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Path integral methods are used to derive a general expression for the entropy of a black hole in
a diffeomorphism invariant theory. The result, which depends on the variational derivative of the
Lagrangian with respect to the Riemann tensor, agrees with the result obtained from Noether charge
methods by Iyer and Wald. The method used here is based on the direct expression of the density
of states as a path integral (the microcauonical functional integral). The analysis makes crucial use
of the Hamiltonian form of the action. An algorithm for placing the action of a diffeomorphism
invariant theory in Hamiltonian form is presented. Other path integral approaches to the derivation
of black hole entropy include the Hilbert action surface term method and the conical de6cit angle
method. The relationships between these path integral methods are presented.

PACS number(s): 04.70.Dy, 04.20.Fy, 04.60.Gw

I. INTRODUCTION

Noether charge methods have led Iyer and Wald [1,2]
to the discovery of two elegant expressions for the entropy
of a stationary black hole in a diKeomorphism invariant
theory in D spacetime dimensions. The first expression
1s

SBH —27t C )

where 'R denotes the black hole bifurcation surface and
Q[t] is the Noether charge (D —2)-form associated with
the horizon Killing Geld t . The second expression is

SBH = —27l CP X~Oease, d Uo
'R

(1.2)

where o is the determinant of the metric on 'R, e g is the
binormal of 'R, and Uos'" is the variational derivative [3]
of the Lagrangian with respect to the Riemann tensor
7Z & d. Equation (1.2) is a generalization of the result
obtained in Ref. [4] for black hole entropy in a theory
described by a Lagrangian that depends on at most first
derivatives of the Riemann tensor. The equivalence of
expressions (1.1) and (1.2) is demonstrated in Ref. [2].

More recently, Iyer and Wald [5] and Nelson [6] com-
pared the Noether charge approach with various path
integral derivations of black hole entropy. The path in-
tegral methods all originate, ultimately, with the obser-
vation made by Gibbons and Hawking [7] that the parti-
tion function for the gravitational Geld can be expressed

as a path integral. These path integral methods were
developed within the context of specific theories, such as
Einstein gravity or Lovelock gravity. They include (i) the
direct expression of exp(SBH) in terms of a path integral
(the microcanonical functional integral) [9,10], (ii) the
expression of SBH in terms of the Hilbert action surface
term [11,12], and (iii) the derivation of SnH in terms of a
nonclassical spacetime with a conical singularity [12,13].
Using the language and techniques of the Noether charge
formalism, Iyer and Maid showed that the path integral
methods (i) and (ii) yield the result (1.1), the black hole
entropy expressed as the integral of the Noether charge
Q[t], when applied to an arbitrary diffeomorphism invari-
ant theory. Nelson has analyzed the relationship between
the path integral method (iii) and the Noether charge re-
sult (1.1).

Section IV of this paper contains a direct derivation
of the result (1.2), the black hole entropy expressed in
terms of the variational derivative of the Lagrangian.
This derivation is based on the microcanonical functional
integral method (i) and bypasses the Noether charge for-

The original calculation of Gibbons and Hawking was in-
consistent. Their result for the partition function implies a
negative value for the heat capacity. On the other hand, gen-
eral arguments show that the heat capacity is necessarily pos-
itive for any system that can be characterized by a partition
function. This problem was overcome by York [8] who showed
that the partition function yields a positive value for the heat
capacity if the boundary conditions in the path integral are
imposed at a finite spatial location.
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malism altogether. There may be some advantage to this.
The Noether charge formalism is a useful tool for deriv-
ing the first law of black hole mechanics but, by itself, it
does not provide a logically complete derivation of black
hole entropy. In order to extract the black hole entropy
&om the first law of black hole mechanics one must, in
principle, supplement the Noether charge analysis with
the quantum field theory scattering calculation [14] that
leads to the identification of surface gravity (divided by
2') with black hole temperature. On the other hand,
the path integral approach, although formal, does pro-
vide a logically complete &amework in which black hole
entropy can be derived and analyzed. For this reason,
insights into the mysteries of black hole entropy, such as
its statistical origin, should be obtained more easily &om
within the path integral formalism.

The microcanonical functional integral method (i) is
reviewed in Sec. II. The derivation of Eq. (1.2) in Sec. IV
makes crucial use of the Hamiltonian form of the ac-
tion, which is derived in Sec. III. The three path integral
methods mentioned above, having a common origin, are
closely related to one another. The logical connections
between the microcanonical functional integral method
(i), the Hilbert action surface term inethod (ii), and the
conical deficit angle method (iii) are discussed in Sec. V.

An important part of the present analysis is contained
in Sec. III, where an algorithm is developed that allows
one to place the action for a difI'eomorphism invariant
theory in Hamiltonian form. Specifically, it is shown that
any action can be placed in "almost Hamiltonian" form,
which divers &orn a true Hamiltonian form by the pres-
ence of extra undifFerentiated variables (referred to as the
y's) in the Hamiltoiuan constraint C~. A true Hamil-
tonian form of the action is obtained when the y's are
eliminated through the solution of their algebraic equa-
tions of motion. If the rank of the matrix formed &om
the second derivatives of C~ with respect to the y's is
not maximal, then there are constraints on the canonical
variables. These constraints must be added to the action
via Lagrange multipliers. In practice, it might not be
possible to solve analytically the algebraic equations of
motion for the y's, for example, if the equations of mo-
tion include high-order polynomials. (It might also occur
that the solution of the equations of motion for the y's
is not unique. In that case, the action and the system it
describes splits into separate self-consistent Hamiltonian
theories. ) In Appendix A the familiar Hamiltonian form
of the action for Einstein gravity coupled to Maxwell elec-
trodynamics is derived using the algorithm developed in
Sec. III.

A fourth path integral method considered by Iyer and
Wald is (iv) the calculation of exp(SBii) as the enhance-
ment factor for the rate of black hole pair creation rel-
ative to the pair creation rate for matter distributions.
They show [5] that method (iv) yields the entropy expres-
sion (1.1) when applied to an arbitrary diKeomorphism
invariant theory In Ref. [15]., it was shown that the en-
hancement in the black hole creation rate, method (iv),
must agree with the entropy as calculated &om the mi-
crocanonical functional integral, method (i). Therefore,
the results of Ref. [15] along with those obtained here

II. MICROCANONICAL FUNCTIONAL
INTEGRAL

In the microcanonical functional integral formalism,
the density of states v is expressed directly as a path
integral [9,10]:

e = ) IggDd exp(S[g, d f) . (2.1)

Here, 8 is the action, which is a functional of the metric
g ~ and a collection of matter fields denoted by g. Also,
P~ denotes a sum over manifolds M of difFerent topolo-
gies, subject to the requirement that the boundary OM
should have topology 8 x S . For the purpose of describ-
ing the thermodynamics associated with a horizon, it is
most convenient to choose 8 to have the same topology
as the bifurcation surface. Thus, for the case of black
hole spacetimes, 8 is a (D —2)-sphere. For the case of
Rindler spacetime 8 is a (D —2)-torus.

The boundary conditions on the metric and matter
fields in the path integral for the density of states v in-
volve fixation of those quantities on BM that charac-
terize the states of the system. In the terminology of
traditional thermodynamics, these are the extensive vari-
ables including, for example, internal energy and electric
charge. These quantities appear at the classical level as
functions of the canonical variables q and p . Thus,
consider the action 8 written in Hamiltonian form:

d]A, q, g] = e dt d"e(p g —A g ]g, g))Si Z

+(boundary terms), (2.2)

where d = D —1 is the dimensionality of space Z. The
Lagrange multipliers are denoted by A" and C„(q,p) are
the constraints. The particular form (2.2) for the ac-
tion follows &om spacetime difFeomorphism invariance
and the assumption that under reparametrizations in t
the canonical variables transform as scalars and the La-
grange multipliers transform as scalar densities [16].

