
PHYSICAL REVIEW D VOLUME 52, NUMBER 12 15 DECEMBER 1995

Numerical solutions to dilaton gravity models and the semiclassical singularity
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A general homogeneous two-dimensional dilaton gravity model considered recently by Lemos and
Sa is given quantum matter Polyakov corrections and is solved numerically for several static, equilib-
rium scenarios. Classically the dilaton field ranges the whole real line, whereas in the semiclassical
theory, with the usual definition, it is always below a certain critical value at which a singularity
appears. We give solutions for both sub- and supercritical dilaton fields. The pasting together of
the spacetime on both sides of a singularity in semiclassical planar general relativity is discussed.

PACS number(s): 04.70.Dy, 04.60.Kz

I. INTRODUCTION

The machinations of black holes have been studied ex-
tensively in recent years using two-dimensional models
[1-3].

In [4, 5], the original Callan-Giddings-Harvey-
Strominger (CGHS) model was solved numerically for
explicitly static equilibrium scenarios. The CGHS La-
grangian is a dilaton gravity model which is made up
of a classical part, which comes directly &om low en-
ergy string theory in two dimensions, and a quantum
correction described by Polyakov in [6] which takes into
account the one-loop eKects of the matter fields. The
number of these fields can be proliferated so that the ef-
fect of other quantum corrections is small compared to
that of the matter. In another paper, by Lemos and Sa,

[7], the classical Lagrangian considered is more general
than that of the CGHS model. A variable multiplica-
tive parameter is included in the kinetic dilaton term.
By choosing certain values for this parameter, a set of
classical models which includes low energy string theory
in two dimensions, Jackiw-Teitelboim theory, and planar
general relativity is obtained.

In this paper, the idea is to combine and extend the
work of [7] and 4, 5]. The more general classical core
Lagrangian of [7 will be combined with the Polyakov
quantum matter correction, and a set of static numer-
ical solutions to various models with and without the
correction is displayed. The static black holes in equilib-
rium with Hawking radiation can be studied numerically.
One motivation for studying such solutions is to under-
stand the "semiclassical" singularity which was discov-
ered shortly after the appearance of the original CGHS
paper [8, 9]. Birnir et al. noted that this singularity
occurred at a finite dilaton value, and that the metric
was actually finite there, unlike the classical case. We
investigate this further here. The static solutions might
be a candidate final state of black hole evaporation, i.e.,

as massive remnants. This was rejected in [4] since the
Arnowitt-Deser-Misner (ADM) mass for these solutions
is divergent because there is nonzero radiation density
out to infinity. Here we shall find the expression for the
ADM mass in that case and show that it is indeed infi-
nite. For equilibrium in two dimensions, this divergence
is actually necessary, but we shall see that the solutions
are nevertheless interesting.

In the following section, a general two-dimensional ho-
mogeneous dilaton gravity model is introduced, whose
field equations for static solutions are written down. The
initial conditions for regular-horizon spacetimes are then
given.

In Sec. III, a general introduction to the results is
given. Static regular-horizon solutions in which the dila-
ton is initially and remains sub- or supercritical are then
found for a range of classical cores with and without
quantum corrections. The solutions being static and nu-
merical, it is diKcult to be precise about global structure
away &om the singularities at infinity, though one can
give some details about the singularity itself and the hori-
zon. We restrict a fuller description and interpretation
to the case whose classical core is that of planar general
relativity.

In Sec. IV are the conclusion and discussion.

II. GENERAL HOMOGENEOUS
TWO-DIMENSIONAL MODEL

A. Introduction

A general homogeneous Lagrangian with semiclassical
minimal scalars is of the form

I = — d xQ+g By(4) + 4~e ~V'P + V(4)2'

——V'Z ——) (Vf;) —— dZQ+hKy,
4 2. vr

i,=l
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where g = 2Z+ 4, and 4 is a function of the dilaton
field P and any other fields that are required.
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The terms involving Z in the volume term of this
action have replaced the usual Polyakov term [6]
4R(x) jd x'Q g(—x')G(x, x')R(x') which comes from
the matter contribution to the associated path inte-
gral. G(x, x') is the scalar Green's function .The trace
anomaly of the Z scalar Geld is that of the N minimal
scalar s.

