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Random surface representation for Einstein quantum gravity
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We propose a random surface functional solution for the Wheeler-DeWitt quantum Einstein
gravity constraint in the Ashtekar-Sen field coordinates.

PACS number(s): 04.60.Ds, 11.15.Tk, 11.25.Sq

I. INTRODUCTION with

The Ashtekar-Sen proposal of a new set of complex
SU(2) coordinates for the Einstein action [1] has become
very promising at the quantum level by allowing explicit
formal loop space solutions for the Wheeler-DeWitt equa-
tion without a cosmological term [2]. However, string
structure Rom these loop space solutions was not found,
as opposed to the loop space framework for Yang-Mills
confining gauge theories [3,4,6,10].

In this paper we propose to overcome this problem by
solving directly the Wheeler-DeWitt equation with a zero
cosmological constant by means of a string theory func-
tional integral possessing intrinsic SU(2) color degrees of
freedom [3,6]. We show in Sec. II that this proposed
random surface functional satisfies the Wheeler-DeWitt
equation and the diKeomorphism constraint. In Sec. III
we present a topological wave equation for this quan-
tum gravity string theory inspired in our previous work
in bag representations for QCD [SU(oo)] [3]. Finally, in
Appendix A and Appendix B we clarify some calculations
presented in the bulk of this paper.

II. THE RANDOM SURFACE WAVE
FUNCTIONAL
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where I'wz[g] denotes the two-dimensional Wess-Zumino
functional. Its existence, together with the integer m
in the written SU(2) |T model, allows us to consider the

more suitable fermionic equivalent action for Si

(2)

where the two-dimensional Dirac field g(() belongs to
the fermionic fundamental SU(2) representation.

At this point, the simplest action taking into account
the interaction .with the external Ashtekar-Sen connec-
tion is given by

Let us start our analysis by considering the problem
of associating a wave functional for an arbitrary self-
intersecting random surface S with boundary |
(C„(cr), 0 ( 0 ( 2vr, C„(0) = C„(2vr) = x) and pos-
sessing SU(2) color degrees of freedom interacting with
an external SU(2) connection A'„(x)A;. Here A; denote
the SU(2) generators in the fundamental representation.

The surface S is characterized by two fields: first, by
the usual (bosonic) vector position X„((),( E D, where
D is the appropriate parameter associated to the surface
X„(D) = S. In addition, we have the surface SU(2) color
variable g(() which belongs to the fundamental SU(2)
group. The intrinsic metric properties of S are repre-
sented by two-dimensional (2D) metric fields h b(() in
Polyakov's formalism for random surfaces [4].

The classical action for this color SU(2) surface is given
in Polyakov's formalism [4]:

S=S.+S,' '

= ie (~hg[p 8 X"A'„(X~)A|]g)(()d ( .
D
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g(() m l[X (()]@((),

@(()m @(()l [X (()],

(4)

where l(x) 6SU(2).
We shall now use Eqs. (1) and (3) to propose the

It is instructive to point out that the interaction Eq. (3)
written in terms of the bosonic SU(2) variable g(() was
presented in Ref. [5].

The complete classical interacting action Eqs. (1)—(3)
is invariant under the gauge transformations
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following random surface fermionic functional integral as
a surface Wilson loop [3,6]:

[~~(~@~4)](&)d'( .
D

(6)

W s[C, S, A„]

=Tr~~ D D 00 b2vr, 0

The quantum surface functional will be defined by the
Nambu-Goto functional integral over the X„(()variables
as written in Ref. [7], Eq. (23), with the Dirichlet bound-
ary condition OS = C and in the orthonormal surface
coordinates:

xexp( —(Se+SI +S' ))) ) 1 ) W.e(S, a...Xe) = 6.e(X,),
c.. 1isl, ss=c.. (7)

Notice that our random surface phase factor proposed
above is a 2 x 2 matrix in the flat domain D(a, 6 = 1, 2),
since it is a kind of two-dimen8ional spinor propagator
on D.