There are two types of boundary terms that appear in
the Hamiltonian form of the action for a diKeomorphism
invariant theory on a manifold JH. The first is a term

constitute a derivation of Eq. (1.2) as the enhancement
factor for black hole pair creation in a diÃeomorphism
invariant theory.

The analysis presented here applies to any stationary
spacetime with bifurcate Killing horizon. This includes
not only certain black hole spacetimes but also, for ex-
ample, Rindler spacetime. With periodic identifications
in the extra dimensions, the bifurcation surface 'R of
the Rindler horizon has the topology of a (D —2)-torus.
Equation (1.2) gives the associated entropy. For definite-
ness, I will typically use the terminology appropriate for
black hole spacetimes. Some key results concerning the
surface gravity of a bifurcate Killing horizon, which are
used in the analysis of Sec. IV, are derived in Appendix
B.
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on the boundary BM = 8 x Si of the spacetime mani-
fold. By the argument given in Ref. [15], the action (2.2)
appropriate for the density of states v contains no such
boundary terms at BM. Otherwise, if boundary terms at
OM were present, the boundary conditions would include
fixation of quantities that depend on the Lagrange multi-
pliers (and, hence, do not depend solely on the canonical
variables q and p ).

The second type of boundary term that appears in the
Hamiltonian form of the action arises only if the bound-
ary of space Z includes an element 'R in addition to the
generic leaf 8 of the foliation of 0~ = 8 x Si; that is,
if OZ = 'R U 8. This situation occurs in particular when
the spacetime manifold has topology M = 8 x K and
the leaves of the foliation terminate at a common sur-
face 'R, considered to be the "origin" of the K plane.
Such boundary terms are derived as follows. Start with
the action in Lagrangian form, expressed as an integral
over M (plus possible boundary terms). Now excise a
region &om M surrounding 'R, so that M has the prod-
uct topology 8 x (annulus) = Z x Si (where Z = 8 x I,
with I a real line interval). The boundary BM then con-
sists of two copies of 8 x S, where one copy coincides
with the original boundary of ~ and the other copy co-
incides with the boundary of the excised region. The
passage &om the Lagrangian form of the action to the
Hamiltonian form of the action proceeds as usual, with
various boundary terms appearing at the boundary of the
excised region. One then takes the limit in which the ex-
cised region shrinks to zero, being careful to ensure that
the geometry is smooth at 'R. The second type of bound-
ary term is a term on the boundary of the excised region
that survives this limit.

The entropy of a stationary black hole is computed as
follows [9,10]. First, express the Lorentzian solution in

stationary coordinates, ds2 = g s dx dx~, Q = @, where

g b and @ are t independent. Next, choose boundary
conditions for the path integral (2.1) that coincide with

SBH = S[g, 0], (2.3)

the logarithm of the density of states.
When the action is expressed in Hamiltonian form, the

evaluation of the entropy in Eq. (2.3) is simple. Because
the complex spacetime g, @ is a stationary solution of the
classical equations of motion, both the p j terms and
the constraint terms in Eq. (2.2) vanish. The only con-
tribution to the entropy comes &om the boundary terms.
As discussed above (see Ref. [15]), there are no boundary
terms at B~. There are, however, boundary terms at 'R.
The entropy arises entirely &om the evaluation of these
terms at the complex black hole solution.

III. ACTION FOR DIFFEOMORPHISM
INVARIANT THEORIES

The action for an arbitrary diÃeomorphism invariant
theory of the metric g b and tensor matter fields @ can
be expressed in the manifestly covariant form [2]

the boundary values (as constructed &om the canoiucal
data of a t = const slice with boundary element 8) of the
black hole spacetime. The path integral for v will have an
extremum in the topological sector M = 8x K that con-
sists of the complex black hole solution d8 = g~b dx~dxb,
vP = @. The complex black hole is obtained &om the
Lorentzian black hole by the substitution t ~ —it. The
t = const slices of the Lorentzian and complex black hole
solutions coincide in the sense that their canonical data
agree [17,9,15]. In particular, the data on the boundary
element 'R of the spatial slices of the complex black hole
coincide with the data on the bifurcation surface of the
Lorentzian black hole. In the zero-loop approximation
the density of states is given by v exp(8[g, g]), where
8[g, et'] is the action evaluated at the complex black hole
solution. The entropy of the black hole is then

8[g, @] = i d xQ—gZ,

gaby +bcdey 7a1 +bede& ~
y +{up ' +a )+bcdey & +a1 ) ~ ) 7(a1 ' ' 7ag)

(3.1a)

(3.1b)

where V' is the spacetime covariant derivative.

The work of Anderson and Torre [18] implies that the La-
grangian (3.1b) can be written in terms of covariant deriva-
tives of the Riemann tensor in which the symmetrization over
covariant derivatives is extended to the second and fourth
slots of the Riemann tensor itself. The arguments of this sec-
tion remain valid whether or not the Lagrangian is written in
this way.

I will use the action (3.1) as the starting point. Note,
however, that the derivation of the entropy (1.2) in this
paper is not restricted just to the case of tensor mat-
ter fields. For example, @ can include the components
A of the Yang-Mills connection (n is the internal in-

dex), where the covariant derivative V of Eq. (3.1b)
acts on A as a collection of covariant vectors. Likewise,
@ can include the tetrad field (ei') . In this case, the La-
grangian should include a term A ~[g i, —(e") g~ (e")i,]
that links the tetrad to the metric, where A is an
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independently varied field (included among the @) and
g„„=diag( —1, +1, . . . , +1). With the tetrad appearing
as a dynamical variable one can also include coupling to
the Dirac field (see, for example, Ref. [19]).

The goal of this section is to place the action (3.1) in
Hamiltonian form (2.2), and thereby derive the relevant
boundary terms at 'R. I will assume that the manifold
topology is M = Z x I. In Sec. IV, where the density
of states (2.1) is evaluated, the factor I is periodically
identified to form a circle S .

A. Elimination of derivatives of the Riemann tensor

The erst step in the derivation of the Hamiltonian form
of the action (3.1) is the elimination of derivatives of the
Riemann tensor. The highest derivative, namely the mth
derivative, can be eliminated as follows. Introduce a set
of auxiliary 6elds U '"' " and V

& &„and write
the action as

8[g, )g, U', V [ =) g xg g(C(g, R—, V, gg, , V),".V, )R,V, )g')))

(3.2)

Note that the indices on the Riemann tensor, and the corresponding indices on U and V, have been suppressed.
Also, the notation @ s is used for the matter fields and their derivatives. The actions (3.1) and (3.2) are equivalent.
This is demonstrated by substituting the solution of the classical equations of motion for U and V, namely,

0=

0=
ig—ghU '"'

1 b8
ig ghV—,

= V'(, "V' )X —V, (3.3a)

into the action (3.2). The result is the action (3.1). Now integrate by parts in Eq. (3.2) to remove one derivative from
V'(, ~ - 'I7 )'R, and discard the boundary term. This leads to the action

8[g, )g, U, V ] =i g Tg—g(C(g, R, V, 'R, . . . , V)," V, )R, V, , )[)')))

(V' U ' " )[v'(,".'[v', )7Z + U '" V, , (3.4)

in which the highest derivative of the Riemann tensor is
the (m —1)th derivative.

The action (3.4) yields the same equations of motion as
the original action (3.1), but (3.4) is not entirely equiv-
alent to (3.1) because boundary terms were discarded in
its derivation. The change of boundary terms implies a
change of boundary conditions for the variational prob-
lem. However, the boundary terms at OJM that should
be present in the final Hamiltonian form (2.2) of the ac-
tion are known: there should be no boundary terms at
OM. Thus, we are Bee to discard any boundary terms

that arise through integration by parts in spacetime. At
the end of the analysis, any remaining boundary terms
at OM must be eliminated &om the Hamiltonian form of
the action anyway.