One could choose the function of the dilaton Geld so
as to make the theory have vanishing central charge [10),
but for simplicity models for which V(4) = 4%2 will be
restricted here. The function y takes into account both
the classical coupling of the dilaton to gravity and any
one-loop terms which come from quantizing additional
fields. The classical part will be taken to be e ~ and
the one-loop corrections to be those of the CGHS model,
so that y = e 24' —2(eg —Z), where e = 0. The CGHS
model is regained when cu = 1.

If one tries to work in the two-dimensional analogy of
the "Eddington-Finkelstein" gauge [11], the action and
Geld equations are still complicated although the work
on entropy which depends on the position of the horizon
might be simplified. However, for static solutions one
should use the conformal gauge where the line element is

C. Initial conditions

One can solve the dynamical equations numerically for
p, P, and their derivatives, by rewriting them as a cou-
pled set of four Grst order difI'erential equations. The
boundary conditions chosen are such that the origin in 8
is regular. This requires that

sp" (0) = sP"(0) = 0,

I=0,
(7)

(8)

A shift in p allows one to remove A Rom the equations.
P can also be redefined so that the equations are inde-
pendent of v. One then Gnds that the derivatives at the
origin should be

P(e, P)(P" —2p'P') + 2(~ —1)P'

+-«
I p —p + —, I

= o (6)
1,~(,z „ tl
2 s2 )

where t is given by the boundary conditions required.
These equations which will reduce in the case of u = 1
to either the CGHS (e = 0) or RST (e = 1) model.

dl = —e ~d~+dx (2)

The Geld equations then imply that Z = 2p, up to a
solution of the wave equation.

The action (1) now becomes

—
—,
'e'" [P(&o) —2~]

P( ) =
Q(y )

——,
' '"[P(& ) —-' '~']

&'(0) = '
Q(y

(10)

1I = —— d x~g e ~(20 0+p —4urB $8+/+ A e ~)
7r

1+ 8+f;8 f; ——v(8 pB+p+ &$0 8+p)2 (3

where the term involving f, is summed as in (1). The
surface term is omitted from now on.

These equations reduce to those of [2] in the case ur =
1, ~ =0.

Varying the initial value of p simply scales the equa-
tions. The initial value of P at the origin is related to
the "size" of the black hole. That is, moving towards the
critical value initially reduces the coordinate distance to
the singularity &om the horizon.

B. Field equations

Q(P) P" + —P' =2/' [P(e, g) —zurKe ~]

A2
e~[P(e, P) ——-'—re'~],

Q(4') p + p= 2~4' [2 P(s 4')—]

(4)

——e ~[2(u —P(e, P)],
A2

28 (5)

where P(e, P) = 1+ '4 e & and Q(P) = P(s, P) —&ulcc &

The constraint equations are

The following applies to static solutions which are func-
tions of the static variable s = —x+x only. Terms in f,
have been set to zero. Denoting ' = &, the field equa-
tions become

D. Choice of u parameter

In order to choose the smallest set of values of cu each of
which produce a diferent behavior, one can consider ex-
pression (21) for the curvature, R = —8e 2~(& + s &", )p,
the field equations (4),(5), and the values of cu and Po
which change the sign of the initial values of ~& and ~&.
The critical value2 of P is given by

1P„=——ln ~.
2

Singularities will therefore occur at increasingly weak
coupling as ~ is increased. The CGHS model (see
Sec. EE A) corrections are used in the following, i.e. , e = 0,
and so P(g, e) = 1. The initial value of ~& is then zero
at Po ——

z ln 2, unless (u = 2.
One can divide the cases first into those for which u )

The Russo-Susskiud-Thorlacius (RST) [2] model has e =
1) cap = 1.

~ is multiplied by v in the logarithm if e has not been
scaled out.
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2, ~ = 2, and ~ ( —,'. Then for the former case one has

Po ( P„, P„($0 ( 21n2, and $0 ) 2 ln2. When u (
—,we have Po ( 2 ln2, 2 ln2 ( Po ( P„, and Po ) P„.
For cu = 2, one simply has sub- and supercritical initial
values $0 & P„and Po )P„.

