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Square-root actions, metric signature, and the path integral of quantum gravity
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We consider quantization of the Baierlein-Sharp-Wheeler form of the gravitational action, in
which the lapse function is determined from the Hamiltonian constraint. This action has a square
root form, analogous to the actions of the relativistic particle and Nambu string. We argue that
path-integral quantization of the gravitational action should be based on a path integrand exp[+i S]
rather than the familiar Feynman expression exp[iS], and that unitarity requires integration over
manifolds of both Euclidean and Lorentzian signature. We discuss the relation of this path integral
to our previous considerations regarding the problem of time, and extend our approach to include
fermions.

PACS number(s): 04.60.Ds, 04.60.Gw

I. INTRODUCTION and the action of the Nambu string

Square-root Lagrangians are a feature of many fieM
theories which are invariant under a time reparametriza-
tion. The action of a relativistic particle

Sp = —I d'T —g~~O~XI" 0~x

~N = T dg d7- |9~g 2 g~g 2 g~~ g~~ 2 (2)

are familiar examples. Somewhat less familiar is the
Baierlein-Sharp-Wheeler (BSW) form of the gravita-
tional action

Sasw = —— d * ~gsBG'&" (B,g,, —2N(;.,))(B,g„—2%i„. l),
1 4

exp[a i S] rather than exp[iS] . (4)
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which is obtained &om the standard Arnowitt-Deser-
Misner (ADM) action, as reviewed below, by solving the
Hamiltonian constraint. It is well known that for a rel-
ativistic particle moving in an arbitrary curved back-
ground, and for gravity in general, the corresponding
quantum theory lacks a well-defined. probability measure
and time-evolution parameter [1—3].

In this article we will propose a path-integral formula-
tion of these "square-root" theories which is something of
a departure &om the standard Feynman expression. For
one thing, the integrand of our path integral will involve
an unconventional phase:

Second, we will regularize the integration measure so as
to uncover what we believe to be the true time-evolution
parameter of the quantum theory. Third, we will find
it necessary to sum over path segments of both real
and imaginary proper time, i.e., over timelike and space-
like trajectories in the case of the relativistic particle;
Lorentzian and Euclidean signature manifolds in the case
of gravity. It will be shown that the combination of the
regularization, the unconventional phase, and the inclu-
sion of imaginary proper-time segments leads to a unitary
evolution of states which corresponds, via the Ehrenfest
principle, to the standard classical dynamics.

In two previous articles [4,5] we have advo-
cated a transfer-matrix approach to quantizing time
reparametrization-invariant theories. The present article
essentially presents the "real-time" version of our former
"Euclidean" approach. Our previous work did not in-
clude fermion fields, which involve certain complications
in our formulation. In this paper, we will show how the
fermionic fields are also incorporated into our approach.
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II. MINISUPERSPACE ACTIONS

We begin by considering simple quantum-mechanical
theories with a time-reparametrization invariance, i.e.,
the "minisuperspace" models of the form

S = dt p Otq —¹H,q

The measure p,, is chosen so that @(x,t+e) ~ g(x, t) as
~ —+ 0. With this rule, one Gnds

U, = exp[—iHe/5]+ O(e ),
where H (the Hamiltonian) is an e-independent Hermi-
tian operator. Taking the e —+ 0 limit, the evolution
operator for Gnite times,

OII NGabp

Op m
b

- pa = —Gabtq (6)

and then solving the Hamiltonian constraint for the lapse
function

:-N=

G s(q)p ps+ mV(q)

2¹G~sOdq (9&q + mV(q)

Gab bBtqabtqb .
2V (7)

H = G s(q)p ps + mV(q),

where it is assumed that the supermetric G has
Lorentzian signature (—+++ .+). The "square-root"
form of the action is obtained by solving for p in terms
of the time derivatives of the (q ), i.e.,

b

U~ = 1 (U)
= exp[ —iHAt/h],

is a unitary operator. Straightforward imitation of this
construction does not work in the case of the square-root
theories, due to the time-reparametrization invariance.
Because of this invariance, the action of a classical tra-
jectory between an initial point q and an end point q'
is independent of the time parameters t and t + e which
label those configurations: i.e. ,

S[(q t + e)'(q t)] = ~[q ql .

The resulting operator U, defined from (9) would there-
fore be e independent, and also in general nonunitary.

Let us see if it is possible to recover an evolution oper-
ator of the form (10) for the square-root actions, by mak-
ing a slight change to the construction shown in Eq. (9).
The modification is to multiply the action S[q', q] by an
e-dependent complex constant c„

Substituting (6) and (7) into the minisuperspace action
then gives the square-root form

S = —m dt —2VG be q Ot qb .

d(p' +e) = f d d p, exp["d(p', p)[d(p, e)

= U, @(q', z), (»)

For V = 2, this is simply the action for a relativistic
particle of mass m, moving in a background manifold
with metric G b.

In nonrelativistic quantum mechanics, a path integral
is constructed out of elementary integrals which evolve
the wave function by a small time interval e: i.e. ,

t)i(x', t+e) = f dpx p, exp [ed[(e', t+ e); (e, t)]/tt]dt(x, t)

= U,@(x',t), (9)

which is to be chosen such that U, is a unitary operator
(up to order c) of the form

U, = exp[—ice/h]+ O(e ), (14)

where K is an e-independent operator, Hermitian in
the measure p, Begin, for simplicity, with a "minisu-
perspace" action having V =

2 and G b ——g b.. i.e.,
the action of a relativistic particle in Hat D-dimensional
Minkowski space. Let

where S[(x', t+e); (x, t)] is the action of a classical trajec-
tory between the points x at time t and x' at time t + e. so that

t)i(x', e+e) = f d xtt, exp[—emp —tt eEx Exe)t)i(x, x) .

Comparing this expression to the corresponding expression for a &ee nonrelativistic particle,

b .Lx'Ax~
d(x', e+e) = f d xp, exp ei ' )( t),tix (17)

motivates us to try
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(18)

with the understanding that the "time" step e now has units of action, and that the branch of the square root is
chosen so that the exponent in (16) has a negative real part. This choice does not quite complete the definition of
U„as there is still a question of the range of the integral over x. Should this integral range over all possible x, or
should it be restricted so that the path-segment Lx is timelike? To resolve this issue, we will compute separately
the contributions &om timelike and spacelike intervals.

Following the usual steps leading from the path integral to the Schrodinger equation, expand g(z, r) in a Taylor
series around x'.