The algorithm described above can be iterated until all
derivatives of the Riemann tensor have been eliminated.
In the process, sets of auxiliary variables U ~, V
. . ., Uq, V are introduced, which serve to eliminate the
(vn —l)th, . . ., (1)th derivatives of 'Rs,~, . The resulting
action is

8[g, Q, U, V, . . . , Ui, V ] =i d xQ —g Z(g, R, , V, . . . , V, @'s) — (V', Ui')7Z+ Ui'V,

—(V U"")V' + U""V'

(g Uay'''a )Vm —1 + Uaz "a Vm (3 5)

Now isolate the Riemann tensor by introducing one more set of auxiliary fields, Uo and V . (This is one more iteration
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of the algorithm, but without the integration by parts. ) The action becomes

8[g, g, U, V, . . . , Up, V ] =i d xQ g—Z(g, V, . . . , V, @'s) + Up%, —UpV — (V', Ui')V + Ui'V

(g Ua "a )Vm —1 + Ua "a Vm (3.6)

Observe that when the V equations of motion hold, and the U equations of motion hold,

BZ
0 = —Up —V', Ui' + 0=% —V',

0 = V.,V' —V.', ,

0 = —Uai"-a -, —V Ua, " a~ + 08
m —1 am m QVm 1

a1'"am —1
+(am Vay -.a~ y) a]" a

0= —U" '-+
ay ~ "a the variable Up equals

U,"= —V'., ~ ~

+. + (—1)™V.,".V'.08 Bd ( Ol:

~(~bede) (O (+aq +bcde) ) (O (7(ag ' '+a )+bede) )
(3.7)

This is the variational derivative [3] of the Lagrangian 2
with respect to the Riemann tensor X.g g .

B. Elimination of higher-order derivatives of the
matter fields

tives of g. I will denote these fields collectively by 4'.
The covariant derivatives V' 4 can be isolated as linear
terms in the Lagrangian through the introduction of yet
another set of auxiliary fields, just as the Riemann ten-
sor was isolated by the introduction of the Gelds Up, V .
The action now takes the form

The second step in the derivation of the Hamiltonian
form of the action is the elimination of all but the Grst
covariant derivatives of the matter Gelds. This can be
achieved by applying the same algorithm that was used in
the elimination of derivatives of the Riemann tensor. The
resulting action depends on the first covariant derivative
of the following fields: Ui, . . . , U, some (or all) of the
matter fields Q, and some of the auxiliary fields that were
introduced in the elimination of the higher-order deriva-

It is possible to carry out the above analysis without the
6elds V. For example, in order to eliminate the mth derivative
of the Riemann tensor from the action (3.1), one can perform
a Legendre transformation in which V'~ (V', V»'jZ)
play the role of velocities and U '" play the role of mo-
menta, and follow this with an integration by parts. [Equiv-
alently, V can be eliminated from the action (3.4) by sub-
stitution of the solution of the V equation of motion. ] One
must allow for the possibility that the relationship between
the velocities and momenta is not invertible, signaling the
presence of constraints. The key equation. (3.7) and the form
(3.8) of the action (see below) can be deduced in this way, in
spite of the fact that the constraints are not explicitly known.

Sfg, gl] = if d z g(g Ug IZ b g+f' (g', e, v gl')),

(3.8)

where V' iII' appear linearly in f with coefficients that are
independent variables. In Eq. (3.8), @ denotes the origi-
nal matter fields @, the auxiliary fields U and V, and the
auxiliary Gelds that were introduced in the elimination of
the higher-order derivatives of @ and the isolation of the
first derivatives V O'. Thus, 4' is the subset of Gelds 4
that appear diQ'erentiated in the action. The presenta-
tion below is simplified if we assume that the fields 4'
are covariant in their tensor indices. (As discussed at
the beginning of this section, some matter Gelds might
also carry internal indices, such as a Yang-Mills index
or a tetrad index. ) This assumption entails no loss of
generality —for each Geld with a contravariant tensor in-
dex that appears differentiated in the action, say @,a
simple change of variables vP = g i,@,g q ——g i, allows
us to replace @ with g as the fundamental variable.

C. Spacetime decomposition

The third step in the derivation of the Hamiltonian
form of the action is the introduction of a spacetime
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split. Let spacetime have topology M = Z x I and
let t label the hypersurfaces of the foliation Z. The
unit normal of the hypersurfaces is u = —NV' t, where

[
—(7' t)g (]I/'bt)] / defines the lapse function.

The hypersurface metric is defined by h, g
——g g + u ug,

so the spacetime metric g b becomes

gab = hah &a'A (3 9)

The Gauss, Codazzi, and Ricci equations imply (see, for
example, Ref. [20])

+abed = Rabcd + 2Ka[cKd]b + 4(D[aKb) [c)ud]

+4(DI ICdlt )ubl 4ut (2 ICblt + NbtN I

+(DttDt, h')/N) uut, (3.10)

where 2 is the Lie derivative along u and R g g, K g
——

—
2 Z„h g, and D denote the Riemann tensor, extrinsic

curvature, and covariant derivative of the t = const hy-
persurfaces, respectively.

Under the spacetime decomposition the tensor fields 4
are projected normally and tangentially to the t = const

hypersurfaces. For example, @ is split into its projec-
tions u Q and h z/'fb and z/f is split into u Q and hb@b.
The erst derivative V' 4' of a covariant tensor 4' is split
into hypersurface covariant derivatives and normal Lie
derivatives of the projections of O'. For example, for a
scalar field @ we have ]I/' z/f = u—Z„z/.f + D @ and for a
covariant vector field @ we have

')7.gb = u.ub Z„(u @.) —u. Z„( hb@.) + D.(h;z/'. )
—ubD (u @ ) ~ K bu z/f —2u( Kb)@

uub—@,(D'N)/N + u u Q (DbN)/N . (3.11)

Note that the Lie derivatives Z„and the spatial co-
variant derivative of the lapse function, in the combina-
tion (D N)/N, appear linearly in ()/gb 'Al. so note that
Z„(hb@,) is a spatial tensor; that is, ubZ (hbz/'f, ) = p.
The decomposition for the derivatives of higher rank co-
variant tensors is similar to that in Eq. (3.11). I will use
7 4 as a shorthand notation for the normal and tangen-
tial projections of the fields 4.

With the spacetime split described above, the action
(3.8) becomes

8 = z d &Q g U() Rabcd + 2KacKbd + 8U() ud(DaKbc) 4U() uaud ~24Kbc + Kb Kec + (DbDcN)/N

+f(h b h Pdt I (Pdt ) D (Pdt) IC b (D N)/N)) (3.12)

where 2 P'@ ) and (D N)/N appear linearly in f The act. ion (3.12) contains a second time derivative in the term
Z„K~, ———&X,„f„h ~. This can be removed by promoting the extrinsic curvature Kb to an independent variable.

Thus, introduce an auxiliary variable P and write the action as

8 = z d x NP X„hah+ 2Kab + Q—gU()
'" Rab, d+2Ka, Kbd +8/ —gUO '"ud(DaKb, )

—4g —g Uo
' u ud Z„Kb, +.Kb K„+(DbD, N) /N

db/ —2 f (h bh, P@, (I, Ib),dDt(Pd), IC b, (DtN) /N )) . (3.13)

The action (3.12) is recovered when the solution of the P, K b equations of motion is substituted into the action
(3.13).

Now choose a time How vector field t such that t [7 t = 1, and define the shift vector by V = hbtb (not to be
confused with the auxiliary fields V, . . ., V ). The Lie derivative 2, acting on h b, K b, and the covariant tensors
7 4', is expressed as NZ„= Xq —X,~. With the fields mapped &om M to Z x I, the Lie derivatives Zq along t
become ordinary time derivatives (denoted by a dot) and g—g = N~h where h is the determinant of the metric h, f
on Z. The action (3.13) becomes

8[N V h IC P Pd]= b f dt td u Pu h;I —Dt, VIt + 2NIC 4 + NuhUt] IIubb + 2IC; ICI bb
Z

SN&h Uo' (D,K,—b) —4V h Uo
'~ K.& —Zv K;& + NK; Kr, +(D.Df.N).

