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Decay of magnetic fields in Kaluza-Klein theory
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Magnetic fields in five-dimensional Kaluza-Klein theory compactified on a circle correspond to
"twisted" identifications of five-dimensional Minkowski space. We show that a five-dimensional
generalization of the Kerr solution can be analytically continued to construct an instanton that
gives rise to two possible decay modes of a magnetic field. One decay mode is the generalization of
the "bubble decay" of the Kaluza-Klein vacuum described by Witten. The other decay mode, rarer
for weak fields, corresponds in four dimensions to the creation of monopole-antimonopole pairs. An
instanton for the latter process is already known and is given by the analytic continuation of the
Kaluza-Klein Ernst metric, which we show is identical to the five-dimensional Kerr solution. We
use this fact to illuminate further properties of the decay process. It appears that fundamental
fermions can eliminate the bubble decay of the magnetic field, while allowing the pair production
of Kaluza-Klein monopoles.

PACS number(s): 04.50.+h, 04.60.—m, 11.10.Kk

1. INTRODUCTION

The standard Kaluza-Klein vacuum M x S is known
to be unstable. Witten showed [1] that it can semi-
classically decay by nucleating a "bubble of nothing"
which appears to expand into space. In this paper we
will consider another class of "vacua" in Kaluza-Klein
theory which corresponds to static magnetic flux tubes
in four dimensions. Although these solutions are non-
trivial four-dimensional configurations they are simply
obtained &om dimensional red. uction of five-dimensional
Minkowski space M with "twisted" identifications. We
will see that these backgrounds are also unstable, and
in fact, have two different decay modes. The first was
discussed in [2] and corresponds to the pair creation of
Kaluza-Klein monopoles. We will show that there is an-
other decay mode which occurs at a much higher rate.
It is a direct generalization of the "expanding bubble"
found by Witten.

The semiclassical decay of a vacuum can be described.
by an instanton, i.e., a Euclidean solution to the field
equations which interpolates between the initial and final
states. The leading approximation to the decay rate is
simply e where I is the instanton action. To show that
M x S is unstable, Witten constructed an appropriate
instanton by analytically continuing the five-dimensional
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Schwarzschild solution. We will use the five-dimensional
Kerr solution to construct an instanton which describes
the decay of a Kaluza-Klein magnetic field. The sub-
sequent evolution can be obtained by a further analytic
continuation (as in the Schwarzschild case) and resembles
an expanding bubble.

In [2], an instanton describing the pair creation of
monopoles was constructed by analytically continuing
the Kaluza-Klein Ernst solution [3]. Recall that in four-
dimensional Einstein-Maxwell theory, the Ernst solution
[4] describes two oppositely charged black holes acceler-
ating apart in a background magnetic field. Since the
Kaluza-Klein monopole [5,6] is just an extremal magnet-
ically charged black hole, the pair creation of monopoles
can be described using an instanton constructed &om the
Kaluza-Klein analogue of the Ernst solution.

Remarkably enough, it turns out that the instanton
we construct &om the Kerr metric is identical to the one
previously constructed &om the Ernst solution. At first
sight, this appears impossible. Not only does the space-
time containing an expanding bubble seem very different
&om one containing two accelerating monopoles, but the
actions for the two instantons are different: in the limit
that the asymptotic magnetic field B —+ 0, the rate for
monopole creation vanishes, while the rate for bubble nu-
cleation approaches the finite nonzero value associated
with the standard Kaluza-Klein vacuum. We will re-
solve this apparent paradox in detail below. The essential
point is that the magnetic field seen in four dimensions is
not uniquely determined by the five-dimensional solution.
For axisymmetric configurations, one must choose an "in-
ternal space" by specifying a Killing field with closed
orbits; different choices yield different values of B. Phys-
ical considerations restrict this choice so that B is small
compared to the compactification scale. For one range
of parameters and one choice of internal space, the Kerr
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II. UNIFORM MAGNETIC FIELD

In Einstein-Maxwell theory, the closest analogue to a
uniform magnetic field is the Melvin spacetime [7], which
describes a static cylindrically symmetric magnetic flux
tube. The generalization of this solution to Kaluza-Klein
theory was constructed by Gibbons and Maeda [8]. It was
later realized that this solution can be obtained &om M
by simply identifying points in a nonstandard way [3,2].
Explicitly, the spacetime is given by the flat metric in
cylindrical coordinates

ds = dt +dz +dp —+pdy +(dx) (2.1)

with the identifications

(t, z, p, p, x ) = (t, z, p, p+ 2vrniRB

+2mn2, x + 27rniR) Vni, n2 g Z .
(2.2)

The identification under shifts of 2vrn2 for y and 2anqR
for x are, of course, standard. The new feature is
that under a shift of x, one also shifts p by 2mniRB.
Since y is already periodic with period 2', changing B
by adding a multiple of 1/R does not change the identi-
fications. Inequivalent spacetimes are obtained only for
—1/(2R) & B & 1/(2R). More geometrically, one can

instanton yields a four-dimensional solution with small B
which resembles the one obtained by Witten. However,
for another range of parameters, and a difFerent choice
of internal space, the Kerr instanton again yields a four-
dimensional solution with small B which now resembles
a pair of accelerating monopoles.

A closer examination of these decay processes contains
further surprises. First, as pointed out in [5] the "bub-
ble of nothing" in five dimensions appears as a point-
like singularity in four dimensions —it does not expand
outward; instead, space collapses in towards it. In five
dimensions, it turns out that the bubble wall follows
a geodesic, not a curve of uniform acceleration. Sec-
ond, in the pair creation of monopoles, the spacetime
between the monopoles dynamically decompactifies: the
size of the fifth direction increases with time, so the four-
dimensional description eventually breaks down.

It has been suggested [1] that fundamental fermions
could stabilize the standard Kaluza-Klein vacuum. It
appears that the same mechanism eliminates bubble nu-
cleation but allows the pair creation of monopoles.

