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Recent theorems regarding topological censorship are in apparent conflict with simulations of
the collapse of rotating matter to form toroidal black holes. The geometry of a temporarily toroidal
event horizon is analyzed and shown to be completely consistent with the theorems. A simple flat
space model provides insight into the geometry of a toroidal black hole.
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I. INTRODUCTION

There are several theorems which state that under var-
ious conditions a black hole must have spherical topology.
On the other hand, recent computer simulations of col-
lapsing matter in a fully general relativistic setting have
given rise to black holes that initially form with toroidal
topology and only at a later time become spherical. In
this paper we show that the computational results are in
fact consistent with the theorems and can be understood
in terms of a simple spacetime model of a toroidal event
horizon.

The first results concerning the spherical topology of
black holes came from the analysis of exact solutions for
the time independent Schwarzschild and Kerr spacetimes.
The global geometry of these spacetimes revealed that
they possess an event horizon, which forms the boundary
of the region visible by distant observers. This horizon is
a three-dimensional null hypersurface whose null genera-
tors extend for infinite affine length both in the past and
the future. Topologically, the Schwarzschild and Kerr
horizons are the product of a line and a sphere. The line
represents a null generator. The surface of a Kerr or
Schwarzschild black hole corresponds to the intersection
of the horizon with a spacelike hypersurface. This is the
sphere.

Subsequently, the definitions required to describe black
holes were refined with a high degree of technical preci-
sion. This led the way for more general theorems re-
garding black hole properties. The concept of distant
observers is formulated rigorously in terms of future null
infinity Z+, as constructed in the Penrose compactifica-
tion of an asymptotically flat spacetime [1]. The event
horizon H ™ is defined as the boundary of the causal past
of Zt. Here the causal past of a region ¥ is formally
denoted by J~(X) and consists of the points that can
be connected to ¥ by a future directed timelike or null
curve. In terms of this formal notation, Ht* = J~(Z1).
General results concerning causal boundaries imply that

0556-2821/95/52(12)/6982(6)/$06.00 52

HT is generated by null geodesics [2]. Moving along the
future direction, null generators can enter the horizon
but existing generators cannot leave. The black hole re-
gion consists of those spacetime points not contained in
J~(Z*), with the event horizon on its boundary [3]. A
black hole at a particular instant of time is defined by
a connected component of the intersection of the black
hole region with a Cauchy hypersurface. (A Cauchy hy-
persurface is a spacelike hypersurface with global extent
sufficient to specify a unique evolution by means of initial
Cauchy data.) At the time defined by this hypersurface,
this intersection may consist of several disjoint regions, in
which case there would exist the corresponding number
of black holes at that time.

The surface topology of a black hole at a given time is
the topology of the intersection of the Cauchy hypersur-
face (defining the time) with the event horizon. In the
Schwarzschild and Kerr vacuum spacetimes, this topol-
ogy is spherical at all times. The same is true in the non-
stationary case of an Oppenheimer-Snyder spacetime, in
which the event horizon is formed by the collapse of a
spherical ball of matter. It is evident that a spherically
symmetric black hole must have spherical surface topol-
ogy. Consequently, it should not be surprising that small
deviations from spherical symmetry or small perturba-
tions of the Kerr spacetime preserve the spherical black
hole topology. A number of theorems have established
much stronger results.

The simplest situation arises in the general stationary
spacetime, for which it can be shown that any black hole
must have the surface topology of a two-sphere [5]. The
first theorem regarding the topology of nonstationary
black holes is due to Gannon [6]. Assuming a physically
reasonable condition of asymptotic flatness, he proved
that the surface topology of a smooth black hole must be
either a two-sphere or a torus (provided that the energy-
momentum tensor of the matter fields satisfies the dom-
inant energy condition).