Bg „1 8@
1/)(z, '7 + E) = d x p, exp[ mg ——

77& Az 6 x+/ v xE5]—tP(z''r) + Az + — Az Az +Ox'~ 2 Bx'~Ox'"

= U,g(z', t) .

In order that

limU, =1,
e—+0

the measure must be chosen to be

p, = d x exp —m —g„„LxI"Lx —ieh

Changing variables Lx —+ x, we then have

U', = 1+ — d z pz"z" exp[ mQ rl„„—zl'z" /—Q i eh] 8„0„—+
2

(22)

Denote x" = (t, x) and r2 = x x. Then, on grounds of relativistic covariance,

1 r2g""
U, = 1+ — d x p, exp( mQ r—I„„z&z—"/Q ieh] 8„—8„+

W

1 Ig
2(D —1) I~

where 02 = g""B„B„,and

I~ = d x exp —m —g„„xI"x" —i&5

(24)

I~ = d x r exp —m —g„„x&x" —ieh

We Grst evaluate I~, the second integral I~ will follow easily. Starting with

I~ ——0. dt dr r exp —m t —r2 —iE'A

where

divide the integral over t into two contributions, one &om timelike and one &om spacelike paths:

OO OO r
I~ = cr dr r dt exp[ —mgt —r /g —ieh] + dt exp[ —mar —t2/gieh]

0 v* 0
(27)

where the branches of the square roots g—ieh and pied are taken with positive real parts, to ensure convergence of
the integrals. Next
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I~ = (r dr r dt exp[ —mgt2 —r2/v i—eh] dy 2yh[y —(t —r )]
0 0

OO

dt exp[—mgr2 —t2/V'ieh] dy 2yh[y —(r —t )]
0 0

= 0 dT TD-' dy
y .

g ye mxa/Q— KaS +—'—mxa/Qtaho (r y)
0 0 Qy2 + r2 Qr2 —y2

= (r dr r (Fx(r) + F2(r) j,
0

(28)

where

F, (r) —= dy
" e- &/&

gy2 + r2

F („) d„y —my/&ias

o gr' —y

It is easy to see that asyxnptotically, as r ~ oo, both Fi(r) and F2(r) go like 1/r But th. at ixnplies

timelike paths contribution = o drr Fi(r) is divergent,
0

spacelike paths contribution = 0 drr F2(r) is divergent .
0

This means that if we were to restrict the paths to only
timelike, or oxily spacelike paths, then I~ (and Ixx) would
be hopelessly divergent, and the evolution operator U,
would be ill defined. . The remarkable thing, which we
now show, is that the sum of the two contributions is
actually 6nite.

Let us deform the contour of y integration for the in-
tegral defining Fi(r) in Eq. (29). As it stands, it runs
along the real axis &om 0 to oo. Deform it to run along
the imaginary axis &om 0 to —ir, and then parallel to the
real axis from —iT to oo. There are no poles or branch
cuts in the way, so the deformation is permissible. Then

(31)

Change variables y + —iy:

COO

Fi + F2 ——— dy
r

—~y/ Pkne
T2 y2

Fi+ F2 ——i dy
—~y/&i~ae

2 T2

(mrs'
EV'ie&)

Inserting this result into (28), one finds

The contour of this integral runs parallel to the (positive)
imaginary axis. Now rotate the contour by 90 degrees,
so that it runs along the positive real axis. Again, there
are no poles or branch cuts in the way, and the integral is
convergent along any contour intermediate between the
initial contour, and the 90 degree rotated contour. This
gives

t" a, -—my/Qi ehe
T2 y2

r —m x(/ +ie7i

gr2 y2

(32)

I~ = io drr 'Kx
~

(mr )
o (y isa)

It is not hard to see that it is the 6rst integral which
causes the divergence of the T integration. Adding to-
gether Fi and F2, observe that the first integral in (32)
exactly cancels F2, leaving an expression which decays
exponentially as T increases:

It is trivial to repeat all the above steps for the I~ inte-
gral, and the result is
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p ( iehj

v".hl &D+1 ) (D —1= 'io'2
m

~ g 2 j ( 2 j
(36)

Finally, inserting (35) and (36) into the expression for
the evolution operator, Eq. (23), we obtain

U, = 1+ ieh g""8„8„+O(e )
D+1 „„
2m2

= exp[—ice/h]+ O(e ), (37)

where

h2
(D + 1)g""8„8„.

(Vilqlfa) = f& *~4;(*,~)Q4, ~(*,~) .

The evolution operator

U~ = l (U, )

The operator JB is e independent, and clearly Hermitian
for inner products:

g b =2VG b. (41)

For Aq small

At
S[q', q] = —m dt's g~bOqq —Btq

0

= —mQ —g bAq Aqb .

is therefore unitary, as in the usual path-integral ap-
proach for theories without a time-reparametrization in-
variance.

It should be emphasized that the unitarity of our pro-
posed evolution operator depends both on the choice of
complex constant c, = 1/g —ieh, and also on summation
over both timelike and spacelike path segments. A glance
at Eqs. (35) and (36) shows that the crucial factor of ie in
(37) could only be obtained if a I/i((' —ie factor inultiplies
the action in (13). F(irthermore, the finiteness of the re-
sult depends on keeping contributions to the integrand
Rom both timelike and spacelike path segments; the in-
tegral over either contribution separately is divergent.

It is easy to generalize &om the relativistic particle
action to any minisuperspace square-root action of the
form (8). First define the modified supermetric

= exp[ —i%Br/h] (40) The measure is

dD
p,, i(q') = (~eh) lim exp[ —mg —g bAq 4q /V' —i&h] .