The outline of this paper is as follows. In the next
section we discuss the Kaluza-Klein solutions describing
magnetic fields, and explain how a given five-dimensional
solution can give rise to different four-dimensional de-
scriptions. In Sec. III, we introduce the five-dimensional
Kerr instanton, examine its properties, and compute its
action. Section IV contains a review of the Kaluza-Klein
Ernst instanton, and establishes its equivalence to the
Kerr instanton of the previous section. The final section
consists of a summary of our results and the arguments
as to how spinors can rule out bubble formation but not
pair creation.

obtain this spacetime by starting with (2.1) and identi-
fying points along the closed orbits of the Killing vector
I = 85 + BB~.

To obtain the four-dimensional description, one must
reduce along a Killing field with closed orbits. An obvious
candidate is l. Introducing the new coordinate p = p-
Bx which is constant along the orbits of l, the metric
becomes

ds = dt—+dz +dp +p(dP+Bdx) +(dx),
(2.3)

now with the points (t, z, p, P, xs) and (t, z, p, P +
2mn2, x + 2mniR) identified. In the new coordinates
the Killing vector is simply l = 85 and consequently it
is straightforward to perform the dimensional reduction.
We recast the metric in the canonical form

ds = e ~ ~(dx + 2A„dx") + e ~~~g„„dx"dx"

(2.4)

where x~ are the four-dimensional coordinates. Note
that with this decomposition into four-dimensional fields
which do not depend on the fifth direction, the five-
dimensional Einstein-Hilbert action up to surface terms
becomes

d xQ—5g R16'G5
1

d xg g[R —2(V—'P)2 —e 2~~E2], (2.5)16'G4

where G5 ——2m'RG4. We deduce that the unit of electric
charge, in these units, is e = 2/R.

In terms of four-dimensional fields, (2.3) is

s2=P I
[ dt +dp —+dz]+P i/

p dP

B—4/~3y
2A

A= 1+B p

(2.6)

This solution describes a magnetic flux tube in the z
direction and thus generalizes the Melvin solution of
Einstein-Maxwell theory. The parameter B gives the
strength of the magnetic field on the axis via B2

l~ o.
Although the choice of reducing to four dimensions

along l seems natural, it is not unique. One could con-
sider using the Killing vector I = I + (n/R) 0~ for any in-
teger n, which also has closed orbits. The corresponding
four-dimensional solution is simply (2.6), with magnetic
field parameter B + n/R. Recalling that the parameter
B in the five-dimensional metric is restricted to lie in
the range —1/(2R) & B & 1/(2R), it would appear that
all values of the four-dimensional magnetic field can be
obtained.

However, we must consider the range of applicability
of these spacetimes. From (2.4) and (2.6) we see that for
every B g 0, the proper length of the circles in the fifth
direction grows linearly with p for large p. This seems to
cast doubt on their interpretation as Kaluza-Klein back-
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grounds. Fortunately, this is not a problem since physi-
cal magnetic fields are not infinite in spatial extent. We
can view (2.6) as an approximation to a constant phys-
ical inagnetic field which is valid only for p « 1/~H~,
in which range three-dimensional space is approximately
Bat and the internal circles have approximately constant
length. (This is not new to Kaluza-Klein theory: even
in Einstein-Maxwell theory, calculations of the decay of
electromagnetic fields due to pair creation of black holes
use the same assumption since the exact Melvin space-
time "curls up" far from the axis. ) In addition, in or-
der for the fifth direction to remain unobservable, we
must consider length scales large compared to its size:
p )) B. Comparing these two restrictions on p we see
that there is a nontrivial range of applicability only for
~R~ && 1/R. (If R is of order of the Planck scale, this
includes large magnetic fields in conventional units. ) In
other words, if ~B~ 1/R, the four-dimensional metric is
curved on scales of order the compactification scale, so a
four-dimensional interpretation is no longer appropriate.
Since the different four-dimensional reductions change B
by multiples of 1/R, we see that for fixed R at most one
can be physically reasonable. Note that in contrast, due
to the translational invariance, there is no limit on the
length of a physical Qux tube that can be well approxi-
mated by the Melvin solution.

III. THE FIVE-DIMENSIONAI
KERR INSTANTON

A. The geometry

Myers and Perry have generalized the four-dimensional
Kerr solution to arbitrary dimensions d & 4 [9]. For
d = 5, in addition to the mass, the solutions are labeled
by two angular momentum parameters. Asymptotically
we can think of these as describing a rotation in two or-
thogonal planes in B . For our purposes we are interested
in the case when only one of the angular momentum pa-
rameters is nonzero. In this case the Lorentzian metric
is given by

ds = —dt + sin 8(r + a )dp + —(dt+ asin 8drp)2
p2

p2
+ dr + p d8 + r cos 8dg, (3.1)

p + a2 p

where p = r2+ a cos 0, p and a are the mass and angu-
lar momentum parameters, and the range of the angular
variables is 0 & 8 & vr/2, 0 & p & 2z', 0 & @ & 2z.

The instanton metric is obtained by setting t = ix
and a = in with n real:

ds = (dx ) + sin 8(r —n )dy

(dx + asin 8d(p)—
p2

p2
dr + p d8 + r cos 8dg, (3.2)

T —n —p
where now

p =r —n cos 0. (3.3)

This metric has a coordinate singularity at r = r~~

p + n (the location of the black hole horizon in the
Lorentzian metric). The potential conical singularity can
be eliminated by a suitable periodic identification of the
coordinates y and x . To see this in detail, let us first
introduce two quantities encountered in Lorentzian black
hole theory:

(3.4)

where cu = iO and e are the Lorentzian angular velocity
and surface gravity, respectively, analytically continued
to imaginary values of the parameter a. The norm of the
Killing vector

(3 5)

consequently vanishes at r = r~. Introducing the new
coordinate y = y —Ox, which is constant along the
orbits of I, we note that near r = r~, the metric (3.2)
can be written

ds = (r —re) f(8)(dx ) + (r —r~)g(8)dg dx

p sin 8 2 1 f(8)
(Ci Slil 8 + p) 4K (r rH)

(3.6)

where

2rH(n2sin 8+ p)
p 2

4rHci sin28(n2 sin 8+ 2p)g8 )
p(o.2sin 8+ p, )

(3.7)

The metric then takes the form

ds2 = (dx + dy ) + (xdy —ydx)dg
f8 2 2 g8

p sin 0+ (P + 0 ~ ~

(n2 sin'8+ p)
(3.9)

which is clearly real and analytic at r = re (x = y = 0).
Thus the conical singularity is eliminated by requiring
that x be periodic with period 2vrR at fixed p where

(3.10)

In terms of the (xs, p, r, 8, g) coordinates we deduce that
the points (x, p, r, 8, g) and (x +27rniR, @+2vrniAR+

and the ellipsis denotes terms that are not important for
the following argument. If at fixed p we assume that
0 & xs & 2m/r we can introduce the coordinates

x = (r —r~)'~'cos(x'~), y = (r —r~)'~'sin(x'v) .