One can also compare with the classical counterparts
for which K = 0 in the field equations. The critical values
of P do not exist in the classical case.

By inspection of the field equations (4),(5), the regions
&om which one would like to consider a value of u are

A. Classical solutions

There will be given a set of plots of the numerical
regular-horizon solutions of the model with the various
values of the parameter u considered in [7] for the classi-
cal case which has e = 0. For e = 0, one can show that
there exists a timelike killing vector, and so the most
general solution is static [13].

In the classical case, the initial value of the gradient of
P is given by

~(o) =
2

(14)

1—(u(1, u= 1, ~ &1.
2

(12)

and po ——0 is chosen in each case. This initial value is
independent of u Fo.r the initial gradient of p,

Lemos and Sa [7] also show that the global structure
difFers for the cases 1 ( u ( 2, ~ = 2, and cu ) 2.
The numerical analysis does not distinguish qualitatively
between these cases.

We leave until later a fuller discussion of the case ~ =
1
2

III. SOLUTIONS

Since the corrected solutions are static by the ansatz,
and there is in general nonzero radiation density outside
the black hole due to the Polyakov term associated with
the minimal matter fields, they represent equilibrium sce-
narios. The ADM mass may be calculated as follows [12].

Let g s = g s + h b and P = OL, + p be perturbations
&om Hat space g b and &om linear dilaton 4L„where h b

and y vanish at infinity. The total mass measured by an
observer at right infinity is given by

M = to„"dx,

where to~ comes &om the linearized energy-momentum
tensor for the classical theory, P is a timelike Killing
vector, and x is a suitable radial coordinate. For this
calculation, one needs the generalized asymptotic expan-
sions of p and P. In the case u = 1, we have these
expressions [5]. Below, we shall note the result for this
case, which is representative of the cu & 0 cases. It would
seem that M ~ +oo except when u = 0. This is due to
the thermodynamics peculiar to two dimensions.

There is by construction a horizon on s = 0 in all the
cases. For example, in the case u = 1, when one repro-
duces the classical black hole of Witten [12], there is a
curvature singularity at finite negative s, behind the hori-
zon at the origin. One can see how the distance &om the
origin to the singularity decreases as one goes toward the
critical value of dilaton. This corresponds to a smaller
black hole, which would appear later in a sequence of
static black holes that one might use to represent black
hole evolution. However, the sequence can never be com-
plete because of the divergences as one approaches the
critical value.

which clearly depends on cu and goes through zero at
u = 2. Let the operator

d dD= —+s

The classical equations are

DP = 2sg ——e/2 1 2p
2

Dp = 2s(ug ——e ~(2(u —1)./2

2

Notice that P only appears in the equations as a deriva-
tive of s. This means that it will not matter as far as
qualitative changes are concerned what the initial value
of P is: There are no critical values of Po. The initial
conditions given above are applied, which ensure that
the solution is regular at the horizon, s = 0. The ini-
tial value of p simply scales, and is taken in every case
to be zero. The coordinates x+, x are analogous to the
Kruskal coordinates in the Schwarzschild solution, and
cover the extended manifold. The two coordinate invari-
ant functions P and the curvature scalar B are plotted,
along with the metrical factor p, for several values of ~.

In order to obtain solutions which are regular at the
origin, one has to integrate from the origin in both direc-
tions using particular initial conditions on p and P and
their derivatives. The key points are to note singularities
or lack of singularities in the curvature and whether they
occur at weak or stong coupling in P, and also to note
divergences in p and/or P, while the curvature is finite.
Further physical conclusions are dificult to make since
these are numerical solutions which are static and thus
effectively one-dimensional. The following table gives the
legend for the numerical solution plots:

Legend for numerical solutions

m=15
1

u) = 0.5
m=0
m = —1

Our classical numerical results are in agreement with
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The Geld equations can be used to rewrite this expression
as

B,i = 4(2~ —1) —16~sf' e

4(2(u —1) —16')sp' e

P(e, P) 2 —ure24'

(2o)

