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Random surface representation for Einstein quantum gravity
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We propose a random surface functional solution for the Wheeler-DeWitt quantum Einstein
gravity constraint in the Ashtekar-Sen field coordinates.
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I. INTRODUCTION

The Ashtekar-Sen proposal of a new set of complex
SU(2) coordinates for the Einstein action [1] has become
very promising at the quantum level by allowing explicit
formal loop space solutions for the Wheeler-DeWitt equa-
tion without a cosmological term [2]. However, string
structure from these loop space solutions was not found,
as opposed to the loop space framework for Yang-Mills
confining gauge theories [3,4,6,10].

In this paper we propose to overcome this problem by
solving directly the Wheeler-DeWitt equation with a zero
cosmological constant by means of a string theory func-
tional integral possessing intrinsic SU(2) color degrees of
freedom [3,6]. We show in Sec. II that this proposed
random surface functional satisfies the Wheeler-DeWitt
equation and the diffeomorphism constraint. In Sec. III
we present a topological wave equation for this quan-
tum gravity string theory inspired in our previous work
in bag representations for QCD [SU(o0)] [3]. Finally, in
Appendix A and Appendix B we clarify some calculations
presented in the bulk of this paper.

II. THE RANDOM SURFACE WAVE
FUNCTIONAL

Let us start our analysis by considering the problem
of associating a wave functional for an arbitrary self-
intersecting random surface S with boundary C,, =
{Cu(0), 0 < o < 2m, C,(0) = Cyu(27) = z} and pos-
sessing SU(2) color degrees of freedom interacting with
an external SU(2) connection AL(Z‘))\, Here ); denote
the SU(2) generators in the fundamental representation.

The surface S is characterized by two fields: first, by
the usual (bosonic) vector position X, (§), £ € D, where
D is the appropriate parameter associated to the surface
X, (D) = S. In addition, we have the surface SU(2) color
variable g(¢) which belongs to the fundamental SU(2)
group. The intrinsic metric properties of S are repre-
sented by two-dimensional (2D) metric fields hgp(€) in
Polyakov’s formalism for random surfaces [4].

The classical action for this color SU(2) surface is given
in Polyakov’s formalism [4]:

S =S, + 5P (1)
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with
So =1 / A6 (VRh®0, X 8, X,.) (€)
D

i /D PEWVR)(E) (1a)

517 = 71;1]4‘ /D d*[VR T (9710a9)%) (€)

+47rirwz[g] y (lb)
where I'wz[g] denotes the two-dimensional Wess-Zumino
functional. Its existence, together with the integer m
in the written SU(2) o model, allows us to consider the

more suitable fermionic equivalent action for SfB):

5 = /D VRB (v )] (€)% | @)

where the two-dimensional Dirac field ¥(£) belongs to
the fermionic fundamental SU(2) representation.

At this point, the simplest action taking into account
the interaction with the external Ashtekar-Sen connec-
tion is given by

ST (E), % (€); Au(2)]

e [D (VAP 0. X" AL(XX)NID) ()2 . (3)

It is instructive to point out that the interaction Eq. (3)
written in terms of the bosonic SU(2) variable g(§) was
presented in Ref. [5].

The complete classical interacting action Egs. (1)—(3)
is invariant under the gauge transformations

Au(XX(€)) = (1T AL + 1710, [X*(E)]
P(&) = UXX(OY(E) (4)

P(€) = POITHXX(E)]

where I(z) €SU(2).
We shall now use Egs. (1) and (3) to propose the
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following random surface fermionic functional integral as
a surface Wilson loop [3,6]:

Wab [Ca::c ) S’ AM]

_ w{ / D[(&)] D[ (€)][wa (0, 0)b (27, 0)]

x exp[—(So + S + si"t)]} : (5)

Notice that our random surface phase factor proposed
above is a 2 X 2 matrix in the flat domain D(a,b = 1, 2),
since it is a kind of two-dimensional spinor propagator
on D.

The covariant fermion functional integral is defined by
the functional element of volume associated with the fol-
lowing functional Riemann metric with the fermion fields
satisfying the Neumann boundary condition:

> =0=/

{5}78520::: ”(0,0)20“(6) ((5,#)

26 — (4 +3)
X exp _—_48W

denotes the correct way to sum random surfaces with
the weight given by the Nambu-Goto action which is ob-
tained from Polyakov’s covariant path integrals by im-
posing the constraint hqp(€) = (8, X*0,X,.)(€) at the
quantum level [see Eq. (1) in Ref. [7]].