+NV hf(h;, , h*', Pdt, I (PO ),D; (Pth'), IC;, , (D N')/N)), (3.14)
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where NZ„(P@') = ('P@')' —Zv (P@') and i, j, . . . are
indices for tensors on Z. Also, the notation Uo

U'abed~ and U J b L. Uubcd

D. Hamiltonian form of the action

The action (3.14) is linear in time derivatives and La-
grange multipliers. That is, each term in the Lagrangian
of Eq. (3.14) depends linearly on either the time deriva-
tive of a Geld, or the lapse function N, or the shift vector
V'. [Recall that X,„('P4") and (D N)/N appear linearly
in f ]T.herefore each term in the Lagrangian transforms
as a scalar density under reparametrizations in t, and no
terms such as V'Ii;~V~/N appear. Moreover, the coeffi-

cients of h;~, K;~, and ('P'0')' are independent variables.

Specifically, the coefricient of h;~ is P'~, the coeKcient of

K,~ is —4~hUo '~, and the coefficient of (P4') is given
in terms of the auxiliary Gelds that were introduced in
the process of isolating V' 4' as a linear factor in the ac-
tion. It follows that these coefficients (denoted p ) are
the canonical momenta conjugate to the coordinates h;~,
K;~, and 'P@' (denoted q ). After all, consider what
happens if one tries to identify both q and p as coordi-
nates, and to deGne conjugate momenta II~ and II„.The
definition of these momentum variables leads to sets of
second class constraints, namely, II~ = p and II„=0.
Elimination of these constraints through the Dirac brack-
ets efFectively eliminates the new momenta, and reveals
the interpretation of q and p as canonically conjugate
variables.

Now remove the spatial derivatives &om the lapse func-
tion N and the shift vector V' through integrations by
parts. The action (3.14) takes the "almost Hamiltonian"
form

s[ivv, q, p, ~, ]
= ~ J ch d'x y i- —Nc~(qyx) —

, v, *c;(q,p)
Z

+i dt d" x o —4n;Uo
' D~N + terms N and V' (3.15)

where n' is the outward pointing unit normal of the
boundary of space, BZ, and o is the determinant of the
metric on BZ. The "terms N and V'" that appear
at the boundary BZ are proportional to the undiKeren-
tiated lapse function N and undifFerentiated shift vector
V'. Observe that the action for any diKeomorphism in-
variant theory can be put into the form (3.15), since no
special assumptions were made in its derivation.

The action (3.15) is not quite in Hamiltonian form be-
cause it contains certain extra undifFerentiated variables

y in addition to the canonical variables q and p and
Lagrange multipliers N and V'. These variables include,
for example, the normal and tangential projections of the
auxiliary fields V, . . .,V . Note that the y's appear only
in the Hamiltonian constraint C~. They do not appear in
the momentum constraint C, , or in the boundary terms
proportional to V', because C; and the boundary terms
proportional to V' all originate &om the Lie derivatives
2„ in the combination p (q —Zi q ). The y's also do
not appear in the boundary terms proportional to ¹

To see this, one should recall that these boundary terms
arise through integration by parts that eliminate spatial
derivatives of N. Inspection of Eq. (3.10) shows that
the spatial derivatives of N appear in the combination
NZ Kb + DbD N. Thus, the coefBcient of D;D~N in
the action equals the momentum conjugate to K;~, and
involves no g's. Likewise, inspection of Eq. (3.11) shows
that the spatial derivatives of N appear in combination
with Lie derivatives in such a way that the coeKcients

of D;N involve the momenta conjugate to 'P@' and P@'
itself, but no y's.

A true Hamiltonian form of the action is obtained &om
Eq. (3.15) by elimination of the variables g through the
solution of their algebraic equations of motion:

i b8 BC~ =0.
N by By

(3.16)

That is, one solves the set of equations (3.16) and in-
serts the solution back into the action. If the matrix of
second derivatives of C~ with respect to the y's has van-
ishing determinant, then Eqs. (3.16) are not independent
and cannot be solved for all of the y's as functions of the
canoincal variables q and p . In that case Eqs. (3.16) in-
clude constraints on the canonical variables. In any case,
when the conditions (3.16) are imposed the Hamiltonian
constraint C~ is independent of y.

The constraints that arise through the elimination of
the y's must be incorporated into the action principle
via Lagrange multipliers. Let C„denote the complete set
of constraints for the system —the constraints that arise
through Eqs. (3.16) as well as the Hamiltonian constraint
C~ and momentum constraints C, . Likewise, let A" de-
note the complete set of Lagrange multipliers associated
with the constraints C„, including the lapse function N
and shift vector V . The action, which is now in Hamil-
tonian form, reads



7018 J. DAVID BROWN

&[&, rt, y] = sf dt rt e tr it—4 4 ( ttt,)s+s 4t tt 'ersr 4r—r(Ue e D, t4+ (terms t4 sett V')
Z BZ

(3.17)

This is Eq. (2.2) with the .boundary terms displayed
somewhat more explicitly.

The details of the elimination of the variables y must
be carried out on a case-by-case basis. The instructive
example of Einstein gravity coupled to Maxwell electro-
dynamics is presented in Appendix A.

E. Comments

Several comments are in order. First, consider the sit-
uation in which one of the constraints, say, Ci, is simply
one of the momentum variables, say, pi. Then the equa-
tion of motion for the Lagrange multiplier Ai is pi ——0,
and the equation of motion for pi yields an expression
for Ai in terms of the other Lagrange multipliers, q
and p . These equations can be used to eliminate pi
and A from the variational principle effectively one just
sets pi equal to zero. In this way the pair q, pi is re-
moved from the list of dynamical variables in the theory,
although in general the action still depends on q (un-
difFerentiated in time). The resulting situation is similar
to that encountered in the "almost Hamiltonian" form
(3.15) of the action, in that the action depends on an ex-
tra variable. (The key difFerence is that the constraints
might depend on spatial derivatives of q, and also that
q might appear in the boundary terms. The variables
y, on the other hand, appeared only undifferentiated in
the Hamiltonian constraint. ) Now one can attempt to
eliminate q through the solution of its equation of mo-
tion. If the q equation of motion can be solved for q,
then insertion of this solution into the action yields a new
Hamiltonian form of the action for the system in which

q and pi are completely excluded. If the q equation
of motion depends only on the canonical variables (other
than q and pi), then q is a Lagrange multiplier and
should be left alone. It might happen that the q equa-
tion of motion cannot be solved for q and also does not
yield a constraint. In this case one can always stick to
the Hamiltonian form of the action that includes q, pi
and the constraint Ci ——pi.

Although the situation in which one of the constraints
is equal to a momentum variable might appear to be
of academic interest only, it in fact occurs in the exam-
ples of Maxwell electrodynamics and Einstein gravity. In
electrodynamics the variable that plays the role of q is
the normal projection of the electromagnetic potential,
which becomes a Lagrange multiplier for the Gauss's law
constraint. In Einstein gravity one must first perform a
canonical transformation on the variables q, p to bring
the action to a form in which one of the momentum vari-
ables is constrained to vanish. The variables (q and pi)
that are eliminated in this way are the extrinsic curvature
K;~ and its conjugate. Details can be found in Appendix
A.