Gannon’s approach has recently been extended and
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generalized to yield stronger theorems, under the as-
sumptions of asymptotic flatness, global hyperbolicity,
and a suitable energy condition on the matter fields.
Under the title of “topological censorship,” Friedmann,
Schleich, and Witt proved a theorem that any two causal
curves extending from past to future null infinity may
be deformed into each other (in the sense of homotopy)
[7]. As Jacobson and Venkataramani have pointed out,
a black hole with toroidal surface topology provides a
potential mechanism for violating topological censorship
by sending a light ray from the infinite past through the
hole in the torus and back out to future null infinity [8].
This light ray would not be deformable to a light ray
that skirts the horizon altogether. Thus the topological
censorship theorem implies that the hole in a toroidal
horizon must close up quickly, before a light ray can pass
through. Jacobson and Venkataramani have also estab-
lished a theorem that strengthens a recent result due to
Browdy and Galloway that the surface geometry of a
black hole at a given time must be a two-sphere if no
new null generators enter the horizon at later times [9].
The theorem of Jacobson and Venkataramani limits the
time for which a toroidal black hole can persist, albeit in
a highly technical way.

It is the resolution of the potential paradox, raised by
the discovery of toroidal black holes in the computational
simulation of the gravitational collapse of rotating mat-
ter [10], that has motivated our investigation. The com-
puter code is designed to evolve rotating axisymmetric
spacetimes in full general relativity [11]. The source of
the gravitational field in the simulations is a swarm of
collisionless matter particles. The code can follow the
collapse of a rotating collisionless cluster to a Kerr black
hole.

The code has been subjected to a number of tests to
assure that it is accurate. Among these tests are the
propagation of linearized gravitational waves of both po-
larizations, for which analytic solutions exist; maintain-
ing rotating equilibrium configurations in stable equilib-
rium for many dynamical timescales; and verifying that
the black holes that form from collapse settle down to
Kerr holes at late times. In addition, during the course
of numerical evolution, we compute a set of physical diag-
nostics to monitor the code’s reliability in the nonlinear
regime. We compute the Brill mass and angular momen-
tum of the spatial hypersurfaces and look for trapped
regions. The Brill mass, corrected for the loss of gravi-
tational radiation through the outer boundary, is a con-
served quantity. Since in axisymmetry gravitational ra-
diation carries no angular momentum, the total angular
momentum of the system is another conserved quantity.
We locate the apparent horizon during black hole for-
mation and probe its geometry. Once the evolution is
completed and the black hole settles down, we map out
the event horizon and ergoregion and probe their geome-
tries. Although we cannot prove mathematical theorems
by means of a numerical simulation, our tests give us con-
fidence that the results reported in Ref. [11] are correct.

The plan of this paper is as follows. In Sec. II we
present a simple flat space model of a horizon that has
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toroidal topology. This provides insight into the visual-
ization of the spacetime geometry of a toroidal horizon.
However, because the model has the property of struc-
tural stability, it also provides important clues for the case
of gravitational collapse. Indeed, in Sec. III we analyze
the spacetime geometry of the horizon formed in the com-
putational simulation of the collapse of a rotating toroid
of collisionless particles. The qualitative structure is in
agreement with the flat space model when the deforma-
tion induced by curvature is taken into account. Finally,
we show that our results are in complete accord with the
above black hole theorems.

II. THE HORIZON OF AN OBLATE SPHEROID

Given any two-dimensional surface of spherical topol-
ogy ¥ we can construct a model event horizon in flat
spacetime by considering J~(X), which is the boundary
of the spacetime points in the causal past of . It will
be generated by past-directed light rays emanating nor-
mal to ¥. In general, J~(X) consists of an inner and an
outer component, corresponding to the inward and out-
ward pointing normals to . Here we concentrate only
on the inner component. If ¥ were a “surface at infin-
ity,” there would be no outer component. A light ray L,
generating J~(X) continues backward in time unless it
“meets” another generator. This can happen either by
crossing another generator Lo that emanates from a sep-
arate point of X, or by focusing to a point along with a
neighboring set of generators (in the mathematical sense
of a vanishing Jacobi field). The corresponding crossover
points and caustic points are where J ~(X) originates, as
follows from the elementary properties of causal sets [2].
Furthermore, the crossover points will in general form a
spacelike two-dimensional surface. This is analogous to
the way that the null hyperplane z = ¢ intersects the null
hyperplane z = —t in the (z,y) plane (at t = 0). (We
take the velocity of light equal to unity.)

