifold E, we must take into ac-
count the d-like contribution of the curvature coming
from the conical singularity [see (A1)] [21, 22]:

R =R+ 47(1 — a)dx, (4.2)
where R is the regular part of the scalar curvature.
Therefore, the quantization of nonminimal matter on E,
forces one to deal with the problem of treating operators
with a é-like potential. Applying (4.2) to the action (4.1)
we obtain that

Wmat = 271'(1 — a)£L¢2 + % L ¢(_D£)¢ (4.3)

where we denote 0; = O — (R and assume regularity of
the field ¢ on the singular surface X.

Then, considering the path integral over the scalar field
¢ we get

2~ [ Dolexp(~2n1-) [ ¢>2)
xexp(—3 [ #(-00)9).

Expanding? the first factor in (4.4) by powers of (1—a)

(4.4)

3We proceed with the perturbation expansion with respect
to (1 — ). The first term of the expansion is well defined
[see (4.11)]. The next terms, however, are expected to be ill
defined due to contributions such as §%(0). The indication
of this can be found in [25]. In principle, we could use some
type of regularization similar to that of [22] to give sense to
such terms. It should be noted, however, that these terms are
irrelevant for the calculation of entropy. I thank D. Fursaev
for this remark.
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and omitting higher terms we have

Z=Z(1—%ﬂy—®<é¢§z)’

where the average ( )z is taken with respect to the mea-
sure defined by the functional integral

(4.5)

2= [1Ddexn(~ [ #(-z0)0). (16)
Equivalently, this can be written as
InZ=InZ-27n¢(1 — a) </ ¢2> (4.7)
= z

For In Z the following heat kernel expansion is known
[20]:

InZ = —% In det(—l:lg) = l/’ éTI'I(A‘.?C. (8)s

Kp.(s)=e"" =

(47”)2 zn:ans, s — 0, (4.8)

where the coefficients @, (z,z) generally take the form

an(z, ) = @5z, 2) + @n oz, T)d5. (4.9)
The @8f(z,z) are standard [26] heat kernel coefficients
given by the local functions of curvature tensors (see Ap-
pendix B). The second term in (4.9) has support only
on the singular surface ¥; @, q(z,z) is a local function
of projections of curvature tensors on the subspace nor-
mal to X. The exact form of the coeflicients @, «(z, z) is
given in Appendix B.
On the other hand, by standard arguments we have

G@p() =" = [ dseo. (4.10)

Inserting (4.8)—(4.10) into (4.7) we finally obtain

mz_—/ fﬁxm@
2 Ja

TrKg, (s) = TtKg, (s) — 47€(1 — a)sTrsKE,_ (s),

(4.11)

where the z integration in Trs; is taken only over the
surface ¥. Identity (4.11) allows us to write the following
expansion for the heat kernel Kg_(s):

1 n
= W;ans ’
an= [ an(o0) —an(1 - ) [ a0@s)

TrKg, (s)
(4.12)

Since we are interested only in the first order of (1 — )
we may take a,_; = a%t_; in the right-hand side (RHS)
of (4.12) neglecting the corresponding @,_1, term. One
can see that a,, has the same volume part a' as (4.9) [see

(B3)]:
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ai@) =1, at = (3 -OR,
a3 (z) = 1§0Ruua,6 1§0R;2w_%(%_£)DR
F1( - g2 R (4.13)

The difference appears in the surface term. For the few
first coeflicients we obtain [cf. (B4)]

0,0 =0, 1,4 —47r(1—~oz)[ (1;a)—§],

IR
—% (1;—34) (Rij — 2Rizi;)

R, n¥n? and Riji; = Rua,ntninint

where R;; = inj.
Now we are ready to calculate the divergences of the
effective action Weg = —InZ. In four dimensions the

infinite part of the effective action is

1 1 ao
32n2 (2 at
where L is the infrared cutoff. Because of the same prop-
erty (4.9) of the coeflicients a,, (4.12), the Wy;y is a sum
of volume and surface parts (3.1). Combining volume
part of the one-loop action (4.15) with the tree-level one
(3.2) we can see that divergences (under ¢ — 0) are ab-

sorbed in the standard renormalization of the coupling
constants [26]:

1 L_*_ 1 1 ¢
Gren G 2me2 \ 6 ’

(4.14)

Wiaiv =

a L
— +2azIn -6-) , (4.15)

Cl,ren =—

1 L
C2ren = C2,B + —321‘_2 9—0 n -—E—,
1 1 L
C3,ren = C3,B — 3272 90 n < (4-16)

On the other hand, applying the formula

Sdiv = (aaa - 1)Wdiv|a=1 )

we obtain the divergence of the entropy:

2
1 1 1 (1 .
=W(a‘5>*“2+ [a;(a “f) IR
“16r 45/ (Fis = 2R””)] ln_

We see that the complete entropy which is the sum

(4.17)
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of the tree level S(Gpg,c; ), (3.4), and Saiv(€), (4.17),
becomes finite by the same renormalization of the con-
stants (4.16) which renormalizes the effective action. So
the identity (3.5) indeed holds.