(~eh) ~ (43)

Now introduce Riemann normal coordinates $ around the point q', which transforms the modified supermetric into
the Minkowski metric g b = iI b at the point q' (( = 0). Then

v, '(q') = d ( det exp[ —mg —q b( ( /J —ieh]
BLq
g(b

v'I g(q')
I

(44)

Inserting this measure, and c, = I/g —ieh, into Eq. (13), we have

g(q', ~+ e) = — d aqv lg(q'+ &q)l exp[ —mI —g b&q &q /v' —i~h]0(q'+ &q, ~)
A

1 ~ ( 1 bb( ( +
l
exp[ mQ pb( (b/V' —i~h]— —

I~ ( 6 j
x q'~ + + — „"+O
1+ —(9 ——R. + O(e ) @[q'((),~]

1 Igy 1 2 1 2

D —1IA 2 6

D+1 b 0 . D+1
1 + ieh iI b

—ieh R. vp((, ~), (45)

where R, is the curvature scalar formed &om the metric g b. Transforming back from Riemann normal coordinates,
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we have

~ D+1 1 0 b 0 . D+1
@(q ~+ e) = 1+i'~ 2 V lglg b

i~~ ~ @(q ~)2m2
~g~ Bq Bqb 6m2

= [exp[—ice/5] + O(e )]Q(q, ~)
= U,g(q, 7.) . (46)

As in the relativistic particle case, exp[—ice/5] is a uni-
tary operator, where

(47)

is obviously Hermitian in the measure p,, of Eq. (44).
Taking the e ~ 0 limit, the wave function @(q,w) satisfies
a Schrodinger equation

iM @(q,~) = K@(q,~) . (48)

(49)K,i[q, p ] = lim K q, ih —+p-
s-+0 gq~

which gives

The Schrodinger evolution equations (47) and (48) for
time reparametrization invariant theories have been ob-
tained by us previously, in Refs. [4] and [5], &om a trans-
fer matrix approach. The transfer matrix involves inte-
gration over a purely real integrand, but in our case the
cost was not simply a Wick rotation of the evolution pa-
rameter v, but also a rather unnatural rotation of signa-
ture of the modified supermetric g b from Lorentzian to
Euclidean. This rotation then had to be undone in postu-
lating the Schrodinger equation (48). We have now seen
Chat this supermetric signature rotation can be avoided,
and unitary Schrodinger evolution is derived directly. In
Refs. [4] and [5] the correspondence to his evolution to
the usual classical dynamics was also discussed. In the
interest of completeness we will brieBy review this corre-
spondence here, and refer the reader to the cited refer-
ences for further details.

The classical quantity K,I corresponding to the opera-
tor X is obtained by replacing derivatives with c-number
momenta

1 = Vfm/—dt's 2VG rB,q —B,q~ . (54)

Since E' only appears as a parameter multiplying the ac-
tion, the fact that it drops out of the Euler-Lagrange
equations is obvious. The same can be said for the
mass of a relativistic particle in &ee fall, the tension of
the Nambu string, or Newton's constant in pure grav-
ity. None of these parameters appears in the equations
of motion at the classical level.

Because of the classical equivalence of the Poisson
bracket equations (51) and (52), it is clear that the
Schrodinger evolution (48) will obey an appropriate
Ehrenfest principle, with certain quantum corrections
due to the measure. The general solution g(q, w) can
be expanded in terms of stationary states:

0(q, ~) = ):A(q)e' ~", (55)

where

(56)

This 7-independent equation can be rewritten in the form

h2 D+1 V-'V']gi~'
4m2 g]g] Bq grab

h~ D+1VR+ V Qs(q) = 0, (57)

a'p. pb+ ~smv .
2m E

The parameter 8 is classically irrelevant, in the sense
that it drops out of the Euler-Lagrange equations; the
square-root action corresponding to 'R~ is

gab
K i = (D+1) z

The Poisson brackets evolution equation

8 Q = (Q, K,i), K,i = (51)

is easily checked to be equivalent, up to a time
reparametrization, to the standard brackets

which is a Wheeler-DeWitt equation with a particular
choice of operator ordering and a (classically irrelevant)
parameter 8, which can be absorbed into a redefinition
of either m or h.

In the standard Dirac canonical quantization of ac-
tions of the form (5), the physical states must satisfy a
Wheeler-DeWitt equation of the form

BgQ = {Q,N'R ), 'R = 0, (52)
—h 0

'RP(q) = "G " + mV P(q)

where =0, (58)
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where the quotation marks indicate an operator-ordering
ambiguity. However, multiplying the action by an arbi-
trary constant ~Z converts this constraint to

all states satisfying

'R ps(q) = o (6o)
—h2 82"G " + ~tmV Q(q)

2m Z c)q o)q'

=0.
Because f is irrelevant at the classical level, there is no
overriding reason that it should be a fixed parameter at
the quantum level. In essence, our approach enlarges the
space of physical states as the Hilbert space spanned by

and it is this enlargement of the space of states which
enables us to obtain nonstationary states @(q,w). More-
over, our approach fixes the operator ordering, as seen in
Eq. (57), at least for the minisuperspace theories. Fur-
ther discussion of these points may be found in Ref. [5].

Returning to Eq. (13), the path integral for square-root
actions is now defined as the limit

Q(qf, vo+Av) = f Dq(TO & v ( 7p+ 2 7)e ' Q(qo, vp)

b 7./e —1

lim
e—+0

n=o

A~ je—1

d q„p, (q„) exp ) S[q +i, q ] @(qo,«)—ieh m=O

»m (U.) "@(e«) (61)

where Lw = wf —7o. We see that the time parameter
emerges &om a regularization of the path-integral mea-
sure: at fixed e, a regularized path between the initial
point qo and the final point qy consists of n„= b,v/e
path segments, each segment being a classical trajectory
between intermediate points q„and q +q. The evolution
parameter is therefore a measure of the number of inde-
pendent configurations (points) n„ in the path joining qo
to qf, multiplied by the regularization interval, i.e. ,

L~ = npe. (62)

III. THE BSW ACTION

As in the minisuperspace case, the square-root form of
the full gravitational action is derived &om the first-order

This is a quantum-mechanical time variable with no di-
rect connection to, e.g. , the proper time lapse. Nor is
it an "intrinsic" time variable; all dynamical degrees of
&eedom are treated on the same footing and none is sin-
gled out as an evolution variable. Our evolution param-
eter is here identified as proportional to the number of
"quantum steps" taken by the system in evolving &om
the initial to the final configuration. In this formulation
the Green's functions are transitive, and the evolution of
states is unitary.

d x[p*'O~g, , —NR —N, R'],

Z = ~'G;,~ip"p"' — ~g'a,
K

(63)

Gijkl—

2P;k
1

(9'(g~i + 9'ig~~ —9'~91 i)
2 g

where g;~ is the metric of a three-manifold and B is
the corresponding scalar curvature. The momentum is
related to the time derivative of the metric by

BR
Ogg,.~ = N

BI&
2 kl= 2v NG;~klan +¹,,~ + N~,-,

:- p' =
2N

G' "'(Ag) i
—2N(I;i)) .