(21)

in the classical and quantum-corrected cases, respec-
tively. Therefore at weak coupling (P (( 0), the two
quantities may be approximately equal, but clearly, there
are large efFects near the critical value. Indeed, several
examples will be seen of the "semiclassical" type of singu-
larity which happens when P hits the critical value. Let
us define the semic/assicat singnlarity to be one where
the dilaton Geld is Gnite. The coordinates may or may
not diverge at this point, but this clearly depends on
the coordinate system. The key difI'erence between this
singularity and the classical ones is simply that the dila-
ton field no longer diverges there. Note that if u & 0
there can be no semiclassical singularities, although in
some cases there are still qualitative differences in causal
structure due to the corrections.

C. Quantum solutions

(s)
2.

Quantum-Corrected

0.5.

-0 g

S

In the work of [4], given in their Fig. 2, P„= —2,
and K = e . One should note again that this singularity
occurs at finite P and p. Indeed, for this choice of v, the
singularity is actually at weak coupling g, = e . The
same equations have been solved here in the case u = 1,
with the same initial conditions but diferent K and initial
value of dilaton. The results are qualitatively identical
as expected.

In the new plots given here, K, and A have been scaled
out of the equations by using field redefinitions of the
variables p and P. For the quantum case, in general, three
sets of graphs for each value of u are needed, whereas in
all the classical plots, P ranges (—oo, +oo). In Fig. 4,
for u = 1, however, P ( 0. Witten [12], regarded the
dilaton field as a coordinate-independent measure of an
observer's position. Viewing it as such, one might be-
lieve some of space to have been omitted as the region
P & 0 does not exist. This is why we may need to plot
more than one graph for each ~. Then, combining the

solutions, P ranges (—oo, +oo) as in the classical case. Al-
though there will be a singularity as P goes through the
critical value, the metric will be finite there, unlike at
the classical counterparts. It is not sensible, in the con-
text of semiclassical dilaton gravity, to talk about how
objects could pass through the singularity. However, one
can find solutions for values of P above critical, and thus
approach the singularity from "either side" as far as the
dilaton is concerned.

As one approaches the critical value, however, the
equations which are derived here &om the action (1) no
longer represent the quantum theory of the action. This
is because the graviton-dilaton loops become comparable
to the large N matter Geld corrections. Thus, it is not
clear how one should interpret the semiclassical singular-
ity. One cannot make definite statements because we do
not have a perturbative expansion or exact theory which
indicates whether or not it persists. On either side of the
singularity, however, the equations should be reliable.

In [4], purely supercritical solutions were considered
interesting, and such a solution, that of constant curva-
ture space, was presented. There exist four-dimensional
extremal black hole solutions for which the asymptotic
dilaton value is supercritical [9]. For this reason, this au-
thor believes that it is useful to include the supercritical
solutions here, even if some of the section on planar gen-
eral relativity is superceded, because the quantum theory
may turn out not to have a well-defined evolution through
the critical value.

The semiclassical appearance of a singularity is a limi-
tation. It cannot be integrated through numerically and
there is no contact between the sub- and supercritical
dilaton regions of spacetime. A smoothed singularity
should be passed through by test particles. In that case
it seems plausible that one consider how to paste to-
gether semiclassical spacetimes which display singulari-
ties which do not appear at infinitely strong dilaton cou-
pling. Naturally, an objection is that one has to reapply
boundary conditions for the supercritical region, and so
the solutions may have nothing to do with the subcritical
ones. However, it is plausible to apply equivalent condi-
tions. This is supported by the fact that the dilaton field
is continuous across the critical line when one considers
attaching sub- and supercritical solutions.

As long as one has a classical spacetime picture, it
would seem difBcult to go further than this. However, it
is precisely this type of operation that one has in mind
for evaporating black holes which develop baby universes.
The spacelike boundary is removed and replaced with
a region to the future, disconnected &om the external
space.

The quantum-corrected cases are commented upon in-
dividually in the following.

—1.5-

-2.

FIG. 4. The dilaton at the semiclassical level for the sub-
critical initial value.