For the minimal coupling (£ = 0) the expression (4.17)
has been obtained in [13]. In the conformal invariant
case (£ = %) the Newton constant G and the coupling c;
are not renormalized. Correspondingly, there are no area
As and fz R contributions to the entropy (4.17) which is
remarkably determined by only the conformally invariant
expression fE(Rii — 2R;ji5)-

It should be noted that our proof of the main state-
ment is based on the nice property of the heat kernel
coefficients a,. Namely, up to (1 — a)? terms the exact
a, on the manifold E, is equal to the standard volume
coefficient a@* considered on the manifold E,:

an(Ea) = / ast(z,z) + O((1 — @)?) (4.18)
Eq

if one applies the formulas of Appendix A for curvatures

on E,. Then up to (1 — a)? the renormalization of the

entropy, (3.5), directly follows from the renormalization

of the effective action, (3.6).

The curvature terms enter the matter action of the
fields of different spins that gives rise to difficulties in
operating with the entanglement entropy [27]. We believe
that our result can be certainly generalized also for these
cases.

V. REMARKS

One can look at the entanglement entropy given by ex-
pression (2.6) from quite a different point of view. Con-
sider the whole system (gravity plus matter) at arbitrary
temperature T = (2n(3)~ Define its partition func-
tion as given by the Euclidean functional integral over
all fields (including the metric) which are periodical with
respect to the imaginary time coordinate 7 with period
273. For a static gravitational field this means that the
Euclidean manifold possesses Abelian isometry along the
Killing vector 8, with period 274.

Standardly [28], the temperature is specified by giving
the period in the time dlrectmn at infinity or at a box
of finite radius, 7! = f gT.,- 2dr. At infinity, for a static
asymptotically flat metric (g, — 1), which we only con-
sider here, this definition of temperature is the same as
above.

The assumption that the system includes a black hole
means that there exists a surface ¥ (horizon) which is
a fixed point of the isometry. Semiclassically, we take a
metric satisfying these conditions and evaluate the quan-
tum contribution of matter fields on this background.
Then (2.5) and (2.7) are exactly such a partition function
with the effective action W(8,g,.,) = —1InZ the func-
tional of the temperature 3~ ! and the metric g,,. Tak-
ing its variation with respect to the periodicity 8 (when
9o fixed) gives us the statistical (entanglement) entropy
Sent = (893 — 1)W (8, gur) considered above. It should
be noted that this is an off-shell approach [21] when the
Euclidean time coordinate periodicity 8 and metric g,,
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are nonrelated quantities. There exists a conical singu-
larity on the horizon ¥ for a general metric g,, which
contributes to the (off-shell) entropy Sent-

On the other hand, taking the temperature to be fixed
we can find the corresponding equilibrium configuration
which is the extremum of the effective action W (83, g,...).
The entanglement entropy then is worth comparing with
the thermodynamical entropy* of a black hole. The
latter is determined by the total response of the one-
loop free energy F' (BF = W) of the system being in
thermal equilibrium on variation of temperature. So
we must compare the free energies of the two config-
urations being in equilibrium at slightly different tem-
peratures. The equilibrium configuration corresponding
to the fixed temperature 3 is found from the extreme
equation 5_W_(ﬂ__»g,£_| = 0. This extremum of the effec-
tive action is reached on regular manifolds without con-
ical singularities and the equilibrium metric is a func-
tion of the temperature § and parameters fixing the
macrostate of the system (mass M, charge Q, etc.).® For
an equilibrium state the parameter 3 enters the free en-
ergy BF = W(3,9..(8)) both as an argument charac-
terizing the Euclidean time coordinate periodicity [it is
the same as in the off-shell expression W (83, g,.)] and
through the equilibrium metric g, (3). The equilibrium
free energy BF = W (0, gu..(B)) gives us the thermody-
namical entropy $*¢ = (Bdg — 1)W (8, 9,.(8)). Note
that for equilibrium states the total derivative dgW =
W + Ma—gﬂ coincides with the partial one de-

fined as dlﬁ'erentlatmg with respect to periodicity only
under a metric fixed g,,. Then we obtain that two en-
tropies indeed coincide, St = S,,;.

However, in order to calculate S*¢ we must know ex-
actly the form of the quantum-corrected configuration
guv(B), which is normally beyond our knowledge. On
the other hand the calculation of S.,; does not require
such information and we can obtain exactly the entropy
(off shell) as a function of metric and its derivatives on
the horizon X. It should be emphasized that there is no
contribution to W(3, g, (3)) due to the conical singular-
ity and we deal with the standard ultraviolet divergences
coming from the bulk terms in the effective action. They
result in the corresponding divergences of the entropy
which are obviously regularized by the standard renor-
malization of the gravitational couplings. So in terms of
the thermodynamical entropy our main statement holds
automatically.