As a final comment, observe that the HamiltonianI = f& d"xA"0„+(boundary terms) obtained &om the
action functional (3.17) is not necessarily either the to-
tal Hamiltonian or the extended Hamiltonian [16]. If the
extended Hamiltonian of the system is desired, one can
start with the Hamiltonian H and treat the constraints
C„=0 as primary constraints. The preservation in time
of the primary constraints can lead to secondary con-
straints. One then proceeds to the classification of con-
straints as first or second class, and to the construction
of the extended Hamiltonian [16]. For the purpose of
this paper, it is not necessary that the extended Hamil-
tonian appear in the Hamiltonian form (3.17) of the ac-
tion. What really matters is that the variational princi-
ples based on the action functionals (3.1) and (3.17) are
equivalent.

IV. BLACK HOLE ENTROPY

We are now in a position to compute the entropy of
a stationary spacetime with bifurcate Killing horizon us-
ing the microcanonical functional integral method. It
is assumed that the spacetime metric and matter fields

(g b, @j satisfy the classical equations of motion that fol-
low from the action (3.1). Let t denote the Killing vector
field that vanishes on the bifurcation surface 'R. Consider
a spacelike hypersurface Zo whose boundaries consist of
an outer boundary 8 and the bifurcation surface 'R. Note
that Zo lies within a single "wedge" of the spacetime
where t is timelike. Now extend Eo into a foliation of
the wedge by stationary hypersurfaces t = const, where
t V t = l. Also choose t as the time How vector field.
Then the solution (g b, @)can be written in Hamiltonian

One can choose a time flow vector field t —QP where
0 is constant and P is a spatial Killing vector field, if such
a Killing vector 6eld exists. This changes the shift vector by
—AP, so the argument given in Appendix B that V vanishes
at 'R no longer holds. However, the overall results of the anal-
ysis are unchanged because in the action (4.1) below the extra
nonvanishing boundary terms at Q just cancel corresponding
boundary terms at B. This can be seen by reversing the steps
that generate the boundary terms proportional to V: Sum
the identity p f.vq = 0 over canonical pairs, integrate over
Z, then integrate by parts and use the momentum constraint.
Experience with black hole thermodynamics in the context of
Einstein gravity [17r21j shows that the shift vector defined as
the spatial projection of t, not t —QgPt is the physically
correct de6nition for the product of inverse temperature and
chemical potential.



52 BLACK HOLE ENTROPY AND THE HAMILTONIAN. . . 7019

form (A, q, g, where A, q, and p are t independent.
As discussed in Sec. II, the entropy is obtained by eval-

uating the action (2.2) at the complex solution (A, q, p)
with periodic identification in t. The complex solu-
tion (A, q, p) is obtained from the real Lorentzian so-
lution (A, q, p) by the substitution t m it— Under
reparametrizations in t the canonical variables trans-
form as scalars and the Lagrange multipliers transform
as scalar densities, so it follows [15] that A = i A, q —= q,

I

and p = p. The orbits of the Killing vector field t in the
complex spacetime form closed curves (circles) around
the bifurcation surface Q.

According to the discussion of Sec. lI, the action (2.2)
contains no boundary terms at the spacetime boundary
BM = 8 x S where the boundary data appropriate for
the microcanonical functional integral are fixed [15]. The
boundary terms at 'R are just the boundary terms dis-
played in Eq. (3.17). Thus, the action takes the form

8[A, q, p] =i dt d"x p q —A"C„q,p + i d x~o 4n;U—o
'~ DzN + (terms N and V')

(4.1)

where BZ = 'R U 8. The boundary terms at 'R should be
understood in terms of a limiting procedure, as discussed
in Sec. II. That is, the boundary terms are defined by an
integral over the boundary of an excised region that sur-
rounds the bifurcation surface 'R, and the limit is taken
as the excised region shrinks to 'R.

In Appendix B it is shown that the lapse function N
and shift vector V, and hence also N and. V, vanish in
the limit a~ the bifurcation surface is approached. Thus,
all boundary "terms N and V'" in the action (4.1)
vanish upon evaluation at the complex solution. This
assumes that the coeKcients of the "terms N and
V'", which depend solely on the canonical variables, are
well behaved at the bifurcation surface 'R. Now, because
(A, q, p) is a stationary solution of the classical equations
of motion, the p q terms and the constraint terms van-
ish in the evaluation of the action. The result is that the
entropy (2.3) becomes

8BH = 8z. d" xenon;Uo
'~ n,

'R
(4.4)

Since the surface gravity of a spacetime with bifur-
cate Killing horizon is constant over the horizon [22],
r can be removed &om the integral over 'R. Now,
the proper circumference of the circular orbits of t is

f&, dt's N2+ V'—V;. From Appendix B we have the
result limV'/N = 0, so the proper circumference, in
the limit as the bifurcation surface is approached, equals

f&, dtN. The expression k = —limn~D~N then shows
that f» dt k equals the rate of change of circumference
with respect to radius for these orbits. The complex ge-
ometry will be smooth at 'R, and satisfy the classical
equations of motion there, only if the period in S is
chosen such that fz, dtFc = 2m. The entropy is then

813H 8[A, q, p] = 4i dt d x—~on, Uo
' D~N'

S~

(4.2)

The right-hand side of this expression is evaluated at the
complex solution (A, q, p). However, for notational sim-
plicity, the bars have been omitted &om the p's and q's
in Eq. (4.2). No ambiguity arises since the canonical
variables for the Lorentzian and complex solutions agree.
The bar is retained on the lapse function since the La-
grange multipliers for the Lorentzian and complex solu-
tions dier by a factor of —i. In the analysis below I will
continue the practice of placing bars or tildes only over
the Lagrange multipliers.

As shown in Appendix B, the gradient of the lapse
function is related to the surface gravity k, by lim D;N =
—limk, n;, where the limit is taken in which the bifurca-
tion surface Q is approached along a t = const hyper-
surface Z. (Note that n' is the outward pointing normal
of OZ at the bifurcation surface, so n' points "radially
inward" towards 'R. ) Thus, we obtain

The right-hand side of this expression for SBH depends
only on the canonical variables, so it can be evaluated ei-
ther at the complex solution (A, q, p) or at the Lorentzian
solution (A, q, p).

Recalling the definition Uo
+ = Uo "u ug and using

the expression i g
——2limu[ ng] for the binormal of R,

we have

8nH ~ —27r d x~osab&cd Up'
'R

(4.5)

This is the main result, Eq. (1.2), for the entropy of a
spacetime with bifurcate Killing horizon. Here, Uo

" is
the variational derivative (3.7) of the Lagrangian with
respect to the Riemann tensor.

8nH = 4 dt d" xenon, Uo
'~ n~lc . .

s&
(4.3) This is f ds, where ds = Ndt + h, ~ (dx'+ V—'dt)(dx .+

V~dt) with dx' = 0, evaluated at the complex solution.
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V. OTHER PATH INTEGRAL METHODS

A. Hilbert action surface term

The relationship between the Hilbert action surface
term method (ii) [11,12] and the microcanonical func-
tional integral method (i) can be understood as follows.
Consider first the logical outline of the microcanonical
functional integral method. The action 8 is the integral
of the Lagrangian 8 over the manifold M = 8 x K . The
integral is split into two pieces, an integral over the ex-
cised region 8 x disk that contains the bifurcation surface
'R, and an integral over the remainder of the manifold,
8 x annulus. Schematically, we have

8= 8= l. + (5 1)

where D and A refer to the disk and the annulus, respec-
tively, and the factor 8 has been suppressed for nota-
tional simplicity. The first integral vanishes in the limit
in which the excised region D shrinks to 'R, under the as-
sumption that 8 is smooth. The second integral is writ-
ten in Hamiltonian form, which yields a volume integral
8~ [the integral of p j —A"C„ in Eq. (4.1)] and terms
at the "inner" boundary OA; and "outer" boundary OA
of the annulus. The terms at the outer boundary BA
are discarded. In the limit as the disk shrinks to '8, the
terms at the inner boundary BA; become boundary terms
BT~ at the bifurcation surface [the boundary terms in
Eq. (4.1)]. Thus, the action becomes

8 —+ 8~+ BT~ . (5 2)

When 8 is evaluated at the complex solution, the canon-
ical action 8~ vanishes so that

8mBT~. (5.3)

8= (5.4)

Only the term proportional to the gradient of the lapse
function N remains in BT~ since, as shown in Appendix
B, N and V' both vanish at the bifurcation surface.