(3.8)
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2mn2, r, O, @) must be identified. i
In the limit r ~ oo, the instanton metric (3.2) ap-

proaches

where we have only kept terms of order O(1/r ). Com-
puting the derivative of the volume element of this metric
with respect to a unit radial vector yields

ds' = (dx')'+ r'sin Odp

+dr +r dO +r cos Odg (3.11)
KV h = sin(2O) —r —p, ——[3 —cos(2O)] . (3.16)

3 2 CI

2 4

Using the cylindrical coordinates p = rsin0, z = rcos0
with z & 0, we get

ds =(dx) +pd(p +dp +dz +zd@ (3.12)

This is clearly flat. Because of the identifications made
on the angles x, &p, we conclude that asymptotically the
instanton approaches a Euclidean Kaluza-Klein magnetic
field with magnetic field strength

The background contribution is easily computed using
the fact that the metric (3.2) approaches flat space in
the limit p = 0 for all values of n [9]. (This is reasonable
since the total angular momentum is proportional to p.)
It is clearly more convenient to use this representation of
flat space to embed the boundary isometrically, than the
standard one. Since y, only enters the metric (3.15) in
g55, we can embed it in flat space by taking a surface of
constant r in (3.2) with p = 0, and letting the flat space
coordinate x5 have period 2vrR(l —IJ,/2r ). We can then
compute Ko~h and take the difference with (3.16) to
obtain

Since BR = n/gn2+ p, and n can take both posi-
tive and negative values, we see that B lies in the range
—1/R & B & 1/R. In Sec. II, we saw that for a uniform
magnetic Geld, inequivalent Gve-dimensional spacetimes
were obtained only for —1/(2R) & B & 1/(2R). This
means that the Kerr instanton with B & —1/(2R) (B )
1/(2R)) asymptotically approaches exactly the same
magnetic Geld solution as the instanton with parameter
B + 1/R (B —1/R). This will be an important point
in the interpretation of the instanton as describing two
modes of decay, to be discussed shortly.

4

The Euclidean action is therefore

~ pB
IKerr =

4G5

Using (3.10) and (3.13), one finds

mB2 1

8G4 (1 —R2B~)

(3.17)

(3.18)

(3.19)

B. The Euclidean action

In this section we calculate the Euclidean action of
the above instantons. This will be used in the next sec-
tion when we interpret them as mediating a decay of the
Kaluza-Klein magnetic field. The full Euclidean action
with boundary terms included is only defined with re-
spect to a reference background and is given by

M= —,J=-Ma,3'7t p 2

8G5' 3
(3.20)

where a is the Lorentzian rotation parameter. The Smarr
relation is

We can check the consistency of this result with
the various thermodynamic formulas for Gve-dimensional
black holes [9]. The mass M and angular momentum J
are given by

1 1I=- ~gR— Wh(K —K,), (3.14)16'G5 8~G5
M = (TS+~J), —3

2
(3.21)

where K is the trace of the extrinsic curvature of the
boundary, and Ko is the analogous quantity for the
boundary embedded in the background geometry. For
the Kerr instanton, the appropriate background is the
(analytic continuation of the) Kaluza-Klein magnetic
field solution (2.3). Since our instanton is Ricci flat, the
only contribution to S comes &om the surface term. The
metric induced on the surface r = const in (3.2) is

d82 1 ——" dx5 2+ sin28 r2 n2 dV,
2

r2

+p dO + r cos Od@ (3.15)

g = M -TS-~J = -M1

3
(3.22)

and thus the Euclidean action is

1M M
IK„, —————————2mB—,

T 3T 3
(3.23)

with the entropy given by S = (1/4Gs)AH, A~ being
the 3-area of the horizon. The thermodynamic potential
R' is

Demanding that the metric is smooth on the axis g~~ = 0
we deduce that p has period 2' at fixed 2; .

The identification needed to convert this Hat space into the
magnetic field solution are identical to the ones with p
0, and do not affect local calculations such as the extrinsic
curvature.
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which agrees with our direct calculation. Note that we
can obtain the action of Gve-dimensional Schwarzschild
as the limit of IK„, for zero B: Is,i,~ ——xR /8G4. This
difFers by a factor of 2 from the result of Witten [1].

C. Interpretation as a decay

In order to show that the instanton (3.2) describes the
semiclassical instability of a Kaluza-Klein magnetic field,
it sufEces to Gnd a surface of zero extrinsic curvature
(zero momentum). One can then use the fields on this
surface as initial data to obtain a real Lorentzian met-
ric which describes the spacetime into which the static
magnetic field decays.

Such a zero-momentum surface in (3.2) is easy to find,
and is given by @ = const. In fact, to obtain a surface
which is complete, we need to take both @ = 0 and vr,
since g is an angular coordinate with regular origin at
8 = m/2. The induced metric on this surface turns out
to be just the four-dimensional Euclidean Kerr-Newman
metric with zero mass. The two surfaces @ = 0, 7r each
have 0 & 0 & vr/2 and cover half of the space. But they
join at 8 = vr/2, and the full zero-momentum slice is
conveniently represented by letting 0 take its usual range
0&8&~.