The covariant fermion functional integral is defined by
the functional element of volume associated with the fol-
lowing functional Riemann metric with the fermion fields
satisfying the Neumann boundary condition:

where

„(0)=c„(z~)=„
D [C~(~)]

x exp~ ——1
2
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is the x-dependent loop average and
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denotes the correct way to sum random surfaces with
the weight given by the Nambu-Goto action which is ob-
tained &om Polyakov's covariant path integrals by im-
posing the constraint h s(() = (o) X"BgX~)(() at the
quantum level [see Eq. (1) in Ref. [7]].

Let us show that Eq. (7) satisfies formally the
Wheeler-DeWitt constant [2] integrated over the three-

dimensional maiufold M C B ( [8] Chap. 3):

d xe's"I'„'„(x) . . O b[A] = 0 .

It is a straightforward calculation to show that

(8)
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In the context of the random surfaces sum Eq. (8) we
have that the X~(() functional integral leads us to the
following condition in the perturbative expansion for Eq.
(7) [9, 13]:

((~ X"(&)~"(X'(0 —X"(&'))~'X"(&')+p-(X(&)))

= (~ -(&'X"(&)~'"(X"(&) —X'(&'))~'X"(&'))

xE„„(X(())).

S[X"((),s"(z)]

d'((y hh 8 ['X"]($)0),['X"](()
D

+ie d (Qh(()vP(()(p c) ['X"]~A['X"]A))
D

x@($) .

We have, thus, the Gg;)r(M) invariant solution

O s[A„] = ) 4 b[A„,s],

(i2)

As a consequence of I"„„(X(())being antisymmetric in
the (p, v) indices we get the result Eq. (8).

It is interesting to point out that only in the condi-
tion of non-self-intersection surfaces X„(()= X„((') -+
( = $' does one obtain that Eq. (5) is solution of the
integrated Wheeler-De Witt equation.

In order to satisfy automatically general coordinate in-
variance on the three-dimensional (3D) manifold M,

s"(x) 6 Gg;ir(M)

where the sum over the field generators s)'(x) on M must
be weighted with the noncompact formal Haar measure
associated with G~;@(M).

It is important to remark that the difFeomorphism con-
straint [2] imposed on our proposed surface Wilson loop

—eP (~x) — (~P )

with e'"(x) being the vector field generator of an element
of G~;g(M), one could consider formally the functional
integral over Gg;s (M) of the action piece of our proposed
solution Eq. (5) involving the random surface S coordi-
nates: namely,

d ~~ &„'„(~), (W i, [S,C, A]) i (14)

is exactly given by the "Lorentz force" acting on the sur-
face vector position X„($):i.e.,

&'«„"(~-~(~&.* &i) = ~'-"(fD W(G~' @X()IW.(o, o)@.( ~,2)l'0HX—(~0+ ~' '+ ~"'))
M

~*4 v'~(6+ (~'(())(~''.x (Ol(@(&)&'""&(0))D
(15)

which is zero if we impose that the surface S is the min-
imal surface bounded by | or if one considers the sur-
face kinetic term (la) identically zero [11].At this point
it is worth remarking that Eq. (13) automatically van-
ishes under operation of Eq. (14) by the way it was
constructed, preserving general coordinate invariance on
M.

Let us remark that a similar procedure may be used to
make the Smolin-Jacobson loop space solutions covariant
under di8'eomorphism of the loops by means of introduc-
tion of an additional one-dimensional metric s(() (see
Ref. [6]).

Finally we point out that in the case when the random
surface S degenerates to its boundary X~@') ~ C„(o.),
our surface Wilson loop will be given by the usual Wilson

I

Loop used by Jacobson and Smolin in Ref. [2] (Appendix
B).

III. THE RANDOM SURFACE TOPOLOGICAL
WAVE EQUATION

Before turning to the construction of a random surface
topological wave equation for Eq. (5) similar to that of
Ref. [11) we follow the usual procedures of quantum the-
ory by defining the average of a general quantum observ-
able O[A'„(x)A;] by the Chem-Simon functional integral
(see Appendix A):

dA~(x) i8( l
i

I'" (A) i) kc~v )
((0(~.)) ) f~=

~~CM

xexp — Tr' 'AAdA+ 3AAAAA X d x OA& (16)
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Note that the use of Eq. (16) for averages is auto-
matically diffeomorphism and gauge invariant due to
the Chem-Simon functional measure used to weight
the functional space of the Chem-Simon connections
A'„(x) [2, 12].