In the Hilbert action surface term method (ii), the ac-
tion integral is split according to

where BT& ——BT~ + f&& E .(Again, the terms at the
outer boundary are discarded. )

The integrand in BT& must be linear in the lapse and
shift in order to transform properly under reparametriza-
tions in t. But, in fact, the integrand in BT cannot
depend on spatial derivatives of N or V'. (Actually, spa-
tial derivatives in a direction tangent to the boundary
are allowed, since these can be removed through integra-
tion by parts. ) This can be understood as follows. The
boundary conditions appropriate for 8~ + BT& (which
equals j& 8 + f&& E plus terms at the outer boundary
OA0) include fixation of the induced metric on OA, , by
definition of the Hilbert action surface term. Therefore,
with the induced metric on BA; denoted by p, we have

b(8~ + BT~) = (EOM's) + (BT's at BA0)

vr-"bp „
BA;

+(other BT's at ojA;) (5.6)

for some m . Here, "EOM's" are terms that yield the
classical equations of motion and "BT's at OA0" are
boundary terms at BA0. The "other BT's at BA;" are
boundary terms at OA; that involve variations of various
matter fields and auxiliary fields, but do not involve vari-
ations of p or variations of derivatives of p „. The
induced metric p „on the [(D —1)-dimensional] sur-
face BA, can be split into a lapse, shift, and [(D —2)-
dimensional] spatial metric using the slices t = const and
time flow vector field t induced on OA;. If the slices
t = const are orthogonal to OA;, so that the unit normal
of the slices lies in OA, , then the lapse and shift compo-
nents of p „are just the restrictions of N and V' to OA;.
If the slices t = const are not orthogonal to OA;, then
the lapse and shift components of p are constructed
algebraically &om N and V' through simple kinematical
boost relations [23]. Consequently, the boundary terms
at BA, in Eq. . (5.6) depend on the variations of N and
V, but not on the variations of their derivatives. Since
8~ contains no derivatives of N or V', Eq. (5.6) shows
that BT~ cannot contain derivatives of N or V'.

When the action of Eq. (5.5) is evaluated at the com-
plex solution, the canonical action 8~ vanishes. The
boundary term BT~ is zero since its integrand is lin-
ear in the undifferentiated lapse and shift, and the lapse
and shift vanish at 'R. Therefore

8-+ 8+8~+ BT~
8D

(5.5)

where f E is the "Hilbert action surface term"; that is, f I
is the surface term that must be added to f 8 such that
the boundary conditions include fixation of the metric on
the boundary. Equation (5.4) is, of course, equivalent to
Eq. (5.1) since the Hilbert action surface terms at BD
and OA; cancel one another. As in the microcanonical
functional integral method, the integral over D vanishes
in the limit in which the excised region shrinks to 'R.
Also the integral over A can be written in Hamiltonian
form. The resulting action is

8-+ f (5.7)

which shows that the entropy 8n~ = 8(A, q, p) equals the
Hilbert action surface term for a small disk surrounding
the bifurcation surface 'R, evaluated at the complex solu-
tion. In eKect, what has been shown is that the Hilbert
action surface term must include the negative of the par-
ticular boundary term displayed in Eq. (4.1) that is pro-
portional to the gradient of the lapse function. The minus
sign is compensated by the fact that the normal n' of OD
points away &om 'R.
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B. Conical deficit angle

The starting point for the canonical deficit angle
method (iii) [12,13,6] for computing black hole entropy
is the (grand canonical) partition function

yields ln Z(P) —Sp [g, @],where g, @ is the complex black
hole solution that extremizes Sp[g, @] ainong configura-
tions whose proper length (period) in the S direction
equals P at the boundary (9M. Then the entropy can be
written as

(5.8) S (E )-S [- @] —Pl'

Here, Sp is the Hilbert action Sp = J~ 8+J'&~ E and the
inverse temperature is defined by the lapse component of
the boundary metric p „according to p = i f dt(lapse).
When evaluated at the complex black hole solution, P
is the proper length in the S direction as measured or-
thogonally to the stationary time slices in BM. The re-
lationship between Z[P] and the density of states (2.1) is
spelled out in detail in Ref. [9]. For our present purposes
it is sufBcient to note that the density of states is a func-
tion of the internal energy E, where E is defined by the
variation of the Hilbert action with respect to the lapse
component of p . Thus, the microcanonical action 8 of
Eq. (2.1) and the Hilbert action Sp differ by boundary
terms that include a term of the form PE. Th—e parti-
tion function is then given by the Laplace transform of
the density of states:

Z(P) = jdEv(E)e (5.9)

ln Z(p) = SBH(E') —pE', (5.10)

where E* is the function of P such that E = E*(P) ex-
tremizes the exponential:

With the relationship v(E) = exp[SBH(E)], the leading
order approximation to the integral in Eq. (5.9) is

(5.13)

where the limit is taken in which P ~ P. It is important
to recognize that in taking the derivative with respect to
P, one does not introduce a conical singularity in the met-
ric g (contrary to claims made in the literature). Rather,
when P is varied, the parameters of the solution g, @
(notably the black hole mass parameter) vary in such a
way that the configuration remains a smooth solution of
the classical equations of motion. Thus, in Eq. (5.13),
the extremal configuration with period P' is the smooth
solution denoted g', vP'.

Equation (5.13) can be evaluated with the following
trick. Since the action Sp~ is stationary at g', @', one
can distort this configuration without aH'ecting the value
of the action to Grst order. Thus, replace g' with the
metric gv and leave g' alone. In principle, g could be
any metric obtained &om an infinitesimal variation of
g'. Consider as a particular choice for g the metric
whose components are identical to the components of g
in the stationary coordinate system, but with the period
in coordinate time t adjusted so that the proper length
in the Si direction at o)M is P' rather than P. Thus, gv
is a smooth, regular solution of the classical equations of
motion everywhere except at the bifurcation surface
At '8 the regularity condition I» dt's = 2ir does not hold
for g, indicating the presence of a conical singularity.

With the replacement of g' by g, the entropy becomes

MBH (E)
BE (5.11) SBH(E*) = Sp[g] —plim Sp [g'] - Sp g (5.14)

SBH(E') = ln Z(p) —p (5.12)

The zero-loop approximation to the path integral (5.8)

To be precise, the inverse temperature is a function on the
system boundary 8 and, correspondingly, the energy is a sur-
face density [17,9]. Thus, the notation used here should be
viewed as schematic. On the other hand, P and E can be
interpreted as the "zero mode" parts of the inverse temper-
ature and energy surface density. The final result (5.15) for
the entropy can be understood in this way.

Equations (5.10) and (5.11) just express ln Z(P) (which
is —P times the free energy) as a Legendre transform of
the entropy SBH(E).