Let us show that Eq. (7) satisfies formally the
Wheeler-DeWitt constant [2] integrated over the three-

|

s

7 Wab[sa Ca::n’ A]
6 AL (x)

/M d3z 6iij;,, (z)

d£+d£_<
D
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1692 = /D VR(swED)|(€)d%E . (6)

The quantum surface functional will be defined by the
Nambu-Goto functional integral over the X, (£) variables
as written in Ref. [7], Eq. (23), with the Dirichlet bound-
ary condition S = C,, and in the orthonormal surface
coordinates:

o ¥

Was[S, Cze, A,,]} = P[A,], (7)
C.. \{s}i05=C..

where

>= DF(Cu(o)
C Cu(0)=Cy(2m)=2,

i Xexp(—% /0 " C""(a)zdo> (7a)

is the z-dependent loop average and

IT ax+(©)) exo(~1 [ U0, XM0_X, (€ ,))

(7b)

(LX*)(0_X,) (LX) (0. X,) .y .
[(65 X%)(0_X,) ] )(5 > ’}

dimensional manifold M C R* ([8] Chap. 3):

] )

ngq)ab[fq =0. (8)

/M d*z eiij;;,, (z)

It is a straightforward calculation to show that

= A d*¢ /h(€) A d*E/R(€)[0°XH(£)0? X (¢)]6) (XX(€) — X*(¢'))e*Fi, (XX (£))

><Tr°°l°'{ [ D END B a0, OB €1 N EF(E )0 (€ (27,0))

x exp[—(So + S§F) + Si“t)]} .

(9)
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In the context of the random surfaces sum Eq. (8) we
have that the X,(§) functional integral leads us to the
following condition in the perturbative expansion for Eq.
(7) [9,13]:

(XM ()5 (XX(€) — X*(£))" X (€) Fu (X (9)))

= (6, (0° X" (£)8®) (X*(€) — X*(€))8°X* (¢"))

xFu (X (£))) - (10)

As a consequence of F,, (X (£)) being antisymmetric in
the (u,v) indices we get the result Eq. (8).

It is interesting to point out that only in the condi-
tion of non-self-intersection surfaces X, (¢) = X, (¢') —
& = ¢’ does one obtain that Eq. (5) is solution of the
integrated Wheeler-DeWitt equation.

In order to satisfy automatically general coordinate in-
variance on the three-dimensional (3D) manifold M,

Szt = e (xX) =° (=) ,

(11)

with e#(z) being the vector field generator of an element
of Gaig(M), one could consider formally the functional
integral over Gg;s (M) of the action piece of our proposed
solution Eq. (5) involving the random surface S coordi-
nates: namely,

|
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S[XH(€),e" ()]
= [ Pe(/Araul X €l X))
tie /D PEVREB(E) (1a0° [ XH]A [ XX]N,)
xp(§) . (12)
We have, thus, the Gaig(M) invariant solution
&)ab[zﬂl = Z(I)ab[zwsl ’
6"(.’17) € Gdiff(M) (13)

where the sum over the field generators e#(z) on M must
be weighted with the noncompact formal Haar measure
associated with Gg;g(M).

It is important to remark that the diffeomorphism con-
straint [2] imposed on our proposed surface Wilson loop

/M a3z C(D {Wy[S, Crs, Al }

- /M d%(p;u(w)%(wab[s, CM,A])) (14)

is exactly given by the “Lorentz force” acting on the sur-
face vector position X, (£): i.e.,

/M &2 O {Wab|$, Cou, A]} = Tr(eel) { / D[ (€)ID°[P()][¥a (0, 0)%5(2m, 0)] exp{~(So + 51 + 5™)}

< [ #e VRO, X"(&))[an”(é)][E(&)vj/\nﬁ(ﬁ)]},

which is zero if we impose that the surface S is the min-
imal surface bounded by C, or if one considers the sur-
face kinetic term (1a) identically zero [11]. At this point
it is worth remarking that Eq. (13) automatically van-
ishes under operation of Eq. (14) by the way it was
constructed, preserving general coordinate invariance on
M.

Let us remark that a similar procedure may be used to
make the Smolin-Jacobson loop space solutions covariant
under diffeomorphism of the loops by means of introduc-
tion of an additional one-dimensional metric £(£) (see
Ref. [6]).

Finally we point out that in the case when the random
surface S degenerates to its boundary X,(£) — C, (o),
our surface Wilson loop will be given by the usual Wilson
J

(15)

Loop used by Jacobson and Smolin in Ref. [2] (Appendix
B).