Note added. After this paper had been submitted for
publication there appeared a paper by F. Larsen and F.
Wilczek [Report No. hep-th/9506066 (unpublished)] de-
voted to a related subject. In particular, they prove the

41 wish to thank V.P. Frolov for discussing this point.

SReally the minimization of the functional W(3,g,.) un-
der fixed B includes also variations in the space of macro-
parameters. Therefore, M is a function of 8 and Q in the
equilibrium state.
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formulated statement for the Newton constant and dif-
ferent types of matter: fermions and gauge fields. It
is also noted that the entanglement entropy, defined as
S = —Trplnp, is positive definite for any finite matrix p.
However, the formal field theoretical expression obtained
is not obviously a positive quantity. This can be also seen
from our expression (4.17). In principle, it is unlikely that
we should expect that conclusions made for usual finite
systems are also valid for the field system with an infinite
number of degrees of freedom. An indication of this is
the ultraviolet divergence of observable quantities in the
field theory which incorporates the renormalization pro-
cedure absent in usual quantum mechanics. Nevertheless,
the positivity of the entropy seems to be an important re-
quirement which probably bounds the renormalized val-
ues of the gravitational couplings (G, ¢1, ¢z, ¢3) (which are
really ambiguous in the theory) and/or the multiplet of
the matter fields contributing to the black hole entropy.
This problem needs further investigation.
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APPENDIX A: CURVATURE TENSORS
ON E, [22]

Consider space F, which is an a-fold covering of a
smooth manifold E along the Killing vector 8, generat-
ing Abelian isometry. Let the surface ¥ be a stationary
point of this isometry and near ¥ space E, looks as a di-
rect product ¥ x C, of the surface ¥ and two-dimensional
cone C, with angle deficit § = 2n(1 — ). Outside the
singular surface ¥ the space E, has the same geometry
as the smooth manifold E. In particular, their curva-
ture tensors coincide. However, at the surface X there
exists a conical singularity which results in a singular (4-
function-like) contribution to the curvatures. To extract
this contribution exactly one can use some regularization
procedure, replacing the singular space E, by a sequence
of regular manifolds E,. In the limit £, — E, we obtain
the result [22]

R, 5 = R", 5 + 2m(1 — o) [(n*na)(n"np)
—(n*ng)(n"na))ds,
RV, = R*, + 27(1 — a)(n*n,)ds,

R=R+4n(1 - a)dx, (A1)
where 0y is the delta function: [, fés = [ f; n* =
nﬁdm“ are two orthonormal vectors orthogonal to X,
(numy) = S _,nknk and the quantities R*” 5, R*,, and
R are computed in the regular points E, /X by the stan-
dard method.

These formulas can be applied to define the integral
expressions
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(A2)

/EaRzaLRﬂm—a)/z,

/EGRZ=a/}2R2+8W(1—a)/ER+O((1_a)2)’

(A3)

/ R“VR“V = 01/ R‘“’Ruu + 47((1 — Ol) / Ru
E, E =

+O((1 - a)z) )
(A4)

/ RMAPR ap = a/ RMAPR, 5, + 87(1 — @)
o E

X/ERijij+0((1—a) ), (A5)

where R;; = R, n¥nY and R;j;; = Ruu,\pné‘nf‘n;’n‘-’.
The first integrals in the right-hand part of (A2)-(A5)
are defined on the smooth space E; they are proportional
to a. The terms O((1 — @)?) in (A3)-(A5) are really
something like §3 . They are ill defined and turn out
to be dependent on the regularization prescription and
singular in the limit Eg — Mpg. But these terms are not

important, for example, in the calculation of the entropy.

APPENDIX B: THE HEAT KERNEL EXPANSION
OF THE OPERATOR (-0 + ¢R) ON E, [20]

Consider on space E,, possessing an Abelian isometry,
the operator —0; = —0O + £R , where R is the regular
part of the scalar curvature R on E, [see (Al)]. Then
we have the heat kernel expansion

In det(—0;) = / ﬁTrI'{EQ (s),
s

€2

1

K =e ¢ =
£.(9) (475) %

Z(‘Lns", s— 0, (B1)
where

Gn(z, ) = 35 (z,2) + 8n oz, T)0s (B2)
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is the sum of the standard coefficient asf(x,z) for a
smooth manifold E [26],

a(@) =1, af = (5 - &R,
a;t(x) = 1_§()R;2u/aﬂ - ]_}TOR;ZLV - %(% - &)DR

+3(3 —&°R%, (B3)

and a part coming from the singular surface ¥ (stationary
point of the isometry):
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G.O,azo, a17a=7§r“(1—__a)a(j—a—)\/;\/’7d20,
1-—- 1 ~
2,a=§(—a_)a(_ﬂ/;(%_§)Rﬁd29

T (1-a)(1+a)(1+ a?)
180 as

X / (Rumliny — 2Rul,agnfn;’n;-’n?)ﬁd20, (B4)
!

where n’ are two vectors orthogonal to the surface ¥
(nf'n¥gu, = &;;) and v is a metric on the surface X.
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