The Lorentzian evolution of these initial data is ob-
tained from (3.2) by rotating the coordinate, g, g -+ it:

da = (dx ) +sin 8(r' —n )dry
2

——(dx + csin 8d(p)
P r —Q! —p

+p d0 —r cos Odt (3.24)

To understand what this metric represents, let us first
set n = 0. The metric (3.24) then reduces to

1 d~5 2+ 1 dr2

+r [ cos 8dt + d—8 + sin 8drp ] . (3.25)

This is precisely the solution found by Witten in his study
of the decay of the Kaluza-Klein vacuum. Witten pre-
sented the solution in a different set of coordinates:

1 d~5 2+ 1 — dr2

+r [ dt + cosh t(d8 —+ sin 8d(p )] . (3.26)

Both of these metrics can be obtained by starting with
the five-dimensional Euclidean Schwarzschild solution,
and analytically continuing the round metric on the
8 . If one starts with d8 = dy + sin yd02 and sets
y = (m/2) +it one obtains the form (3.26). The metric
in brackets is just three-dimensional de Sitter space. If
instead one starts with ds2 = d8 + sin 8dy2 + cos 8dvP
and sets vP = it, one obtains the form (3.25). The met-
ric in brackets is again three-dimensional de Sitter space,
but now in static coordinates. These do not cover the en-
tire spacetime, but only the region inside the horizon at
8 = vr/2. Note that the initial 4-surfaces t = 0 in the two

metrics are identical. Because 0/Bx vanishes at r = r~
the initial spacelike surface is spherically symmetric and
has topology B x 8 . The 2-surface r = rH is a to-
tally geodesic (and hence minimal) submanifold of the
initial 4-surface with area 4' p. The subsequent evolu-
tion is easier to see in the inetric (3.26) which covers the
entire five-dimensional spacetime. The surface r = r~
expands outwards with area increasing like cosh t. This
is Witten's expanding bubble. The isometry group is
U(l) x SO(3,1).

Returning to the general solution (3.24), we see that
at t = 0, the surfaces of constant r and x again have a
minimum area of 4m@ which is obtained when r = rII.
Even though we no longer have spherical symmetry, this
surface is geometrically singled out since it is a totally
geodesic two-sphere. Although the metric appears static,
it is directly analogous to (3.25). The time translation
symmetry is a boost, since for large r the metric ap-
proaches the analytic continuation of (3.12)

ds =(dx ) +p d(p +dp +dz —z dt (3.27)

D. Four-dimensional description

We now wish to examine what the five-dimensional
Lorentzian solution (3.24) looks like in terms of four
dimensional fields: i.e., to relate it to physics. As we

One can again introduce the coordinates (t, 8) used in
(3.26) which allow one to extend through the coordinate
singularity at 8 = vr/2 (which corresponds to a Killing
horizon of the boost Killing vector field 8/Bt) Altho. ugh
these coordinates cover the entire spacetime, the 8/Bt
vector field is not hypersurface orthogonal when n g 0.
Nevertheless, we can still conclude that the "bubble"
r = r~ is a deformed version of the expanding three-
dimensional de Sitter metric.

As we mentioned earlier, there are two distinct Kerr
instantons that asymptotically approach a given five-
dimensional magnetic field solution, (2.1) with ~Bp~
1/2R. The obvious one has n/p = Bp while the less ob-
vious one, "shifted Kerr, " has n/p = Bp + 1/R (where
the upper sign is chosen when Bo is negative and the
lower sign when Bp is positive). Thus there are two sep-
arate decay modes; the one that dominates will be the
one with the lowest action. From (3.19) we see that if
]B~—:~n/p~ & 1/(2R) the first will dominate while if
]B( = ]a/p) ) 1/(2R) the second will. However, we
argued in Sec. II that these solutions are physically rea-
sonable only if ~B] && 1/R. Thus, the first instanton is
physically the most important. Since even this instanton
has a larger action than the one with B = 0, we see that
the presence of a magnetic field tends to suppress the
decay of the vacuum. We have plotted the action of the
two instantons in Fig. 1.

It should be emphasized that the two instantons are
the same five-dimensional Kerr instanton but with dif-
ferent values of its parameters. On the other hand we
will see in the next section that the more physical four-
dimensional interpretations difFer substantially.



6934 DOWKER, GAUNTLETT, GIBBONS, AND HOROWITZ 52

]
I

I

I

it." Both future and past null infinity are incomplete.
If we reduce along the symmetry l = Bs + (n/R)0~

then the situation is difFerent. To see this, we introduce
the new coordinate P = p —(n/R)x which is constant
along I. Since we have singled out one rotation direction,
the four-dimensional spacetime will no longer have the
full SO(3,1) syminetry, but instead will have only a time
translation and U(1) symmetry. In the new coordinates

—1/ R —1/(2R) —1/(2R) —1/ R

p A r
g55= ~ —— + sin 0,r2 B2

. 2
2

g5p —— sin 0 .

(3.29)

FIG. 1. Actions of two instantons mediating the decay of
a Kaluza-Klein magnetic field versus magnetic Beld strength.
The solid line is the Kerr instanton and the dotted line is the
"shifted Kerr" instanton. The range of inequivalent magnetic
fields is given by —1/(2R) ( B ( 1/(2R) and the "physical"
range is close to the I axis. Hence the "unshifted" decay
dominates.

discussed in Sec. II, this requires a choice of Killing Beld
l with closed orbits and the issues raised there regarding
the physical justiBcation of the Kaluza-Klein reduction
will be relevant. If we use coordinates in which the Killing
field is simply t = 0/Ox, then the four-dimensional fields
can be read off after writing the Bve-dimensional metric
in the form (2.4).

Let us start with the case a = 0 (3.25). If we re-
duce along the symmetry l = 8/Bxs, there is no four-
dimensional Maxwell Beld, and the four-dimensional met-
ric is

2= p /1/2 —1
ds4 —— 1 —— 1 —— dr + r (—cos edt + d82 2 2 2 2

r2 r2

+sin Hdip ) (3.28)

Although we refer, here and subsequently, to this as a sin-
gularity in four dimensions, it should be noted that we are
using this as shorthand for the statement that it is a point in
whose neighborhood the four-dimensional description breaks
down and the true five-dimensional nature of the spacetime,
which is completely regular, necessarily manifests itself. It is
not a singularity in the sense of a breakdown of the physics.
The same comment applies to discussions of Ka?uza-Klein
monopoles.