D. Subcritical solutions

the critical value is at p&, =
two cases cu = 0, —1 do not have such a critical value. But
since there is a change of initial gradient of P when Pe =
21n2, we use this to divide the cases, while the other
cases ~ = 2, 1, —are genuinely subcritical in the Figs. 4—
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p (s)
Quantum-Corrected

2.

(P (s)
Quantum-Corrected2.

1.5 1.5.

0. 5 0.5.

-0.5
—0 5-

0.5

-1.5- -1.5.
-2. -2.

FIG. 8. The conformal factor at the semiclassical level for
the supercritical initial value.

FIG. 10. The dilaton for ur = 1, 2 at the semiclassical level
for the initial value which is above critical but below ~ ln 2.

ory that we regard the subcritical case as physically in-
teresting. But this has meant that the supercritical case
has been left uninvestigated and the semiclassical sin-
gularity mysterious. In the following "the other side"
of the singularity, on which the dilaton is supercritical,
and which was originally termed the "Liouville region, "
is considered.

E. Supercritical solutions

The supercritical initial value is taken to be Po ——ln 2

in the following five cases, which are given in Figs. 7—9.
For the cases u = 1, 2, there is another region between
the critical value and $0 ——

2 ln2 in which the dilaton
remains confined. This additional supercritical pair of
solutions is given in Figs. 10—12 for completeness.

f. w= —1,0

This is the only case which has a spacelike singular-
ity; the other cases are disconnected &om their critical
values in this region. In particular, the critical value is
P„= 2 ln2. To the left P diverges but the curvature is
negative and slowly varying, while to the right, there is
a singularity hidden by a horizon. We return to this case
below.

3. ~ = 1, —,$0 ) —1n 2

These have finite curvature everywhere in this re-
gion. Toward negative 8, at strong coupling, the space
is asymptotically flat, while toward positive s, as P -+

2 ln2, the curvature B ~ —4. These results are in
Fags. 7—9.

Now the strong coupling region is toward positive s,
and P decreases slowly at negative s. The space is again
anti —de Sitter space for u = 0, while for u = —1 the cur-
vature varies Rom zero at positive s, to —4 at negative 8,
where the spacetime approaches the anti —de Sitter space
of the u = 0 case.

g. co = 1, —,P, ( @0 ( —1n 2

One can also consider the region immediately above
the singularity as far as P is concerned for these param-

p (s)

R{s)Quantum-Corrected15-
I
I10. t
I

I
I
I
I
I

4 k

WWI W%%%&&&&a& «g
%~% ~%~%~&~%~ 0 ~~A-5.

-10 .
t

-15 '

' / S

r
r

Quantum-Corrected2-

1.5-

0. 5

-0.5

-1.5-

-2-

0.5

FIG. 9. The curvature at the sexniclassical level for the
supercritical initial value.

FIG. 11. The conformal factor for ~ = 1, ~ at the semi-
classical level for the initial value which is above critical but
below ~ ln2.
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P = -'log 2
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-0.5 0. 5

Case 1.
p = 2log2

Case 2.

rr
/

IIII

FIG. 12. The curvature for u = 1, ~ at the semiclassical
level for the initial value which is above critical, but below
-' ln 2.

eter values. The two examples are qualitatively similar.
They have a timelike singularity at negative s as the dila-
ton descends toward the critical value, and have approx-
imately constant negative curvature at positive 8, where

P -+
2 ln2 and p diverges. These comments are given

graphically in Figs. 10—12.

F. Planar general relativity

The classical core of this case has been discussed in
[16]. The classical solution given earlier is actually a
solution of general relativity. In this case, there are only
two regions necessary to cover all values of P along the
real line, because the critical value coincides with the
value P =

2 ln2, which was discussed earlier. Generally,
in such cases where there exists a finite region P„(P (
2 ln 2, there is a solution in which the dilaton is confined
between these outside values so that a third initial value
will be necessary for the dilaton to range the full real line.
Consider the results given in Figs. 4 and 7. The curve w =
2 in Fig. 7 increases monotonically &om the asymptotic
region at the right until it reaches P„= 2 ln2 when
there is a singularity and the integration breaks down. In
Fig. 4, the curve descends monotonically to this value and
has the same gradient there. If one were to attach these
two curves, the dilaton would be a continuous monotonic
function through the singularity. There would be a small
discontinuity in the conformal factor there. For other
asymmetric initial dilaton values, the dilaton curve is no
longer smooth, but it remains monotonic and piecewise
continuous. The reader is reminded, however, that the
equations are not valid at the singularity, and so this
point may not be important in a fuller theory.