Solving the Hamiltonian constraint for the lapse function

ADM action by solving for the lapse function. The ADM
action for pure gravity is

0 G' (c)tg;& —2N(;. ))(c)tg)ci —2N(), .~))
——~g R1 3

- 1/2
:.N = G""'(c)gg;, —2N(. ..))(c)gg. )) —2N(), .i))4~9 sB (65)
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and replacing the momenta in (63) by the expression (64), with lapse (65), gives the Baierlein-Sharp-Wheeler (BSW)
action [6]

1
~BSW =

K
~gs&G*&" (Btg,, —2N(;.,))(c),g„—2N(„. )) . (66)

Before quantizing, it is convenient to Gx the coordinate
system by choosing shift functions ¹

= 0. Then the cor-
responding supermomentum constraints bS/bK, = 'R' =
0 are to be imposed as operator constraints on the space
of physical states.

It is straightforward to extend the BSW action to in-
clude nongravitational bosonic 6elds. To compress in-
dices somewhat, we introduce the notation

(a = l. —6)++ ((~,~), i &~),
q (*) ~gV(x)

8= d x Ogq —N —N;

'R = r G p pb + ~gU,

where

1
~gU = ——~g R+ nongravitational contributions.

K

(69)

p"(x) ('=~)

G s(x) ++ G"" (x),

(67)

S = —— d x ~gUG sBt,q 8&qs .
1 4 (7o)

Setting the shift functions to zero and repeating the
above steps of solving for the lapse gives again a square-
root action

and the nongravitational fields are represented by q (x)
with indices a ) 6. It is convenient to rescale all non-
gravitational fields by an appropriate power of K so that
all 6elds, and all components of the supermetric, are di-
mensionless. The action is

The next step is to construct the evolution operator
U, for the BSW action in the path-integral approach,
following the procedure of the past section. The evolution
operator is de6ned by

0 [q'(x), ~ + ~] = b@
Dq(x)v(q)e "~ "" +[q'(x)]+ d'*I . I

&q (x)bq-(x) )

+- d'xd'u I. .. I
&q (x)&q'(~)+

= @(q', r) + [Tp+ Ti+ T2]+ O(e )
= U, 4'(q', ~),

where the T represent terms with n functional derivatives of 4 and one power of e, and

AS = —— d x ~gUG qAq Aqs,
1 3

&v = v —v".

In order to obtain U„we need to evaluate

(&q (xi) q'( 2)) = /&(&q)(y)o&v (Ti)Aq'(~*)

1x exp —— d x(~g)0 —(Q g)pAq Aqua/Q —ieh (73)
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where g s is the modified supermetric

1gs= UGi,
~g

(74)

tion operator, as long as the regions' volumes v„~ 0
in this limit. As we will see, this requirement is not
satisfied trivially or automatically. We take the naive
lattice-continuum correspondences to be

and ( )p indicates that the quantity in parentheses is
evaluated at q = q'.

Clearly, (Eqb, q) is highly singular quantity, and is only
well defined in the context of a regularization procedure.
In the absence of a nonperturbative regulator which pre-
serves the exact difFeomorphism invariance, we work with
a naive lattice regulator in which the continuous degrees
of &eedom labeled by x are replaced by a discrete set,
labeled by n, associated with regions of volume v„. We
have in mind, e.g. , a Regge-style discretization of a con-
tinuous four-manifold into a fixed number N„of simplices
of varying volume. As N„~ oo, the choice of v is of
course required to be irrelevant in computing the evolu-

Aq (x) ++ Aq (n),
Np

d zing++ ) v„,
n=l

( b l Qg(n) (9

bq (x) (b'q (n)) ~ v„(9q (n)
'

Dqm d q(n) .

With such a discretization, we have

(75)

(Aq (n)Aq (m)) = f ej, q(q')pDq (n)Dq (m)exp ——) vev/ g,e&q (Ie)dqe(k—)/V' v'eq— (76)

The supermetric G s for the discretized degrees of freedom (q (n)) still has Lorentzian signature, and we can follow
the steps of the past section in integrating over the q at each n. The result is

(Aq (n)b.q (m)) = isa(D+ I)K2g s ,b— (77)

and we find for the T2 term

D+1
T2 ——zeh"2 K

D+1= Z6A K"2
D+1,= xeh K"2

1 (9

v„' Bq (n)o)qs(n)

1 g 1 |9.„/g —G'—
U v2 Bq (n)Bqs(n)

1 (,
)' b'

& ( b

~gU (bq (n)) ~ (bqs(qn)) ~
(78)

T2 ——ieh tc d x U G " 4 (wrong)
2 bqabqb

There is, however, no such v weighting factor in the
sum, which means that the contribution of each term at
each position n

(, bq ( ) ) &bq'( ) ) (80)

is weighted equally, regardless of the cell or simplex vol-
ume v . As a consequence, even in the v ~ 0 limit,

The term in braces has a simple continuum limit and, if
this term were weighted by a volume factor v, then the
continuum limit would be simply

the final answer for the state evolution would seem to be
depend on the distribution of volumes (v ).

Such regularization dependence never arises in ordi-
nary quantum Geld theory. There may be other regu-
larization issues, such as renormalization and anomalies,
but certainly one does not encounter this kind of depen-
dence on the distribution of cell volumes in computing
the naive continuum limit of the Hamiltonian operator.
Since the problem does not arise in ordinary quantum
Geld theory, why does it come up here'? The reason, of
course, can be traced back to the square-root form of the
action, which gives a factor of 1/v2, rather than a fac-
tor of 1/v, in the correlator (77). The additional power
of 1/v„ is the source of the (apparent) difBculty. There
is only one way out, if the evolution operator is not to
depend on the (v j distribution: we must impose a con-
straint on the physical states 4 such that the term (80)
is independent of the discretized position label n, at least
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in the e ~ 0 limit. In that case, we have

(D+ l)Np 1
T2 ——i~6

h ] t'xK'G'I
& ( )

I I &b( )
@ (»y~).