In this metric, the "bubble" at r = rH has zero area and
is a pointlike singularity which is timelike [5]. However,
this four-dimensional spacetime differs &om other static
spacetimes with naked singularities such as the negative
mass Schwarzschild solution. The reason is that the time-
like symmetry is a boost, so the singularity is following
the orbit of a boost and hits null inBnity. One could view
the singularity as being "at rest, " with space "falling into

Notice that g55 no longer vanishes everywhere on the
horizon but only at the poles 0 = 0, vr. More geo-
metrically, the Killing vector Beld l has a "nut" and an
"antinut" at the north and south pole, respectively. In
the case n2 = 1 these nuts are self-dual (anti-self-dual)
in the sense of [10] and correspond to monopoles (anti-
monopoles), as we will see in detail in Sec. IV in the con-
text of the Ernst instanton. The four-dimensional gauge
field A~ = gs~/(2gss), is now nonzero and asymptot-
ically describes a uniform magnetic Beld with strength
B = n/R This m. eans that these four-dimensional re-
ductions of Schwarzschild are in some sense unphysical:
as discussed in Sec. II, the Kaluza-Klein reduction only
makes sense when the four-dimensional magnetic Beld
strength, B, satisfies B (( 1/R. In other words we, Rom
our four-dimensional point of view, would never see mag-
netic fields of strength n/R and the question of how we

would see them decay is moot. We will, however, con-
tinue to analyze these reductions as a simpler exercise be-
fore looking at the four-dimensional reductions of Kerr,
some of which mill be physically relevant.

Using (2.4) and (3.29), the four-dimensional metric is
given by

—1

d8 = g55
—r cos 0dt + 1 ——( dr2

(r2 —p, )sin'8
+r d0 dp

g55
(3.30)

The important point is that gp~ ——0 at the horizon while

gag remains nonzero. Thus the horizon is no longer a
point, but rather a line. The end points of this line 0 = 0,
vr are curvature singularities, but away &om these points
the metric near this line (on a t = constant surface) is
simply proportional to

-2
dz +dr + —dyn2 (3.31)

where we have set z = r~0, r = r —p, and used
the fact (3.10) that R = p. Thus for n = +1 the
line is completely smooth, while for ~n~ ) 1 there is a
conical singularity. Since the deBcit angle is positive,
the conical singularity represents a string connecting the
two singularities. Given the boost symmetry of the Bve-
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dimensional metric, it is clear that under time evolution,
the two pointlike singularities will expand away &om each
other and hit null infinity, for all values of n.

We now consider the general case (3.24) with a g 0.
The natural choice of Killing Geld to reduce along is
l = t95+ 00~ which vanishes at the horizon. Since I = 0
at the horizon, it follows that the four-dimensional met-
ric will be singular there. Since the boost symmetry is
preserved under dimensional reduction, we see that the
four-dimensional metric resembles the first reduction of
n = 0 discussed above. There is a single naked singular-
.'ty and null infinity is incomplete. The asymptotic valu-
of the four-dimensional magnetic field is 0 = n/p and so
we can only interpret that as the four-dimensional view
of the decay if [n/p[ « 1/R.

More generally, we can reduce along the Killing Geld
I = l+ (n/R)0~ for any integer n. As before, this is
accomplished by introducing the new coordinate y = p-
Bzs where B = (cr/p) + (n/R). We then find

duce along the Killing field l = 1+ (1/R)8~. (Similarly
for small negative B, there are two decay modes. ) In the
first case, a single naked singularity appears in space,
while in the second, there is a pair of naked singularities
accelerating away &om each other. For small B the sec-
ond process is highly suppressed with respect to the Grst.
The actions for these two instantons are given in Fig. 1
by the solid and dotted lines, respectively.

IV. KERR IS ERNST IN KALUZA-KLEIN

The four-dimensional picture of two objects accelerat-
ing away &om each other in a magnetic Geld is reminis-
cent of another known solution in Kaluza-Klein theory:
the Kaluza-Klein Ernst solution [3,2]. In this section we
will prove that the Gve-dimensional Kerr instanton and
the extremal Kaluza-Klein Ernst instanton are actually
the same.

g5s = 1 ——(1+crB sin 8) + B (r —~ ) sin 8,
p2

(3.32)
2po! Sin 0 ~ 2

gs - ——B(r —a ) sin 8—
p2

(1+o.Bsin 8) .

2

ds =g —r cos edt + drp
r —A —p

(r —a —p) sin 8
+p 88 +

g55
(3.33)

One can show that g5s ——0 on the horizon for B = a/p as
expected, but is nonzero on the horizon for other values
of B (except at 8 = 0, vr). From this, and (2.4), we can
compute the four-dimensional metric,

A. Review of Kaluza-Klein Ernst:
Pair creation of monopoles

In Einstein-Maxwell theory, a Melvin magnetic solu-
tion can decay via the pair production of (extremal and
nonextremal) charged black holes [11,12,2]. The instan-
ton for this process is the Euclidean section of a solution
found by Ernst [4] which describes charged black holes ac-
celerating in a magnetic Geld. Similarly, a Kaluza-Klein
magnetic Geld can also decay via the pair creation of
Kaluza-Klein monopole-antimonopole pairs [2]. The in-
stanton for this process is the Euclideanization of a so-
lution that describes a Kaluza-Klein monopole and anti-
monopole accelerating away &om each other in a Melvin
background [3,2]:

We see that gp+ again vanishes on the horizon so that
the horizon is now a line which ends in two naked singu-
larities. Those singularities, due to the boost symmetry,
accelerate away to infinity. Furthermore, on the horizon

2 2 2 ~ 2
p g55=A r~sln 0, (3.34)

so if we set r = r —o. —p, the metric is again propor-
tional to (3.31) which is regular for [n[ = 1.

As before, we can only interpret these four-dimensional
descriptions sensibly as Kaluza-Klein reductions when
the four-dimensional magnetic Geld is much less than
1/R. However, unlike the Schwarzschild case, this con-
dition can now be satisfied even with n g 0: We need
[(a/~} + (n/R}[ && 1/R, which [since [n/p, [ & 1/R &om
(3.10)] will hold if either o./p is positive, close to 1/R and
n = —1, or n/p is negative, close to —1/R and n = +1.