Prom the relationships above it is easy to show that
the entropy is given by

)

SnH(E*) = —P liin
) gv

(5.15)

The entropy is thus expressed in terms of a spacetime
gv with a conical singularity. The limit in Eq. (5.15) is

(The dependence on matter fields @ has been dropped for
notational simplicity. ) Now split the action Sp [g] into an
integral (JD l:)[g] over the disk plus "other terms" that
consist of an integral over the annulus A and boundary
integrals at (9M. The integral over D vanishes in the
limit as the disk shrinks to '8, since 8 is smooth. The
other terms contain integrals over t and are proportional
to P. Likewise, split S)s [gv] into (J~ Z)[g ] plus "other
terms. " The integral over D does not vanish in this case
due to the conical singularity in g . The other terms
are identical to the other terms from Sp[g] with the ex-
ception that they are proportional to P'. Therefore all
"other terms" in expression (5.14) cancel, and the en-
tropy becomes



7022 J. DAVID BROWN 52

taken in which D shrinks to '8 and P' approaches P.
The correctness of the result (5.15) can be verified as

follows. Let 8 be the integrand of Eq. (3.8).r The term
proportional to f vanishes in the limit as the disk shrinks
to Q. Likewise, most of the terms in Uo~ "R g g do not

contribute to the entropy —only the term that contains
the curvature in the surface orthogonal to '8 survives as
D shrinks to 'R. This term captures the curvature of
the conical singularity. Inserting a projection onto the
binormal of 'R, we have

i D ~ efgb ab cdx
~ g gUp ecf egbe E Rcbcd

D ) g& 4 Dx8 yV
(5.16)

The binormal can be written as e g
——2u~ nbj where n

and u are orthogonal to 'R and to each other, and n
lies in a t = const surface. Note that u = —NV' t
is imaginary when evaluated at a complex spacetime, so
—iu is the real unit vector with square +1 for the metric
g . The basic interpretation of the Riemann tensor gives
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n (—iu )n'R b,
" = bn /AD, (5.17)

where bn" is the change in the vector n' as it is parallel
transported around the perimeter of the disk D (first in
the n direction, then in the —iu direction) and AD is
the area of the disk. If the disk has deficit angle o, , then
b'nd = n( —iu"). Thus, we find e be'" Rb, d

'= 4o./A—D
and

APPENDIX A: MAXWELL
ELECTRODYNAMICS AND EINSTEIN

GRAVITY

Consider Maxwell electrodynamics in D = 4 spacetime
dimensions coupled to the gravitational field. The elec-
tromagnetic Geld contribution to the action is

d 2:~ ~go be dUp
' a/AD

~l gV

(5.18)

Now, the deficit angle is given by a/(27r) = (P —P')/P,
so the entropy &om Eq. (5.15) becomes

Z 4Sbi = —— d xQ—g V') Ab)g 'g "V'(,Ad) .
4m

In the form of Eq. (3.8) the action becomes

(A1)

~BH(&*) = —2~ d *~ ~ae becdUp
~

. (5.19)),—
In the integrand above, 6 gc dUO is a spacetime scalar
and in particular it is invariant under reparametrizations
in t. Consequently, the integrand can be evaluated at
the Lorentzian black hole solution g rather than g. The
result agrees with Eq. (4.5).

8~ =i d z —g II V' Ag —A~g

—(Ai ~ig 'g A„4)/(4~)), (A2)

where V Ap appears linearly. The auxiliary fields are II
and A b. The "almost Hamiltonian" form [cf. Eq. (3.15)]
of the action is

dg d x h, —II A~+ II 'A, —NC~ —V'C,

d'~ ~n; NA~II~' —NA'II~~ —V~A, II~' (A3)

where the electromagnetic Geld contribution to the Hamiltonian and momentum constraints is

Iyer and Wald [5] conjectured that the canonical deficit angle method (iii) is limited to theories in which the Lagrangian is
a linear function of the Riemann tensor. The results here show that any theory of the form (3.1) can be treated by the conical
deficit angle method if the action is first put into the form (3.8) in which the Lagrangian is linear in R b,d
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c; = —a*(rr~'~ ) + n"a + a;(rr'x )
—(("((('x + ~~,)

+(A~;„h'"h' A~I, g~)/(4vr) —(A~,~~h" A„~~)/(2~),
C,. = —II DiA —AiD II ~ —2Il ~D, A,

(A4a)

(A4b)

IIiJ IIJ i
)

ll" = —h'"h 'D~, A,~/(2~),
Ai& ——Di Az —K~ A),
A~i: 4&pijII + DiA~ K' Aj )

(A5a)

(A5b)

(A5c)

(A5(l)

The action is a functional of the coordinates (the q 's)
A~ and A;, the momenta (the p 's) —dphil++ and
v hll~', and the extra variables (the )('s) II', II", A;~,
Agi, A,~, and Agg.

The y's appear in the action undifFerentiated and only
in the function C& . In particular II', II'~, Ai~, A~i, and
A;~ appear quadratically in C& and can be eliminated by
the solution of their algebraic equations of motion. Those
equations are straightforward to derive, and the solution
1s

A;g = DiA~ —K,~A~ . (A5e)

Inserting this result into C&, one obtains

C = —D'(II A)+II A +A DII

+2vrll *h; II ~ + D;A, D'*A'~/(4~) (A6)

for the electromagnetic Geld contribution to the Hamil-
tonian constraint.

The variable A~~ appears in the action (A3), (A4b),
and (A6) as a Lagrange multiplier associated with the
constraint II = 0. As discussed in Sec. III, the vari-
ables A~~, II can be eliminated through their equa-
tions of motion, which amounts to setting II equal to
zero. The coordinate A~ conjugate to —v hll remains
as an extra variable in the action, which now reads

8 = i dt d X&6 II 'A; —V' —A, D II + 2II D[,A ]
—K A&D;II ' + 27[ II 'h; II + D[,A]D 'A ./(471 )

Z

+i dt d x on; NII iA~ —V A&II (A7)

The equation of motion for A~ yields the Gauss's law constraint DiII+' = 0. Thus, A~ is a Lagrange multiplier. Now
make the changes of variables S' = dphil+' for the momentum conjugate to A; and A( ——A t = —XA~ + V'A; for
the Lagrange multiplier. The result is

8 =i dt d x E'A, —V' 2f DA, + A, DF' —N 27tF'S, h+ hDiAD'A 4~
Z

—i dt d x o. A~niF' 6, (AS)

the Hamiltonian form of the action for the electromagnetic Geld coupled to gravity.
Now consider Einstein gravity in D = 4 spacetime dimensions:

8~=i

ding

gg'g R— bg, (A9)

where Newton's constant equals 1/(16'). In the form of Eq. (3.6), or equivalently (3.8), the action becomes

cS~ = z d x —g Up &ubcd —V~&«+ g g "V~&« (A1O)

It is assumed that Up
'" and V & d have the same symmetries as R p d. The spacetime split leads to the action of

Eq. (3.13), where the function f is given by

f = h h V~g~g + 2h Vj ~s~ —Up h~h(, h~hdV~ygh + 4Up h~hsh~Vg~f~ —4Up h~hgVj ~d~ (All)

By mapping the Gelds &om M to E x I and integrating by parts to remove spatial derivatives from the lapse and
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shift, one obtains the action in "almost Hamiltonian" form [cf. Eq. (3.15)]:

8~ = i dt d x P'~h;~ + '~K;j —NC~ —V'C;

+i dt d x o. 6 n, —2P'jVj —2 'jK kV" + 'jDjN —NDj (A.12)

Here, the notation Q'~ = —4~6U& '~ has been introduced, and the gravitational contribution to the Hamiltonian
and momentum constraints is

C~ —— D,D—~Q" —2P'~K,
~

—Q'~K,"Kg~. —~hUe~ (R,,gg + 2K;yK~r —V;, qr)

C, = 2D~—P, + Q'"D;K~g —2D~(Q~ "Kg;) .

(A13a)

(A13b)

The action is a functional of the coordinates (the q~'s) h;~ and K,z, the momenta (the p 's) P'~ and Q'~, and the
extra variables (the y's) Ue, Uo, V,. &&, V,. &z, and V&, .z.

The y variables Uo, Uo, V;-k&, and V, k& can be eliminated by the solution of their algebraic equations of
motion. That solution is

Uij kE
0

Uij kJ
0

0
V'jke

0

Inserting this result into C&, one obtains

=6' 6' )

=0,
= B,~kg + 2K;(kKg)~,
= 2D(,.Kjjk .