The case in which ¥ is an oblate spheroid is of par-
ticular relevance to the issue of toroidal horizons. As a
visualization aid, first consider the spatial picture of light
rays streaming inward from an initially oblate, spheroidal
wave front, as illustrated in Fig. 1. We have chosen the z
axis to be the rotational symmetry axis of the spheroid.
The figure is in the (z, z) plane but this supplies all the
information about the geometric optics because the wave
front is axially symmetric. Each pair of opposing points
at (+z,2) and (—=z, 2) corresponds to a circle of symme-
try in the (z,y) plane (except for points on the axis).
The figure is also reflection symmetric about z = 0, so
it is sufficient to indicate just the rays emanating (back-
ward in time) from the z > 0 half of the spheroid. These
rays all intersect rays emanating from the z < 0 half at
the crossover points X, at z = 0, before they caustic.
The limiting rays, traveling along the = axis, focus at the
boundary C of the crossover X. The caustics of the rays
starting with z > 0 are also shown, but these are en-
countered after crossing X so they are in the past of the
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FIG. 1. Spatial picture of the cusps C and
x C’, connected by fold lines, for the rays em-

horizon associated with this wave front. So the horizon
is generated by rays that begin at X and its boundary
C. Taking into account the y dependence, X is a disc
bounded by a caustic ring C.

Now consider the corresponding spacetime picture.
Since X is a crossover surface it must be spacelike. How-
ever, as it approaches the caustic ring C an interesting
feature develops. The distance from the spheroidal wave
front to X, measured along the rays, is longest at the cen-
ter and decreases toward the edge at C. Consequently,
the rays traced backward in time from the wave front
reach X at different times. Figure 2 gives a spacetime
version of Fig. 1. The following analysis shows that X
becomes asymptotically lightlike at C.

In order to describe the mathematical details underly-
ing the geometrical optics, let the profile of a spheroidal
wave front ¥ in the (z,z) plane be given in terms of a
parameter A by the ellipse

zg(A) = [xo(A), z0(A)] = [sin A, a cos A] . (1)

We are concerned with the oblate case for which a < 1.

anating from a spheroidal wave front . Op-
posing rays intersect in the (thicker shaded)
crossover line X.

The past-directed light rays traveling normally inward to
the wavefront have paths z*(s, A) = xg(A) + sN®, where
s is the distance measured along the rays and

N® = —(sin X, 0™ cos A)/(sin® A + a2 cos? A) /2 (2)

is the unit normal.

The Jacobi field J® = dx*/0A represents a vector field
connecting neighboring rays. Caustics occur when the
Jacobi field either vanishes or becomes tangent to the
rays. Thus the necessary and sufficient condition for a
caustic is that J*N? — J*N® = 0, which leads to

s =a?(sin? A + a2 cos? \)¥/2 . 3)

This equation describes how the path length from the
wave front to the caustic varies from a? (for a ray tangent
to the equator) to 1/a (for a ray along the z axis). On the
other hand, the path length from the wave front to the
crossover point with coordinates (z,0) in the equatorial
plane is given by

FIG. 2. Spacetime picture of the horizon
formed by the wave front of Fig. 1.
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s =a%(sin? A + a2 cos? A\)Y/2 = q[1 + 22/(a® — 1)]'/2,
(4)

which varies from a? (for a ray tangent to the equator) to
a (for a ray along the z axis). Thus all but the equatorial
rays cross the equatorial plane between a2 — 1 < = <
1 — a? before they focus.