(s1)

2

ih K2G b, 4=8 4 (all+) .
~gU hq hqb

(82)

Expanding

The other terms TO and T~ are operator-ordering contri-
butions which, in the absence of an exact difFeomorphism-
invariant regulator, will not be considered further here.
Now absorbing the factor 2 (D+ 1)N& into a redefinition
of e, and taking the continuum limit, we arrive at

ibad. C = 1
Kf dsx'~gNU

h2
x d'xNG '

I

—h2
hq hqb)

m~

h2
dx —hNKG + N;R'

$qahqb

which are needed to compensate the gauge choice N, = 0.
Thus each stationary state 4g satis6es the usual con-
straint algebra of general relativity, with a rescaled value
of Planck's constant. The Hilbert space of all physical
states is spanned by the stationary states, with all pos-
sible values of Z. Finally, multiplying both sides of (82)
by N~gU, where N is an arbitrary function, integrating
over space, and applying the supermomentum constraint
(86), we obtain the equation of motion

@(q,7.) = ) age' ~"4g(q), (»)
where

(87)

Eq. (82) requires that for each stationary state 1 - b2

mp f d x —hNr G +N'R'
hqahqb

(ss)

K2 h2
W. 4e = —h —G + ~gU) Ce = 0,

(84)

and

N(z) —= mp
N(x)

f dsx'~gNU(q) ' (89)

which is simply the Wheeler-DeWitt equation (up to
operator-ordering contributions), with an effective value
of Planck's constant rescaled by

(85)

R'4g ——0, (s6)

Moreover, the Wheeler-DeWitt equation is consistent
with, and in fact implies (via the Moncrief-Teitelboim
interconnection theorem [7]), the supermomentum con-
straints

with m~ an arbitrary parameter of dimension of mass.
The evolution equation (87) was obtained in Ref. [5] by

a transfer matrix approach, and shown to correspond to
the usual classical evolution via the Ehrenfest principle.
Here we have instead used the path integral to obtain
a unitary evolution operator, as in the real-time Feyn-
man approach, and avoided the signature rotation of the
supermetric which was required in deriving the trans-
fer matrix. The main point of this section is that, in
performing the "real-time" path integration of the BSW
action

0'(qf(e), co + De] = fDq(e, e)e" ~e~ ~hLe(qe(e), ee]

A~/e —1

lim
e—+0

n=0

Av/e —1

Dq. (*)I.[q-] exp . ) ~[an+1(&) q-(&)] @[qo(&) ~o]
m=1

= lim (U, ) ~'4'[qg(x), ~o]

i&A~/b@
[ ( ) ]— (90)
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it is necessary, as in the minisuperspace case, to integrate
over al/possible paths, including those for which the lapse
function

1
- X/2

N(x) = —, G.,a, q O, q'
4K2 gU

(91)

i (D+ I
d4&f(p) exp --

I

p'~+ p.*"
itx(2m2 " )
(92)

is imaginary. Real-valued lapse functions correspond to
Lorentzian four-manifolds, imaginary values correspond
to Euclidean signature. If the paths are restricted to
real N(x) only, then we find that due to the Lorentzian
signature of the superxnetric, the integrals in Eq. (76) are
singular despite the regularization.

The conclusion is that in order to obtain a unitary
evolution of states, we are required to sum over four-
manifolds of both Lorentzian and Euclidean signature,
and in general over manifolds which may be Lorentzian in
some regions, and Euclidean in others. This raises the ob-
vious question of why spacetime seems to have Lorentzian
signature, rather than Euclidean or mixed signature.

The question "why is spacetime Lorentzian?" can be
raised already at the level of classical general relativity.
Einstein's equations themselves do not specify a choice of
metric signature; there are Lorentzian solutions to these
equations, and there are Riemannian solutions. Recently,
solutions to the Einstein equations in which part of the
manifold is Riemannian (Euclidean signature) and the
rest is Lorentzian have been studied [13]; it is conceiv-
able that solutions of this kind are relevant to the very
early Universe. In any case, the signature of a manifold
solving the Einstein equations is determined in general
from initial conditions (g;~, p ) satisfying the appropri-
ate constraints. A given initial three-manifold may trace
out either a Lorentzian or Riemannian four-manifold, de-
pending on the initial choice of conjugate momenta.

The dependence of lapse on initial conditions applies
also to the quantum theory. The general solution of the
evolution equation (48) for the "relativistic particle" ex-
ample, with K given in Eq. (38), is

data. Thus, despite the fact that the path integral sums
over Lorentzian and Euclidean manifolds, the probability
density can still be sharply peaked at one or the other
signature.

Obviously these remarks do not answer the question
"why is spacetime Lorentzian?" but only replace it with
another question about initial conditions. For an attempt
to explain the preference for Lorentzian signature (in the
context of non-time-parametrized theories) from an anal-
ysis of an effective "signature potential, " see Ref. [8].

IV. QUANTUM THEORY
IN CURVED SPACETIME

Associated with the problem of time in quantum grav-
ity is a "problem of state. " Let us return, for a mo-
ment, to the standard formulation of canonical quantum
gravity, which in our language is a restriction to a single
value of E', and let H be the Wheeler-DeWitt Hamilto-
nian. Suppose a physical state 4 is an eigenstate of an
observable Q; this means that Q@ must also be a physical
state. But then

H(Q4) = [H, Q]4 =0 (94)

4[q, 7.
] = ) c[Z, n]4e [q]e' (95)

which is not true, in general, unless [H, Q] vanishes
weakly. It is then problematic to construct physical
states which are approximate eigenstates of, e.g. , three-
geometry, or the position of the hands of a clock.

In this section we show how to construct physical states
which are sharply peaked around a given three-geometry
and extrinsic curvature. Treating the metric degrees of
&eedom semiclassically, the dynamics of the other de-
grees of &eedom approximates the standard quantum
theory on a curved background. Of course, the WKB
treatment can be extended to any other degrees of &ee-
dom (such as the hands of a clock) which behave more
or less classically.

We recall that our path integral leads, in the end, to
the following solution for the evolution of physical states:

It is easy to see that

D+1(*")= (*")o+, (&")~

where

(96)

(recall that w has units of action). So long as f(p) = 0
for p ) 0, the expectation value of position follows
a timelike path. We would expect the same situation
in quantum gravity, for the same reason, namely, the
Ehrenfest principle. If the initial "wave function of the
Universe" @[q (z), vo] has expectation values which are
peaked around some (equivalence class of) configurations
and momenta (q, p)0, then the wave function tends to
remain peaked in the neighborhood of a classical man-
ifold which solves the Einstein equations for this initial

and where the subscript o. is meant to distinguish be-
tween different solutions of (96). As discussed above,
Eq. (96) is a one-parameter (8) class of Wheeler-DeWitt
equations

rG s+~gU —4—s =0, (97)

each of which can be treated by WKB methods. To get
the quantum-theory-in-curved-spacetime limit, we follow
the approach of Banks [9], treating the metric sexniclas-
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b 1
v. G—;,zi + —~g)Z +ZC )Oz =0,

g'& hg.at

(98)

where 'Rs is the Hamiltonian density for the nongravita-
tional fields, denoted P. We then make the WKB ansatz