Let us, thus, proceed as in non-Abelian gauge theories
[6,11] by considering the invariance under translations of
the Feynman measure

Si = X„(Di), S2 ——X„(Dz) (2o)

where the end point of the loop C is defined to co-
incide with the x argument of the Chem-Simon field in
the functional variation in the result; written above. Sq
and S2 are, respectively, defined by the restriction of the
mapping X„((i,(2) for the (split domains D = Di U D2.'

dA„~ E""(A)
~).

(z) for the connection A„(x) average of our proposed
surface Wilson loop for Einstein quantum gravity:

with

Di (((1 (2) o (1 + 01 oo + (2 + oo)

dA'„(x) ~b(~) E""(A)
~j /AX~ ) D, —~(g„g,); 0, & (, & 2~; —oo & (, & oo) . (21)

x . exp~ — d x(A A dA+ sA A A h A)
~

s

x Tr' ' '(W i, [S,C, A~]A;) . (17)

The A'„(2:) functional variation of the Chem-Simon
weight produces the results (see Ref. [11])

Here we have taken the domain D in Eq. (1) as an infinite
rectangle.

It is now convenient to multiply both sides of Eq. (17),
after using Eqs. (18) and (19), by the loop current den-
sity,

((T -"(s"' &x~(A(~))W-b[S C** A~l) ) (»)
Now a straightforward calculation for the A'„(z) func-
tional variation of the surface Wilson loop yields the ex-
pression [3]

J'.(C*-) = ~'"(*.—X (& o))~ X"((,o)(~ )

jTr(') (W s[S,C,A„]A;))
h A'„x

= —f d*a 8 ' (T„—X„(oa,o, ) )8&X"(o, , o, )

x {(W, [Si,C~(p) ~(,), A„]))
x (p )aqa2 {{ Waqb[ S&2'(nq), Ã( w2) y Ags]) ) (19)

x 6(()d(i d(2 (22)

and integrate out the obtained result relative to the
x p M variable. By taking into account the diQ'eomor-
phism constraint Eqs. (14) and (15) we finally get our
topological wave equation

d'~gh(~) dg, h(g„O) S(') (X„((„O)—X„(~„~,))0~X~(g„O)c)~X"(~„~,)e„„~D C'

x(p )~~W~~, [S„C~(p) &(& )&A„](p )~,~, W~, &[S2)Cz(~, ) ~(2~), A„] = 0. (23)

At this point the reader should compare Eq. (23) with
our proposed similar topological equation for pure loop
Jacobson-Smolin quantum gravity functionals [Eq. (9) of
Ref. [11]with zero area variation]. As a result of Eq. (23),
we conjecture that after integrating the two-dimensional
fermion SU(2) degrees of freedom in Eq. (5) we should
get topological invariants for some kind of "braid groups"
for surfaces on M and paralleling similar results for the
Jacobson-Smolin loop quantum gravity solutions [12,9].

The important point to discuss now is the possibility of
representing quantum gravity observables by interpreting
physically the loop C in the argument of our proposed
Eq. (5) as the M manifold projected closed space-time
world line of a pair of matter Geld excitations, as is usu-
ally done in the loop space framework for @CD with ran-
dom loops [6]. In order to implement this idea, we con-
sider the generating functionaj. for pairs of left-handed
space-time fermions:
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- ( 0
Z[J(x )] = det p ~

+sr -bob. (1+p,) ii g~M

+J(*") (24)

It is instructive to point out that Green functions for
correlations among these pairs are given by the J(x )

functional differentiations of Eq. (23), where x+ de-
notes an arbitrary point of the four-dimensional space-
time K = M x [0, V] [14] which will be taken for simplic-
ity as a cylinder with base M. At this point, we follow the
@CD loop space formalism by writing the fermionic func-
tional determinant Eq. (23) by means of pairs of closed
trajectories L~ ~ on the cylinder space-time N:

zing(x )I = exp( — )
Ix-x- &&

M M

Trp exp~i cubo b(1+ ps)dx
~

exp
~

Jds
i

ab lMi)ELxx) (25)