With the velocity of light set to unity, s gives the time
at which the crossover points are reached, assuming that
they all leave the initial wave front at ¢t = 0. Thus, from a
spacetime point of view, (4) implies that X is the surface
of revolution generated by the spacetime curve

t=—a[l +22/(a® - 1)|V2. (5)
Therefore, along X,
dt

dt azx
dr  (1-a2)\/1+22/(a2-1)
asin A
= ) (6)
\/cos2 A+ a2?sin? A

so that dt/dz — 1 at the end points of X.

Thus X becomes asymptotically lightlike as it ap-
proaches C, as illustrated in Fig. 2. The light rays origi-
nating on the surface X and extending to the wave front
Y. generate a three-dimensional surface H in a rough anal-
ogy to how an event horizon is formed in gravitational
collapse. However, Fig. 2 is a flat spacetime picture that
does not include the gravitational effect of curvature. In
a precise analogy with an event horizon, ¥ should rep-
resent the final equilibrium state reached after the black
hole has lost its “hair” and has stopped growing. In the
rotating case this is expected to result in a final Kerr
black hole with intrinsically oblate surface geometry. So,

6985

to make our analogy relevant to a rotating black hole,
we should regard ¥ as a late time cross section of the
horizon in a curved spacetime.

Spacetime curvature will deform the features shown
in Fig. 2 by focusing the light rays traced back from X.
However, the points C are cusps, which are structurally
stable caustics. In fact, cusps and their fold lines (the
caustic curves CC’ depicted in Fig. 1) are the unique
stable caustics that occur in the presence of rotational
symmetry [12]. Structural stability implies that, in a
neighborhood of a cusp, the qualitative features of Fig. 2
should be unaffected by perturbations, whether intro-
duced by the gravitational bending of light or by numer-
ical error. A similar situation arises in the event horizon
produced in the head-on merger of two black holes, where
rotational symmetry also gives rise to cusps [13]. In that
case, focusing effects cause the crossover line (analogous
to X in Fig. 2) to develop an upward bulge that results
in the classic “pair of pants” picture of the merger [3,4].

Introduction of this upward bulge into Fig. 2 leads to
the model of an event horizon shown in Fig. 3, which oth-
erwise has the same qualitative features. If we take into
account the rotational symmetry suppressed in the fig-
ure, the light rays generating the horizon emerge from a
spacelike surface X that becomes asymptotically lightlike
at the ring of cusps C forming its boundary. The horizon
generators emerge from the base X in pairs, heading in
the +2z directions. As we approach the caustic C at the
edge of X, the angle formed by each pair of generators
closes up and gives the single generator emanating from
that point of C.

It is now apparent how this model gives rise to toroidal
black holes. Figure 3 shows a time slice of the hori-
zon formed by its intersection with a (three-dimensional)
Cauchy hypersurface T7. It consists of two disjoint cir-
cles that form a torus, after factoring in the circles of

T

FIG. 3. The event horizon obtained on de-

forming Fig. 2 by the tidal effect of matter
collapsing to a black hole.

N/ : N
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rotational symmetry suppressed in the figure. [Pairs of
points with coordinates (¢, £z, z) in the figure lie on the
same circle of symmetry.] Note that similar toroidal cross
sections of H can be found in the flat space case of Fig. 2,
although this would require a curved time slice. Also note
that a late time slice of the horizon, e.g., T in Fig. 3,
gives rise to a spherical black hole.