@s.g = e» l~~~S[g g]/~'~]~vv[g]&'(&l (gg)

where S[g, g] is Hamilton s principal function (the ac-
tion of a four-manifold solving the Einstein equations,
bounded by the three manifolds with metric y,~ and g;~);
it satisfies the Einstein-Hamilton- Jacobi equation in both
arguments

sically, and expanding in powers of K2 (back reaction of
matter on metric will be ignored; it can presumably be
dealt with following the approach of Ref. [10]). Thus,
write (96) in the forin

l
exp [i~ES[g, y]/r. 'h] l2 = 1, (104)

has no dependence on g,~ at all. The best one can do
in the standard formulation (that is, using only a single
value of 8) is to superimpose WKB solutions

However, the semiclassical approach to recovering or-
dinary quantum field theory, as outlined above, is sub-
ject to the following objection: Although the part of the
wave function involving the nongravitational fields obeys
a Tomonaga-Schwinger equation, the metric g;~, on which
the "many-fingered" time parameter T(x; g, g) depends,
is still a dynamical degree of &eedom, and there is no
physical state satisfying the Wheeler-DeWitt equation
which has a probability distribution peaked at a partic-
ular three-geometry g;z, i.e., the wave function is not
peaked on any particular time slice of a four-manifold.
In fact, the squared-modulus of the leading term in the
&KB approach, i.e.,

bS bSa;,.g) —~gR = o,
hg, , bgA,,)

(1oo)

Cs p [g] = Dy, ,F[g;,]kg g

y'2flyv] e» b(~~S[g y]/K'

bS hS
G;,1,)[y] —~yR[y] = 0 .

hg'& hg) t

The functional pvsv [g] is the Van-Vleck determinant,
while @s is a solution of the Tomonaga-Schwinger equa-
tion for quantum theory on a curved spacetime back-
ground

+0[y])/~]~vv&' (1o5)

I'h8)
( yv) ~y=,. (106)

where f[g] is a real functional peaked (modulo diffeo-
morphisms) at a particular three-geometry ge;~, and we
define

,a.
bT(x; g, g)

(1o1)

where

(1o2)

is the efFective value of Planck's constant, and T(x; g, g)
is a functional of the background spacetime defined by

b hS b
zgkl

h
(1o3)

Up to this point, we have simply repeated the analysis of
Ref. [9].

where 0[y] is the phase of the smearing functional F[g].
As shown many years ago by Gerlach [11],this superpo-
sition is still not peaked at any one three-geometry, but
rather on all three-geometries which are spacelike slices
of a certain four-manifold, satisfying Einstein s equations
with initial data (go,~, po j. Thus there is no physical
state, and no subspace of physical states, which would
correspond to an eigenstate of a nonstationary observ-
able (such as the three-geometry, or the fields on a given
three-geometry) .

It is at this point that we make use of the &eedom,
inherent in our formulation, to superimpose states of dif-
ferent 8, and write

ofg.„d,vl = f «&uz'fz, &I~vs „-(«+~«fzull~*) uvvCl&, T'(*, ;z g)I

=0"fd', Tf u, )I/v«z&ou&I &l~ vz&(«v+~~zfzullv') vvv,
= @"I& T(x g «)]~F"'"'[gv ~] (1o7)

where it is assumed that F[g, E] is sharply peaked around E = Zo, g;~ = go;~, and po is defined as in Eq. (106) above.
The g factor can be pulled outside the integral, on the grounds that its variation with 8 and g is inuch less than
that of the smearing function F[g, 8], and the exp[i ~PS/v ti] factor. Now consider the leading WKB term
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@(go,io)
[ dE Dy, ~ f [F,y] exp —(F~ + v SS[g, y]/K + g[y]) p~vv . (Ios)

This wave function will be peaked at configurations g;~
where the phase in the integrand is stationary, with re-
spect to small variations in g;~ and E' around go,~ and Eo,
respectively. In other words, the wave function is peaked
at metrics g,z, at time v, such that

1
S[g, go],

~Ep f h S[g, g] )
Pp

f~y s

The second of these two equations is satisfied by the met-
ric g;~ of any time slice of a four-manifold, satisfying Ein-

~ ~

stein's equations with initial data (gp;~, po~). The first
equation requires that the action of the four-manifold
between the initial slice go;~ and the given slice g,~ is
proportional to the time-parameter w. Now consider a fo-
liation of the given four-manifold parametrized by some
variable 2:0, with g;z

——go,~ at xg ——0. Hamilton's prin-
cipal function S[g, gp] is monotonic in xp, which means
that S[g, gp] = 0 only for g,~

= gp;~. It follows that, at
w = 0, Eq. (109) gives us

0 = S[g,gp]:- g;~ = gp;~ (modulo diffeomorphisms) .

(11o)

As a consequence, at w = 0, the wave function
C»""' [g, w = 0] is peaked at g;~ = gp;z (modulo dif-
feomorphisms). Thus, from the definition of the many-
fingered time variable, where T(x; gp, gp) = 0,

4'[g;, , P, ~ = 0] = C~~~""')[g,~ = 0] x vP '[Q, T(x;g, gp)]

= e~""'[g,~ = o] x y" [y, r = o] .
(111)

The importance of Eq. (111) is that there exists, in
our forinulation, a class of states where the metric (and
extrinsic curvature) is sharply peaked around a given
geometry gp;~ (and pp~), and where the state factor-
izes into a wave function (4~) suppressing fiuctuations
away &om the given three-geometry, and a wave function
(@ ) describing the state of the nongravitational fields on
that three-geometry. Such states can be fairly described
as eigenstates of nonstationary observables; these eigen-
states are impossible to construct, as physical states, in
the standard formulation of canonical quantum gravity.

Finally, we consider transition probabilities. Take an
initial state of the form

[g'~ P] = 4s [g, o] x g '[$, 0]

and a Gnal state of similar form

4'y[g;~, P] = 4&,""'
[g, o] x vP' '[@,0],

where the smearing function F' is peaked around some
time slice (gp, pp) of the classical four-geometry specified
by the initial data (gp, po). The transition probability
for 4; M 4f after a time 7- is given by the factorized
expression

»--~(~) = I&+~le
' '"l~'-&I'

= I&+~l+-( )&I'

I

(@(go,i o )
[ 0]

I

C, (go, i o )
[ ] & I

2

x IK'"[@0]I@'[(t T(» go go)]&l' (»4)

The first of these factors

I(c'p"'"'[g o] lc'p"'"'[g* ~]&I'

gives the probability, after a time 7, to be on the time
slice described by (gp, po) (up to a certain uncertainty,
specified by the smearing function F'). The second factor

[&,0]l&"[&,T(*;go,g )]&I

is the quantum-Geld-theory-in-curved-spacetime result; it
gives the probability for a transition &om an initial state

of quantum fields on the time slice gp, to the state vj'
on the later time slice go. Both the initial and final three-
manifolds are time slices of the same four-manifold spec-
ified by the initial data (go, ppj, and the state @ [P, T]
evolves according to the Tomonaga-Schwinger equation
(101).