To summarize, we have seen that there are two Kerr
instantons which asymptotically approach a given Gve-
dimensional Kaluza-Klein magnetic field. If we start with
a four-dimensional magnetic Geld with strength 0 & B (&
1/R, then we can either use the Kerr instanton (3.2) with
o./p = B and reduce along' = 05+BED~, or take the Kerr
instanton with a./p = B —1/R ("shifted Kerr" ) and re-

ds = (dx + 2Ac, d@)
Af(y)

x A2 2: —y 2

x + + f(y)
f g(y)dr' dy2 l ~ f(x)dx'

~ &(y) g(y)) ~ 8(*)

g(x)dC2)+ p ) (4.1)

where

The form of the solution given here differs slightly from
that in the references. Here we have chosen coordinates such
that A —+ 1 at in6nity. This turns out to be much more
convenient, and this new form of the solution can also be
taken for all values of the dilaton coupling a (here, a = ~3).
It is obtained by the same generating transformation used in
[3] but starting with a form of the C" metric in which the
gauge potential vanishes on x = (3. The formulas in [2] may
be used here if some care is taken in making the substitutions
A(t'3) -+ 1 and A($4) -+ [1 + —(1 + a )bq($4 —(3)]
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1 1
[1 + 2bq(x —(s)] + —,

2bA 2b

A = [1 + 2bq(x —(s)]z + b'g(*)f(*)
Azx —y2

f(() = (1+v A(),
g(() = [1 —(' — +A('],
4q = r+r2

(4.2)

B. The act ion

The action of (4.1) is [2]

Irnon =
G A(«)

(&
(4 5)

It is possible to express the action in terms of the physical
magnetic Geld and monopole charge. We have

The roots of g(() are (z & (s & «. The surface y = (s
is the acceleration horizon and the coordinates are re-
stricted by (z & y & (s and (s & x & «. w is a Euclidean
time coordinate whose period, Aw, is chosen so that the
acceleration horizon is regular. The zero-momentum slice
is v. = 0, z

L7- x is also periodic with period 2vrR. As
infinity is approached, x, y ~ (s, the solution tends to
the Melvin spacetime (2.6), Euclideanized, with mag-

netic field parameter B = bv, where we have defined
v—:&g'((s) f((s) ~ & 0 for convenience.

The five parameters R, b, r+ ) 0, r ) 0, and A ) 0
are re strict ed by three conditions . The first requirement
is that the root of f((),(q, be equal to the lowest root of
g((), (z. If this condition does not hold then the solution
describes nonextremal, magnetically charged black holes,
not monopoles. The second condition is

A(«) = [1+2bq(« —(s)]

and condition (4.3) gives us

A(()=«
(s —(z

Then,

A(«)(&s —&z) « —&z [, A(( )
—1]

—1

4 3 4 3

From (4.4) and the definition of B we have

A(«) = (1 —4Bq)

and finally we obtain

(4.6)

(4.7)

(4 8)

(4.9)

—g'(&s)f hs) ' ' = g'(«)f («) "A(«) " (4 3)

which is needed to enforce regularity of the solution on
the axis of symmetry. The range of the azimuthal an-
gle, O, is Ao = 2vr/v. The condition (4.3) ensures that
choosing L4 as the range of 4 eliminates conical singu-
larities at both x = (s and «. In four dimensions, in the
weak Geld limit, this condition is physically transparent;
it is simply Newton's law mA = qb, where for weak Gelds
we can identify m, A, q with the mass, acceleration, and
charge of the black holes and B = b.

The Gnal condition on the parameters is given by the
geometrical analogue of the Dirac quantization condition
in the presence of magnetic charge, which is indeed its
four-dimensional manifestation. We can reduce (4.1) to
four dimensions along t95, and calculate the physical mag-
netic charge of the monopole j which must be an integer
multiple of R/4 to eliminate conical singularities at the
poles in Gve dimensions:

(« —(s) R
2v[1 + 2qb(« —(s)] 4

(4.4)

where k is an integer. Since the unit of electric charge is
e = 2/R we see that this gives us the Dirac quantization
condition. At the center of the monopole, y = (2, the
solution (4.1) approaches that of the static Kaluza-Klein
monopole of charge q [2]. Thus, when k = +1 this cor-
responds to the Hopf Bbration of S and the spacetime
is completely regular at the origin, whereas for ~k~ ) 1,
the higher Hopf fibrations, there is an orbifold singular-
ity. We therefore restrict attention to the cases k = +1.
After imposing these conditions the independent param-
eters can be chosen to be B and R.

I „(B)=
G4 1 —(1 —4Bq)2

vr R2 1

8G4 1, (1 ~B~R)2
(4.10)

C. The equivalence

The actions of (3.2) and (4.1) indicate that we should
look for a coordinate transformation between. (3.2) with

n & 0 and B = n/p and (4 1) with B = bv = B—1/R &
0. This value of b requires, by (4.3) and (4.4), that q & 0
and

(( —
& )

2v[1 + 2qb(« —(3)] 4
(4.11)

We can do a similar calculation for the action of the in-

stanton for pair creation of extremal black holes for all values
of the dilation coupling a [2], expressing it in terms of the
physical magnetic 6eld and charge:

2' g 1
G4 1 —[1 —(1+a )Bq]

where in the last step we have used qB ) 0 which follows
from (4.3) and (4.4).

Comparing with (3.19), we see that the actions are
equal up to a shift in the magnetic Geld parameter by an
amount 1/R: thus the action for the Ernst instanton is
given precisely by the dotted line in Fig. 1.
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and &om (4.7)

1+ 2&b((4 —(s) = ((4 —6)
(6 —(2)

' (4.12)

which, together with the definition v, and (3.10) and
(3.13), imply

B 4q
2 2

—
2 3 2 4 3 )

(4.13)

Next we note that g55 in both cases tends to 1 at infin-
ity, suggesting we take the two x coordinates to be equal.
However, the cross term between x and y in (3.2) tends
to zero at infinity whereas the cross term between x5 and
C in (4.1) gives rise to a Melvin magnetic field at infin-
ity of strength B —1/R. We conclude that in order to
compare the two solutions we must change coordinates
in (4.1) [we could choose to change coordinate in (3.2)
but that turns out to be more complicated] so that the
cross term between the new azimuthal coordinate and x
vanishes at infinity. This is achieved by setting

(4.14)

and we obtain

&(y) sds = (dx +2A, dip)

, (g(y)d~'
f(y) g(y) ) ( g(*)

+g (x)d(p'2 (4.15)

(4.16)

where A', = q(x —Q). This is locally the Kaluza-Klein
C metric [3]. However, it differs in that the identifica-
tions on the coordinates P and xs are similar to that of
Kerr as given after (3.10) and so it still asyinptotically
approaches a Kaluza-Klein magnetic field with strength
B. The fact that the coordinate transformation (4.14)
results in the C metric is an immediate result of the ob-
servation that the Ernst solution is obtained &om the C
metric by just the reverse of this transformation [3].