(A14a)

(A14b)

(A14c)

(A14d)

C~ —— D;D, Q'~ ——2P"KU —Q"K,"Kk~ —v h(R+ K —K,,K'~) —(Q" + 2v hh")V~, .~ . (A15)

Clearly, the variable V&, z plays the role of a Lagrange multiplier for the constraint Q'~ + 2~hh'~ = 0. The situation
here is close to that discussed in Sec. IIIE in which a constraint (denoted Cq) is given by a momentum variable
(denoted pq). In fact, the present theory can be placed in this form by a canonical transformation in which Q'~ is
replaced by Q'~ + 2~hh'~ as the momentum conjugate to K;z. The form of the canonical transformation can be
deduced &om the relationship

P'~h; + Q'~K; =(P'~ + ~h. Kh'~ —2VhK'~)h, + (Q'~ + 2~hh'~)K, —2(~hK) (A16)

Thus, de6ne the new momenta

P" = P" + vtKV' —2VXK", (A17a)

Q" = Q" + 2v%h" (A17b)

and the action becomes

8 =i dt d x P'~h~ + '~Kj —2 hK ' —NC~ —V'C;

+i dt d2x cr h, n; —2P'jVj —2 'jK kVk + 'jDjÃ —NDj 'j —2 h,D'X+ 2 h,KV' (A18)

where

C, = D,D, q'& —2P "K—,, —q'~K,"K„,—~i(R —K'+ K;,K'~) —q'~V'„. (A19a)

C, = 2D~P,' + Q~"D;K~—g
—2D~ (Q~ "Kg;) . (A19b)

The variables Q'~ and V&,. & (which play the role of p~ and A in the discussion of Sec. IIIE) can be eliminated by
setting Q'~ equal to zero. The action then reduces to
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Sz: x dt d x P Azj 2 6K V 2Dj P' N 2P Kzj 6 B K + Kzj K

+i dt d x o.n; —2P'jV 6 —2D'N + 2%V' (A2o)

where K,~ (which plays the role of q ) appears as an extra independent variable in addition to the canonical pair h,~,
P'~, the lapse function N, and the shift vector V'.

The equation of motion for K;~ which follows from the action (A20) is

O = 2P'~-+ 2V hKh*' —2~iK", (A21)

and the solution of this equation is

VhK;; = P,, +—Ph;, /2. (A22)

By substituting this result into Eq. (A20), we find the action for Einstein gravity in the Hamiltonian form

8 =i dt d x —P 6;- —V' —2D P~ —N 2P'P, . —P 2 h, — h,B
Z

+i dt d x o.n,. Vj Ph'~ —2P'~ 6 —2D'N (A23)

—'u
Note that the "kinetic" term of Eq. (A23) is Ph;~, —rather than the more usual P'~h;~. The difference is just a
boundary term, i J'& d xP at the initial and final times. If we had originally chosen the action (A9) to include a
boundary term 2i J& d z v hK at the initial and final times, then we would have obtained P h;~ for the kinetic term
in the Hamiltonian form of the action.

APPENDIX 8: SURFACE GRAVITY

=Nu +V (Bl)

This expression is well defined on the interior of the
wedge. Consider the limit in which 'R is approached
&om within a t = const hypersurface, say, Zo. Since
t vanishes at 'R, it follows by contraction of Eq. (Bl)
successively with u and h, that

limN =0, limV =0. (B2)

This result is used in Sec. IV to show that the "terms
N and V'" vanish at the boundary W of Z.
The surface gravity of a Killing horizon equals [22]

As described in Sec. IV, one wedge of the spacetime g b

is foliated into stationary hypersurfaces t = const with
time flow vector field t, where t is the Killing vector
field that vanishes at the bifurcation surface 'R. In this
appendix I will drop the tildes with the understanding
that all relationships hold for the Lorentzian metric g b.

The lapse function N and shift vector V satisfy

within Zo so that the orbits of t become orthogonal to
the t = const surfaces. Then the surface gravity can be
expressed in terms of the acceleration of the unit normal
u of the t = const surfaces.

Using the Killing vector field property I7( tb)
——0, one

can easily show that ~t~a, = V', ~t~. Then the surface
gravity (B3) becomes

K =™V'(& ltl)(&-ltl) . (B4)

where v is the unit vector orthogonal to both o b and
t~ e

v lim(Nn + n Vsu ) . (B6)

Observe that the limit of ~t~ = v —t t = g¹—V V
is a constant (namely, zero) as '8 is approached from
within Zo. Thus we have lim a Vs

~

t
~

= 0 where a s =
h b

—n nb is the induced metric on 'R and n is the unit
normal of 'R in Zo. Since also t V'

~t~ = 0, the gradient
of ~t~ lies entirely in the v direction,

lim V'
~t~ = lim v v V's[t~ ,

~ = »m(ltllal)

where ~t~ = g—t t is the magnitude of t and

~a~ = ga'a is the magnitude of the acceleration a' =
(t V'~t')/~t~ of the orbits of t . I will now show that, in
eKect, the shift vector V vanishes sufEciently rapidly in
the limit as the bifurcation surface is approached &om

Because the surface gravity of a bifurcate Killing horizon
is nonzero [22], it follows &om Eq. (B4) that »m 9'~~t~ g
0. Also note that V'

~t~ is spacelike, since it is orthogonal
to the timelike vector t . Therefore, lim h V'r, ~t~ g 0 and,
since lima V'i, ~t~ = 0, we conclude that lim n V'r, (t~ g 0.

Now consider the limit of V /~t~ as '8 is approached
from within Zo. This is an indeterminate form, 0/0.



7026 J. DAVID BROWN 52

We can apply l'Hopital's rule and differentiate both nu-
merator and denominator along the normal n direction
within Eo. The derivative of the denominator, n V'b[t[,
has a nonzero limit by the argument above. The deriva-
tive of the numerator is

that limn V'bV = 0, so by l'Hopital's rule we have
»mV /]t[ = 0. Since [t] = QN2 —VbVb, we»so
find lim(V /N)(l —V Vb/N ) ~2 = 0 which implies
limV /N = 0.

The gradient of [t[ is given by

nba, V = nb@.(h:t )
= n't Vbh. +nba, wbt (B7)

NV N VV' Vbt = + (B10)

Using h, = b + u u, one can write the first term as

n t'7'bh, = n t'V'b(u u, )
abn uanb~ Vc

where K b
———6 V,ub is the extrinsic curvature of Zo.

The two terms in Eq. (BS) vanish in the limit because
the lapse N and shift V both vanish in the limit. Using
the relation h, = 0 + n n and the Killing vector field
property I7&bt

&

——0, one can write the second term of
Eq. (B7) as

= —n o. V' tb

no. —V', (Nub + Vb)

The results above show that the second term vanishes in
the limit as 'R is approached &om within Zo, and that
limN/[t[ = 1. Therefore Eq. (B10) yields limV' ~t[ =
limV' N. We also find from Eq. (B6) that v = n .
Thus, Eq. (B5) becomes

»m&aN = limn~n V'bN . (Bll)

It follows that the surface gravity (B4) can be writ-
ten as ic = lim]n V N[. If we choose, as in the main
body of the paper, the unit normal n to point "ra-
dially inward" towards 'R, the surface gravity becomes
K = —limn V' N. From the relationship (Bll) we find
the key result

lim V' N = —limen (BI2)

The first term in Eq. (B9) vanishes in the limit due
to the factor of N, and the second term in Eq. (B.9)
is zero in the limit since the derivative acts along the
bifurcation surface where Vb vanishes. The result is

Finally, note that the surface gravity also can be ex-
pressed as ic = —limNn~Ab, where (see Ref. [20j) Ab =
u V' ub = hb(V, N)/N is the acceleration of the unit
normal of the t = const hypersurfaces.
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