Now if we consider the gravity quantum average of Eq.
(24),

I~-(A)(* ) = d'«' *'[I~-(A)](* ).
M

(A2)

( (Z[J]W b[S, C, A„])), (26)

and take into account that the four-dimensional spin con-
nection for left-handed spinors restricted to the embed
ded base three-dimensional manifold M coincides upwith the
Asthekar-Sen Connection A'„(x), we should identify the
M-projected space-time loop L~M~~ with the three-
dimensional loop C and yielding the averaged four-
dimensional spinors generating functional Eq. (25) as
a random surface scalar vertex generator projected on
the N-manifold boundary [4,6,10,11].

In writing Eq. (Al) we have taken into account that
the Ashtekar-Sen connection is an object de6ned in the
extrinsic space M, so it is a single-valued function as an
object in the random surface: namely,

(A3)

for any coordinate ( on the random surface parameter
domain.

By considering a power expansion in the extrinsic mo-
menta variables (P, K ) for the vertices in Eq. (Al),
one obtains the generic form for this object:
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APPENDIX A

In this Appendix we brieHy sketch another argument
leading to Eq. (10) in the case of nontrivial self-
intersecting random surfaces. In order to simplify the
analysis we consider the average Eq. (10) in the Gauss-
ian case written in momentum space for the involved self-
intersecting vertices:

Bxp
P-~(&) = & ~-&(*) (A5)

where the random surface current is given explicitly by
[see Eq. (3)]

where 4 b(Px, kx, (,(') denotes the random surface vec-
tor position contractions which are a Lorentz scalar ob-
ject in the extrinsic space M.

At this point we note that the motion equations hold
true for our proposed quantum gravity functionals [Eq.
(5)l:

-'(0 X"(()exp(ik [X (() —X ((')])Bbx ((')

where

x exp(iP~[xp(() + X~(('))))- f-.+~-(P )
(A6)

The vanishing of Eq. (A5) is a direct consequence of
the identity

—b"(~ —x (&)) (@~ ~-x"0)(()~&a D ~ hX (()
d'&b" ( —X*(&))(@~&) &-(b'"(( —())d'(

D D
(A7)
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APPENDIX. B

In this Appendix we obtain the expression of our pro-
posed quantum gravity stringy state in terms of a gener-
alized supersymmetric loop Jacobson-Smolin functional.

In order to show this result, we first integrate out the
two-dimensional intrinsic Dirac fields in Eq. (5) and
write the 2D fermionic functional determinant in terms
of Grassmanian trajectories on random surface S (em-
bedded on the 3D manifold M) as in Ref. [10] Eq. (1)
[C (o ~) = C~(o)+ie@~(o)l

ln det[ip (8 + A'„(A~(())B 4 "(()Ai)]

=+2 — dx D g, *g

xexp — d~ — C„~ — „~ * ~ WX', C~ ~, 0
2 ado. (B1)

exp — dg cleA Q~ g + ie ~ g
0

xA, DC ( 8)o~) . (B2)

where we have introduced our proposed QCD Grassma-
nian Wilson loop defined now by the SU(2) Ashtekar-Sen
gauge field, namely,

W( ) [A„,C„(o., 0)]

We can interpret Eq. (Bl), after introducing it in Eq.
(7), as expressing our random surface quantum grav-
ity state as a kind of coherent packet of Grassmanian
Jacobson-Smolin functionals Eq. (B2). It is worth call-
ing attention to the fact that in the case of nonBuctu-
ating loops C„(o), and with "frozen" Grassmanian de-
grees of &eedom 0 = 0, our string solution reduces to
the usual Jacobson-Smolin remark that Wilson loops de-
fined by the Ashtekar-Sen connection satisfy the quantum
gravity Wheeler-De Witt equation [2,6].
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