One can now verify that (3.2) can be transformed into
(4.15) by the coordinate identifications:

It follows that the Lorentzian Ernst solution, (4.1) with
7 = it', and the doubly continued Lorentzian Kerr so-
lution (3.24) are the same. Thus the five-dimensional
solution, which was previously interpreted as describing
two Kaluza-Klein monopoles accelerating apart in a inag-
netic field, is in fact the same as the one describing an
expanding bubble. Contrary to one's expectation, the
five-dimensional space does not have two localized re-
gions of curvature. These appear in four dimensions as a
result of the reduction. In fact, the two singularities that
appear in the "shifted" reduction of the Kerr solution
are now revealed to be none other than a Kaluza-Klein
monopole and antimonopole with charges +R/4.

The surprising equivalence between these two solutions
raises a number of issues which we now address. In [2] it
was shown that the centers of the monopoles in the ex-
treme Kaluza-Klein Ernst solution are not really acceler-
ating, but in fact follow geodesics in five dimensions. How
is this compatible with the fact that this spacetime is
equivalent to an expanding bubble? Since the worldlines
for the monopole centers are the north and south poles
of the bubble, this is consistent only if the bubble itself
is not accelerating. To confirm this, consider the bubble
(3.26) obtained &om the five-dimensional Schwarzschild
solution. The world line corresponding to constant r, 0, p
has tangent vector u = (1/r)(0/Ot). The acceleration of
this world line is A„= (1/r)V'„r, whose norm vanishes
as one approaches the bubble at r = p. Thus, a five-
dimensional observer near the bubble does not have to
undergo large acceleration to stay away from the bubble.
A more general argument that the bubble does not ac-
celerate (which applies to Kerr as well) is simply that it
is the fixed point set of a continuous isometry and there-
fore must be totally geodesic [10]. In four dimensions,
however, observers do need to accelerate more and more
to stay away &om the singularity.

One can clearly take the angular momentum parameter
to zero in the Kerr solution and obtain the Schwarzschild
metric. What is the analog of this limit for the Ernst
solution'? Prom Eq. (4.13) we have

s =(( ()(( -(). (4.17)

Since (4 —gs is always finite, we see that the limits n -+ 0
with p fixed corresponds to the limit (q -+ (s. Since the
range of y in the Ernst instanton is (2 & y ( (s, this
is clearly a singular limit. To obtain a regular limiting
geometry, one has also to rescale the coordinates x and
y. The appropriate rescalings can be derived &om (4.16)
since they just correspond to keeping r and 0 finite and
nonzero. The result is a description of the Schwarzschild
metric in accelerating coordinates. In some sense the
usual Ernst coordinates include a factor of the Kerr an-
gular momentum which must be removed before taking
the Schwarzschild limit.

In a similar vein, one might ask what is the analog of
the extreme Kerr solution. One can see &om (3.1) that in
five dimensions, the Lorentzian Kerr solution never has
a degenerate horizon. If we make the angular momen-
tum parameter too large, the horizon becomes singular.
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However, the analytically continued Kerr instanton (3.2)
is regular for all values of p and o. and thus there is
no analog of the extremal limit. Of course, the extreme
Ernst solution is itself the limit of a more general nonex-
treme solution. It follows that there is a deformation
of the five-dimensional Kerr metric under which it de-
scribes two nonextreme Kaluza-Klein black holes accel-
erating apart. To obtain it one can, for example, substi-
tute in the nonextremal C metric x and y as functions of
r and 0 given by (4.16).

We have seen that the Kaluza-Klein Ernst solution can
be rewritten in a simpler way as the Kerr solution. It is
thus natural to ask whether the original Ernst solution
in Einstein-Maxwell theory can similarly be rewritten in
a simpler form. More generally, consider the one param-
eter family of theories with metric, Maxwell field, and
d.ilation where the parameter a governs the coupling be-
tween the dilation and Maxwell field. There is an analog
of the Ernst solution for each value of the parameter a
[3]. Kaluza-Klein theory corresponds to a2 = 3. One
can, for example, utilize the coordinate transformation
(4.16) to obtain another form of these metrics for a g 3,
perhaps leading to new insights.

In [2], the topology of the Kaluza-Klein Ernst instan-
ton was shown to be S with an S» removed. How does
this compare with the topology of the Kerr instanton?
The Kerr instanton has the topology of a Gve-dimensional
Euclidean black hole: R2 x S (with metrically the R2
in the shape of a cigar). But S —S is equivalent to
R with a line removed, which is indeed. R x S . So the
spacetimes are equivalent globally, and not just locally.
The Lorentzian analog of this statement explains how the
positive energy theorem is violated. The extremal Ernst
solution has zero total mass since there is a boost symme-
try but it is clearly not the Melvin background. However,
as first pointed out by Witten [1], the positive mass the-
orem holds in Kaluza-Klein theory only if the manifold
is globally of the form M x S, for some four-manifold
M.

The topology of the spatial slices, including the zero-
momentum slice, of the Kaluza-Klein Ernst-Kerr solution
is S —S = R x S . We can argue that this is the spatial
topology of any monopole-antimonopole configuration,
for example one which is asymptotically the Kaluza-Klein
vacuum rather than Melvin, as follows. The topology of
a monopole-antimonopole configuration can be described
generally as the union A U B 0 C where A and B are
both four-balls D corresponding to the monopole and
antimonopole and | is the nontrivial U(1) bundle over
R gD gD (R with two three-balls removed) which
has zero winding over the sphere at infinity, and wind-
ings +1 and —1 over the other two S2 boundaries [13].
This description Gxes the topology uniquely and is in-
dependent of whether the metric tends to the vacuum
or a magnetic Geld at infinity. Thus the topology must
be B x S, since we know that is the topology of the
pole-antipole configuration in Kaluza-Klein Ernst-Kerr.