III. THE RANDOM SURFACE TOPOLOGICAL
WAVE EQUATION

Before turning to the construction of a random surface
topological wave equation for Eq. (5) similar to that of
Ref. [11] we follow the usual procedures of quantum the-
ory by defining the average of a general quantum observ-
able ©[A},(z));] by the Chern-Simon functional integral
(see Appendix A):

((O[A,])) = /( 11 dA,J(w))(s(F)(%FW(A))

zeM

x exp{—/ Tro" [AANdA+ 2ANAN A](X)d%}@[A“] .
M

(16)
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Note that the use of Eq. (16) for averages is auto-
matically diffeomorphism and gauge invariant due to
the Chern-Simon functional measure used to weight
the functional space of the Chern-Simon connections
Al (z) [2,12].

Let us, thus, proceed as in non-Abelian gauge theories
[6,11] by considering the invariance under translations of
the Feynman measure

I [ea ()

(z) for the connection A,(z) average of our proposed
surface Wilson loop for Einstein quantum gravity:

/ (H dA:( :1:)) (F)( F‘“’(A))

zEM

5 / 3
X ———< exp| — da:A/\dA—}—gA/\A/\A)}
M;(z){ ( M s )
XTr Wy [S, Cozy ALl Ai} (17)

The A (z) functional variation of the Chern-Simon
weight produces the results (see Ref. [11])

( (Trwbr(el‘XﬁFxﬁ (A(2))Wap[S, Cozy Aul) ) - (18)

Now a straightforward calculation for the A% (z) func-

tional variation of the surface Wilson loop y1elds the ex-
pression (3]

; 0
7 (C) .
A e {Tr(© (Wap[S, Caa, AN}

- / &0 5P (2, — X,u(01,0))04 X (01, 02)
D

X (Waa, [S1, Cx(0), X (1), Aul) )

X (’YA)alaz( (Wazb[s27 CX(Ul),X(Zw)a A,u]) > 3 (19)
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where the end point of the loop C,, is defined to co-
incide with the z argument of the Chern-Simon field in
the functional variation in the result written above. §;
and S, are, respectively, defined by the restriction of the
mapping X, (£1,£2) for the (split domains D = D; U D,:

Sy = Xu(D1), S2=X,(D;) (20)
with
Dy = {(1,€2); 0<&1<01; —o0<§ <o},
Dy ={(&1,&2); o1 <& <2m; —o0<§<oo}. (21)

Here we have taken the domain D in Eq. (1) as an infinite
rectangle.

It is now convenient to multiply both sides of Eq. (17),
after using Eqs. (18) and (19), by the loop current den-
sity,

T8 (Caa) = /D 5z, — X,(E,,0))95 X4 (€, 0)(+F)

h(Z)dZ1 dzz (22)

and integrate out the obtained result relative to the
z € M variable. By taking into account the diffeomor-
phism constraint Eqs. (14) and (15) we finally get our
topological wave equation

{ [ o Vi@ [ dE /a6, 005 (Xu(E0,0) ~ Xu(o1,02))9 X5 E1, 0005 X4 (01, 02)esn0

X ('YB)maWaal [Sly Caz(o),m(al) ) Ap.] (’YA)alaz Wazb[SZ, Ca:(al ),z(2m)s Ay]} =0

At this point the reader should compare Eq. (23) with
our proposed similar topological equation for pure loop
Jacobson-Smolin quantum gravity functionals [Eq. (9) of
Ref. [11] with zero area variation]. As aresult of Eq. (23),
we conjecture that after integrating the two-dimensional
fermion SU(2) degrees of freedom in Eq. (5) we should
get topological invariants for some kind of “braid groups”
for surfaces on M and paralleling similar results for the
Jacobson-Smolin loop quantum gravity solutions [12,9].

. (23)

The important point to discuss now is the possibility of
representing quantum gravity observables by interpreting
physically the loop C,. in the argument of our proposed
Eq. (5) as the M manifold projected closed space-time
world line of a pair of matter field excitations, as is usu-
ally done in the loop space framework for QCD with ran-
dom loops [6]. In order to implement this idea, we con-
sider the generating functional for pairs of left-handed
space-time fermions:



52 RANDOM SURFACE REPRESENTATION FOR EINSTEIN ...

20 = det | (S0 + g1+ )
+J(:c"i)] . (24)

It is instructive to point out that Green functions for
correlations among these pairs are given by the J(z4)

Z[J(XM)] = exp{— 3> . TrP [exp (zf;