The Penrose diagrams for the extended spacetime cor-
responds to the two sets of solutions are given in Fig. 13.
Dashed regions are copies of their undashed counterparts.

At the spacelike singularities of both boxes, P =
2 ln 2.

One could draw a line &om the timelike infinity in case 1,
region I, where P = —oo, through the singularity, where
one identifies with a point on the lower singularity of case
2, and on through region II, out to timelike infinity in re-
gioii I' where P —+ oo. A plausible pasting together of the

FIG. 13. Penrose diagrams of quantum-corrected planar
general relativity.

two spacetimes would be to place the box corresponding
to case 2 on top of that of case 1 and identify the singu-
larities where the dilaton is 2 ln2. This is very literally
"toy modeling. " The interpretation of the resulting sin-

gle diagram is open to debate. As expected, there is now
a singularity at finite coupling in the middle of the dia-
gram. Semiclassically, the singularity is final. However,
in quantum gravity, the singularity may be smoothed,
and test particles may be able to pass through the region
of high curvature. The diagram here suggests a strong
curvature wormhole shrouded on either "side" by a hori-
zon, at which the curvature goes through zero, and is
asymptotically anti —de Sitter space.

An observer who begins in the asymptotic region I of
case I could avoid the wormhole by constantly accelerat-
ing immediately to timelike infinity, when P = —oo, stay-
ing in region I. Alternatively, he might remain station-
ary, in which case he would pass through the wormhole
at P =

2 ln 2, after which he could constantly accelerate
so that he reached another timelike infinity in the second
box, where P = oo.

IV. CONCLUSIONS

A general, two-dimensional model has been considered
and solved numerically for static, equilibrium solutions.
There are many configurations which depend on both the
value of the parameter u and on the initial value of the
dilaton field at the origin.

The classical solutions found bore out the results of [1]
and the semiclassical cu = 1,P ( P„case those of [4].
The extreme Reissner-Nordstrom-type solution u = —1,
the Schwarzschild-type black hole cu = 1, of low energy
string theory, the black hole with timelike anti —de Sitter
infinity u = 2, of planar general relativity, the spacetime
with both timelike and spacelike singularities, w =
and the nonsingular Jackiw-Teitelboim black hole u = 0
were all seen both classically and at the semiclassical
level, where they in general represented black holes in
the Hartle-Hawking equilibrium state. These subcriti-
cal solutions are the most clearly physically interesting
solutions since they correspond with their classical coun-
terparts and four-dimensional analogues. Of all these
solutions, the unique parameter value, which yields a so-
lution which has everywhere positive curvature and is
asymptotically Hat, is that of string theory, cu = 1.

Supercritical solutions for all cases were also found,
and for (u = z), it appeared plausible to paste the su-
percritical to the subcritical solution. Then, as in clas-
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sical theories, the dilaton ranges the full real line and
is continuous across the singularity. This construction
is not possible in classical theory since in that case the
singularity always occurs at a divergent dilaton field.

At the semiclassical level, the two regions are still di-
vided by a curvature singularity. This singularity was
not expected originally [1], and was met with puzzle-
ment when discovered in subsequent work [8, 9, 4]. In the
RST model, the singularity is taken seriously as a "cen-
tral" boundary, analogous to the origin in Schwarzschild
spacetime. However, it is known that there are energy
conservational problems at the end point [17],which may
be related to this potential misinterpretation. The equa-
tions which generate the singularity become inappropri-

ate in its vicinity, but one can still consider subcritical
and supercritical solutions independently.

The singularity is a modification to classical theory
which may or may not go away in quantum gravity or is
generically spurious. Birnir et al. [4] discussed the pos-
sibility of sailing through this mild singularity. Horowitz
and Marolf [18] have recently discussed the behavior of
quantum test particles which have well-de6ned motion
even in singular spacetimes.
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