In this way, we see how approximate eigenstates of ge-
ometry and extrinsic curvature may be constructed, and
how the standard formalism of quantum Geld theory in
curved spacetime emerges. We will not attempt to go fur-
ther and discuss the problem of measurement in this con-
text, apart &om noting that any of the standard "realis-
tic" approaches that have been applied to nonrelativistic
quantum mechanics, e.g. , many universes, decoherence,
or Bohm's theory, can be applied in our formulation as
well.

V. INCLUSION OF FERMIONS

We have so far assumed that the canonical momenta
p appear quadratically in the Hamiltonian, with indices
contracted by the supermetric. The Hamiltonian of a
set of Dirac fields, on the other hand, is linear in the
fermionic momenta, and it is not immediately obvious
how such fields are incorporated into our approach.

In our previous work [5] we found two indepeiident
methods for determining the iB operator. The "undeter-
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mined constant" method was based on the trivial obser-
vation that the actions S and S' = const x S are equiv-
alent at the classical level; this leads to the fact that the
ratio of the kinetic and potential terms of the Hamilto-
nian (which is the jB functioiial) is indeterminate at the
classical level. The second method, leading to the same
quantum theory, is the transfer matrix method, whose
"real-time" or Feynman version was presented in the pre-
ceding sections. We will now apply both methods to ob-
tain the K operator for gravity coupled to a Dirac field.

The action for the Einstein-Dirac system is expressed
in terms of the fermion field g and tetrad field e „as

S'= d x ~j +my —N +N; '+e' M~

~'G'p. p, + Z~+ vY~gU,

with second class constraints enforcing

n.
@ =i~8'~g@p

Define

(124)

therefore irrelevant at the classical level. In going to the
canonical formulation, however, we find that

SED —— d xdet e R+i e "p D~ —m, 117 H:— d x NR +¹'+~'~M~ (125)

where D„ is the usual covariant spinor derivative. The
extension of the canonical ADM formalism to this system
was worked out in Ref. [12], for the "time gauge"

e;=0 (i=1,2, 3) .

In this gauge, the Einstein-Dirac action expressed in
terms of canonical momenta has the form

and consider a field configuration (e; (x, t), @(z,t),
@(x,t)) which solves the Hamiltonian equations of mo-
tion derived &om H, for some given value of E'. Then it
is clear that this configuration is a solution for any other
value of E', since the classical orbits in configuration space
(i.e., solutions of the Euler-Lagrange equations) are inde-
pendent of E'. In general then, the Dirac bracket equation
of motion

8 = d4x[p q + my@ —(N'8 + N 8' + ~*'M,,)],
BiE = (I",II )D,

supplemented by the first class constraints

H = 0 for any N,¹,e'~

(126)

where the q are the triad fields e&(x), and

'R=~ G p pi, +~gU+Ry,

'Rg = ~gKvj =
organ [e' p D; —m]vP .

The first-class constraints are

(120)

:-'R ='R*=M;i =0,
(127)

generates a set of orbits in configuration space which is
independent of E. In this sense 8 is "classically irrele-
vant. "

Now observe that the constraint H = 0 can be written

(121)
for any N, N;, e'~, (128)

erg =i~gvgp (122)

The second-class constraints are handled, according to
the Dirac procedure, by replacing Poisson brackets by
Dirac brackets. The explicit form of all constraints in
terms of the canonical variables, and other details, may
be found in Ref. [12].

Now consider an alternative action SED which divers
&om SED only by a multiplicative constant

where the supermomenta 'R' and the generators of local
frame rotations M;~ are linear in the momenta. In ad-
dition there are second-class constraints, some of which
are associated with the time-gauge condition (118), and
also which relate 7r@ to vP:i

where K is defined implicitly by

N ]c2G ~p pg+
f dsx'~gNU

+ (lv;R'+ e"M;, ) Imp
(129)

and where mp is an arbitrary parameter with dimen-
sions of mass. From this definition, it is straightforward
to show that, for any functional 5' = I" [q, p, @,vrq], the
Poisson bracket with K is related to the corresponding
Poisson brackets with H via

~ED ~~~ED (123)

Obviously, the equations of motion derived &om SED are
identical to those derived &om SFD. The constant E is

We take right derivatives with respect to g.
Of course, (I', H )o (I', & ), since R= 0'is a first-

class constraint.
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dszi N'Rym„FK = d x 1+
2~8 f dsz2N~gU

x " (Il, 'Rs)
J dszsN~gU

+N;(F, 'R') + e"(I', I;,)
(1so)

where

N(N) —= 1+ dsxiN'Ry

2~8 J' dsz2N~gU
~em„N

J dszsN +gU

(131)

Equation (130) is derived by simply carrying out the
functional derivatives contained in the Poisson brackets
shown, and applying the constraint (128). Then, since
the Dirac bracket (I', %)D is linear in the Poisson brack-
ets (. . . , K), Eq. (130) implies

where the operator ordering remains to be specified.
Note that, as in the purely bosonic case, the classically
irrelevant constant 8' can be absorbed into a rede6nition
ofh

'R'4 = 0, M;,.0 = 0 . (139)

&e= ~.
This concludes the 6rst, "undetermined constant"
method for 6nding the K operator.

Next we apply the pat¹integral approach, following as
closely as possible the procedure of the previous section
for the purely bosonic case. Since the generalized BSW
action for gravity+fermions will contain a factor of Q@
inside the square root, our strategy will be to expand
the path integrand in powers of 'Ry, and evaluate the
relevant expressions to some finite order (first order, in
this article). These expressions can then be compared,
order by order in 'Ry, with results of the undetermined
constant" method above.