III. THE GEOMETRY OF A TEMPORARILY
TOROIDAL HORIZON

We have used our numerical relativity code to sim-
ulate the collapse of rotating toroidal configurations of
collisionless particles to Kerr black holes. We have found
an interesting case in which the black hole event horizon
initially develops as a toroid [11,10]. The initial configu-
ration is based on a solution for a rotating toroidal cluster
in stable equilibrium. The cluster has an outer circum-
ferential radius of R,/M = 4.5. To get it to collapse
we reduce the angular momentum of each particle by a
factor of 0.5, producing a nonequilibrium cluster with to-
tal angular momentum J/M? = 0.70. Spatial snapshots
of the collapsing configuration, together with the loca-
tion of the apparent and event horizons, are plotted in
Figs. 6 and 7 of [10]. The toroidal horizon first forms
entirely within the vacuum, between the origin and the
inner edge of the toroidal cluster. It then expands to fill
up the doughnut hole, becoming topologically spherical
approximately when the outer edge of the horizon reaches
the inner edge of the matter toroid.

The event horizon is found after the simulation is com-
plete by propagating light rays backward in time from
the surface of the final equilibrium black hole [10,14].
The spacetime reconstruction of the horizon is depicted
in Figs. 4 and 5. They show some of the generating rays

FIG. 4. Computational construction of the spacetime dia-
gram for the collapse of the rotating toroid described in Sec.
III. The time axis is vertical and the horizontal plane inter-
secting the axis is a spatial time slice. World lines of some
of the light rays generating the horizon (shaded region) are
shown. Clearly seen are the crossover points at which these
light rays on the left enter the horizon, and the cusp formed
by rays on the right at which the line of crossovers terminates.
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superimposed on the event horizon. We see that, tracing
the rays backward in time, some of them leave the hori-
zon at crossovers. For these rays the crossovers are the
end points of the null generators of the horizon. The line
of crossovers forms a spacelike curve. The figure is quite
similar to the qualitative sketch shown in Fig. 3, and the
similarity of the two figures gives us confidence that we
understand the topological evolution of the horizon.

IV. CONCLUSION

The computational simulation of a rotating black hole
and its horizon structure, which we have presented here,
is in complete accord with the various theorems regard-
ing black hole topology. At times when the surface of
the rotating black hole has a manifold structure, its sur-
face topology is either toroidal or spherical, in agreement
with the work of Gannon [6]. However, Gannon’s theo-
rem assumes a smooth black hole and it is unclear how
it could be generalized to apply to the formation stage
when new generators are being added. In our computa-
tional model, the toroidal black hole has a nonsmooth
inner rim where new generators emerge from crossover
points on X (as well as a nonsmooth outer rim at the
very early times before the caustic). Also, at the excep-
tional time at which the toroid pinches off, just prior to
becoming spherical, the surface of the black hole is not
even a (Hausdorff) manifold.

At late times, when equilibrium has been reached,
the topology is spherical, in accord with the results of
Hawking [5]. At early times, the topology defined by
the Cauchy slicing is temporarily toroidal. However, the
spacetime curve traced out by a point on the inner rim
of the torus is spacelike, lying in X. Thus the “hole” in
the torus closes up faster than the speed of light. Conse-
quently, no causal signal can link through the torus and
escape back to the exterior spacetime region to provide a
violation of topological censorship, although the full im-
plications that the theorem of Jacobson and Venkatara-
mani [8] bears on this model deserve further study. Fi-
nally, at intermediate times to the future of X, when the

4 e

FIG. 5. Zooming in on the base of the horizon in Fig. 4,
showing the crossovers and cusp.
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horizon has its full complement of generators, the rotat-
ing black hole has spherical topology, in agreement with
the theorems of Browdy and Galloway [9].
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FIG. 4. Computational construction of the spacetime dia-
gram for the collapse of the rotating toroid described in Sec.
III. The time axis is vertical and the horizontal plane inter-
secting the axis is a spatial time slice. World lines of some
of the light rays generating the horizon (shaded region) are
shown. Clearly seen are the crossover points at which these
light rays on the left enter the horizon, and the cusp formed
by rays on the right at which the line of crossovers terminates.



FIG. 5. Zooming in on the base of the horizon in Fig. 4,
showing the crossovers and cusp.