Now if we consider the gravity quantum average of Eq.
(24),

((Z[J]Wab[sa C:naA#D) ’ (26)
and take into account that the four-dimensional spin con-
nection for left-handed spinors restricted to the embed-
ded base three-dimensional manifold M coincides with the
Asthekar-Sen Connection A (x), we should identify the
M-projected space-time loop Ly yrxyy With the three-
dimensional loop C., and yielding the averaged four-
dimensional spinors generating functional Eq. (25) as
a random surface scalar vertex generator projected on
the N-manifold boundary [4,6,10,11].
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APPENDIX A

In this Appendix we briefly sketch another argument
leading to Eq. (10) in the case of nontrivial self-
intersecting random surfaces. In order to simplify the
analysis we consider the average Eq. (10) in the Gauss-
ian case written in momentum space for the involved self-
intersecting vertices:

3(0a X" (£) exp{ik™[ X, (€) — X2 (€')]}06 X" (€)

X eXp{iP’B[Xﬂ(g) + Xﬁ(fl)]}>surfacanV(PB) ) (A]')
where

)

w0 (1+ 75)dXM)] } exp (]i
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functional differentiations of Eq. (23), where z4 de-
notes an arbitrary point of the four-dimensional space-
time N = M x [0, V] [14] which will be taken for simplic-
ity as a cylinder with base M. At this point, we follow the
QCD loop space formalism by writing the fermionic func-
tional determinant Eq. (23) by means of pairs of closed
trajectories Lx , x, on the cylinder space-time N:

(25)

J ds)

Xt X i1

Fiu (4)(z%) = /M $oeiP*o(F,, (A)](z%).  (A2)

In writing Eq. (A1) we have taken into account that
the Ashtekar-Sen connection is an object defined in the

extrinsic space M, so it is a single-valued function as an
object in the random surface: namely,

Flu(XP(8) = Fu (XP(€))

for any coordinate £ on the random surface parameter
domain.

By considering a power expansion in the extrinsic mo-
menta variables (P%, K*) for the vertices in Eq. (A1),
one obtains the generic form for this object:

(A3)

(P,K, — K,P,)F,,(P)®.(PX,kX,£,¢') , (A4)
where ®,5(PX, kX, £,¢') denotes the random surface vec-
tor position contractions which are a Lorentz scalar ob-
ject in the extrinsic space M.

At this point we note that the motion equations hold
true for our proposed quantum gravity functionals [Eq.
(5)]:

o}

—Fou(z) = e""ﬁa,,jg(z) s

Ba (A5)

where the random surface current is given explicitly by
[see Eq. (3)]

jo(z) = ie /D €63 (2% — X*(£)) (Br°0a X $)(€) .
(A6)

The vanishing of Eq. (A5) is a direct consequence of
the identity

6 . . 2 2F 3 a a haa
seio() =—ie [ &% [ 4 s[ e X (a))] (BB X 9) (€)

= —ie(he) /D € 6P (2 — X=(€))(Fr°) /D 8a (6™ (¢ — B))d%E .

(A7)
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APPENDIX B

In this Appendix we obtain the expression of our pro-
posed quantum gravity stringy state in terms of a gener-
alized supersymmetric loop Jacobson-Smolin functional.

In det[iv* (9, + AL(XX(f))BaX“(E)/\z)]

LUIZ C. L. BOTELHO 52

In order to show this result, we first integrate out the
two-dimensional intrinsic Dirac fields in Eq. (5) and
write the 2D fermionic functional determinant in terms
of Grassmanian trajectories on random surface S (em-
bedded on the 3D manifold M) as in Ref. [10] Eq. (1)
[CE (,0) = Cu(0) + 64, ()]

— 1 * ﬂ d3 / DF *
+2 \/0 t /M * C(0)=C,(t)=z, [1/]”(0),1/)"(0-)]

xe{ [‘do[}(cp) -

u(@)¥5()] WAL CE (0,00

where we have introduced our proposed QCD Grassma-
nian Wilson loop defined now by the SU(2) Ashtekar-Sen
gauge field, namely;

W) [Au, Culo,0)]

_ Tr°°l°’IP’{exp(— /O “do / 045, (Cou(0) + 189, (0))

xX;DCJ (o, 0))} . (B2)

(B1)

We can interpret Eq. (B1), after introducing it in Eq.
(7), as expressing our random surface quantum grav-
ity state as a kind of coherent packet of Grassmanian
Jacobson-Smolin functionals Eq. (B2). It is worth call-
ing attention to the fact that in the case of nonfluctu-
ating loops C,(0), and with “frozen” Grassmanian de-
grees of freedom € = 0, our string solution reduces to
the usual Jacobson-Smolin remark that Wilson loops de-
fined by the Ashtekar-Sen connection satisfy the quantum
gravity Wheeler-De Witt equation [2,6].
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