We again set ¹
= 0, and also r'~ = 0, which is to

be compensated by imposing the corresponding physical
state constraints

„P;z) = P;II')N"~ (132) Solving for the bosonic momenta in terms of the time
derivatives

De6ning w = m„t, this demonstrates the equivalence of

(9&0 = (0,II )D u 0 0 = (0,E)D

up to a time reparametrization, expressed by N —+ ¹

Note that N(z) and constxN(z) have the same N.
We now quantize by replacing Dirac brackets with

cominutators (in the case of bosonic fields), and anticom-
mutators (in the case of fermionic fields). Time evolution
of states is given by the Schrodinger equation

Pa =
2N +ab~tq )2~2N

inserting into the Hamiltonian constraint

2N2 Gab~t, q Bt,q + ~gU + 'Ry = 0,

and solving for the lapse function

(14o)

(141)

ibad @[q,g, 7-] = K@[q,g, ~]

with the general solution

4[q, @,7] = ) ag@g[q, g]e'

(1s4)

(135)

a 0 a'
(~gU + 'Ry) (142)

where
we arrive at a square-root action

4 —= g'@

and 4p satis6es a Wheeler-DeWitt equation
S= dx i g

2 2
s@ 2 uGub n (14s)

b+i K@+~gU Cs ——0,
8 hvP

(137)
The corresponding path integral is

o(q', @',~+«(= f&q&0&A(q44)~x~ ~0 J &'* J~&aA'l0 — g (J~U+N~)G~&4 A~'— —

(144)
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where

'Rg = i~g@p Kg (145)

and ce represents the e ~ 0 continuum limit of the regularization-dependent constant c, oc 1/g —ieh. Now expand
the exponential to Grst order in

O[q', Q', v+Ev]= fDqDQDdg[qd, di) 1 —— devdv q ~gUG e8 q 8 qe
K 2 gU

x exp co
~

So+ d xd7-i~ggp B„g
~ @[q,g, ~],

where So is the bosonic action

S[) ———— d zd~ ~gUG bB q 8 q
1 3 a 6 (147)

Then to zeroth order in Qy, we can identify the deriva-
tives c) q in the term proportional to 'Ry as proportional
to the bosonic momentum operators, according to

iM 4 = AC (148)

where

a2) Vg 2Gab
( h2)

2 U v2 Bq~(n) Bqb(n)

We now regularize the path integral according to the
lattice prescription (75). The bosonic part of this path
integral, based on the action So, leads to the operator
evolution

OA8 q (n) =

= (D + 1)~' ~ G'pbl ( )n.

(D+1)v b
( )Uv„

where we have introduced

p (n)—: p (n)
Vn

(151)

(152)

+ ) Wg 2 Gab I( ) L(
2 U v2

n

and we have defined

(149) so that, as operators, using Eq. (150),

8
p (n) + ih ~—

&~q n )R
(153)

t9
p (n) = ih- (150) The regularized path integral, to first order in 'Ry, is now

q[q', d, +e] = fvDqDd Dd g, [q)[1 —eW)exp —e, ) v„(vdq gd+ —g—g e~q ~qe) q[q'q-~q, d'q-~d, v],

(154)

where

~2 gabp

~gU
D + 1 1

2 ) ~gU

x ['~a&'K(4' + &@)] (155)

where the square-root operator is defined via spectral
analysis.

Once again, the requirement that the state evolution
is independent, in the continuum limit, of the choice of
(v j, implies that the term in braces is the same in each
cell (simplex) n. Therefore, in the continuum limit,

Carrying out the integrals over Aq, A@, @, we find

D+1 1 1 2 b1+a ) — K G p~pb
2 - ah gU

K2G-bp. p, r' b—),
~gU ~gU

1

gU

~2Gnbp
i h K@ 4 (all x), (157)

gU

(156) where the divergent factor N„(D + 1)/2 has been ab-
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sorbed into a rescaling of w. For stationary states 4p we
have

—~2Gasp ps . b
ih Kg+ Z~gU Os

gU

= 0 . (158)

Then, since

~2Gabp p Cis = v~ZC's + order 'R@ corrections,
gU

(159)

it follows that, up to first order in 'Ry, we recover the
same stationary state equation

(160)

that was obtained [Eq. (137)] from the "undetermined
constant" approach. As in the purely bosonic case, the
imposition of 'R 4s = 0 for all S at every point x is
consistent with, and in fact implies (cf. Ref. [7]), the
other required 6rst-class constraints 'R'4 = M,~@ = 0,
up to the usual operator-ordering issues.

VI. CONCLUSIONS

For ordinary quantum theories without time
paraxnetriz ation, the regularized path integral is ex-
pressed as a product of integrals, each of which evolves
the state function unitarily over a small time interval.
In this article we have examined whether such a con-
struction can be applied to theories with square-root,
time-reparametrization invariant actions. Our result is
that unitarity requires (i) an unconventional phase in the
path integrand, and (ii) summation over configurations
of both real and imaginary proper-time lapse. In the case
of quantum gravity, the second requirement means that
path integration must run over manifolds of Lorentzian,
Euclidean, and, in general, mixed signature. We have
also shown how the formalism extends to fermionic ac-
tions.

Unitarity, of course, refers to evolution in a certain

time parameter. In our formulation, the time parameter
is simply a measure of the number of integrations in the
(regulated) path integral, evolving an initial state to a
later state. This "quantum time" parameter is neither a
geoinetrical quantity (such as a proper time lapse), nor a
dynamical variable (such as the extrinsic curvature). It
is, instead, a parameter which is intririsic to the path-
integral measure. The connection to classical dynamics
is established via an Ehrenfest principle.

In the standard canonical formulation of quantum
gravity, the physical states are solutions of a Wheeler-
DeWitt equation 'RiIi = 0. In contrast, an outcome of
our formulation is that physical states belong to a Hilbert
space which is spanned by the solutions of a family of
Wheeler-DeWitt equations 'R 4p ——0, which are distin-
guished by having different effective values of Planck's
constant h, tr = h/v Z. As discussed in Sec. IV, a su-
perposition of states with varying 8 (or h, tr) allows us to
construct, at the semiclassical level, physical states whose
amplitudes are peaked at particular three-geometries and
extrinsic curvatures. The width of the peak, in super-
space, is inversely proportional to the dispersion LE'.
Projection operators formed &om such states, and lin-
ear combinations of those projection operators, belong to
the physical observables of the theory. It is worth noting
that the stationary states (i.e. , solutions of a Wheeler-
DeWitt equation with a fixed value of 8) can never be
pea¹d around any one three-geometry. At best, in the
WEB limit, a stationary state is peaked at every pos-
sible spacelike slice of some four-manifold satisfying the
Einstein equations.

If our view is correct, then the phenomenological value
of Planck's constant is the mean value of a dynamical
quantity, having a Gnite uncertainty of quantum origin.
How large this uncertainty might be, and whether there
could conceivably be testable consequences, are interest-
ing issues for further investigation.
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