A final interesting observation is that after two Kaluza-
Klein monopoles are created and accelerate away to in-
finity, the spacetime dynamically decompactifies. This
is most easily seen using the Ernst form of the metric

(4.1). The coordinate y becomes timelike for y ) (s, and
the late time behavior corresponds to fixing x (g (s) and
all coordinates other than y, and then taking the limit

y + z. It is easy to see that in this limit, g55 diverges. In
other words the Gfth dimension decompactifies and the
four-dimensional reduction is no longer valid. We should
note that this is the case at the level of the whole solu-
tion and since we are only considering the solution close
to the axis, as an approximation to the decay of a real
magnetic Beld, its physical significance is unclear.

V. DISCUSSIGN

To summarize, we have seen that magnetic fields in
Kaluza-Klein theory are described by five-dimensional
Minkowski space with twisted identifications. The four-
dimensional reduction, however, is only valid for four-
dimensional magnetic field parameter values ~B~ && 1/R
and for distances &om the axis of symmetry that are
& 1/~B~. We justify the latter by arguing that magnetic
fields in the real world will have finite spatial extent.

We have demonstrated that the Euclidean five-
dimensional Kerr metric gives an instanton describing
the decay of Kaluza-Klein magnetic fields, and argued
that for a physical four-dimensional magnetic field (i.e. ,

~B~ && 1/R) there are two ways it can decay: by pro-
ducing single singularities into which space "collapses, "
or by producing pairs of monopole-antirnonopole pairs
which accelerate off to infinity. The former type of decay
is much more likely, for small fields, than the latter. We
have seen that this Kerr instanton is, in fact, identical to
the Kaluza-Klein Ernst instanton, and discussed several
consequences of this surprising fact. We have also shown
that the fifth dimension tends to decompactify dynami-
cally after the second, rarer decay by pair production.

Thus we arrive at the final four-dimensional picture.
If the magnetic Beld is zero, then the vacuum decays by
endlessly producing apparent naked singularities. Prom
the Bve-d.imensional point of view these correspond to
Witten's "bubbles of nothing" which must eventually col-
lide, and so in the four-dimensional description the sin-
gularities will coalesce. If we start at time t = 0 in the
Kaluza-Klein vacuum (though it is hard to imagine, given
these instabilities, how we could have gotten into the vac-
uum in the first place) then at any finite time, there is
still an infinite amount of Bat space left and the process
will continue forever. If there is any nonzero magnetic
field present, then, as well as this decay, there is a small
chance that a pair of monopoles will be pair created.

Since many currently popular unified theories include
extra spatial dimensions, it is important to ask why the
never-ending bubble nucleation discussed here is not a
problem for these theories. One resolution was proposed
in [1], and is applicable if the theory contains funda-
mental fermions. In five-dimensional Kaluza-Klein the-
ory, there are inequivalent ways to include elementary
fermions; one must specify the periodicity of the fermions
around the compact direction or in other words a spin
structure. When spacetime has topology R x S there
are two choices for the spin structure [for simplicity, we
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will assume that the fermions are not coupled to any ex-
tra U(1) symmetry]. In the vacuum, the choices can be
distinguished by asking how spinors transform as they
are parallel transported around the fifth direction. For
one spin structure they come back to themselves; for the
other they pick up a minus sign. As Witten pointed out,
the five-dimensional Schwarzschild instanton has topol-
ogy R x S and. consequently a unique spin structure.
Asymptotically, Schwarzschild tends to the Kaluza-Klein
vacuum and one can ask which spin structure one ob-
tains there. It turns out that a spinor picks up a minus
sign under parallel propagation around the fifth direc-
tion. Thus, if one chooses the other spin structure for
the vacuum (which is the conventional choice, required
to have massless fermions and supersymmetry), it cannot
decay via the Schwarzschild instanton.

What about magnetic fields? Since the Melvin solution
again has topology R x S, there are two spin structures.
Even though the spacetime is locally Bat, the nontrivial
identifications imply that if a vector is parallel propa-
gated around the S, it will return rotated by an angle
2vrRD. It follows that for one spin structure, parallel
propagation of a spinor around the fifth direction results
in the spinor acquiring a phase e R ~, where p is a gen-
erator of the lie algebra of the spin group Spin(5) and

= —1. For the other spin structure, parallel propaga-
tion gives a phase —e R++.

Since the topology of the Kerr instanton (3.2) is again
R x S it also has a unique spin structure. It tends
to Melvin at infinity and one can show that spinors pick
up the phase —e ~ / "~~ under parallel transport around
the closed integral curves of l, (3.5), at infinity. Now, for
a given four-dimensional magnetic field of parameter B,
there are two instantons that describe its decay, as we dis-
cussed: (3.2) with (i) o./p, = B and reduced along l and

(ii) n/p = B —1/R and reduced along l = l + (1/R)cl .
Instanton (i) has spinors which pick up the phase —e +
when parallel transported around orbits of l. In the case
of (ii) one might think that the extra rotation involved
in the definition of the internal direction would introduce
an extra minus sign into the phase. This is not the case.
Since the spacetime is almost Qat near infinity, this ex-
tra rotation has the same eÃect as parallel propagating a
spinor around a circle in Bat spacetime. It does not in-
troduce another minus sign. Thus spinors on (ii) pick up

a phase —e ~ / ~~ = +e ~ on parallel transport
around orbits of l' (and l). We see that the spin struc-
tures on the two diferent instantons correspond to the
two inequivalent choices of spin structure on the Melvin
background. Thus choosing the one in which spinors pick
up the phase e +~ (which is the natural generalization,
for small B, of the standard choice) rules out decay via
instanton (i), the "bubble" type decay, but allows decay
via (ii), the pair creation of monopoles.

It is natural to wonder what the implications of our re-
sults are for string theory. The Kaluza-Klein monopole
solves the string equations of motion to leading order in

For large R the five-dimensional curvature is small
and we do not expect significant n' corrections [14]. Al-
though it is not yet known how to determine the soliton
spectrum in string theory, it is natural to assume that the
Kaluza-Klein monopole solution corresponds to a state in
the Hilbert space of toroidal compactifications (although
the fact that this solution does not approach the stan-
dard Kaluza-Klein vacuum at infinity [15] is a subtlety
that needs to be addressed). Supersymmetric toroidally
compactified string theories are conjectured to be invari-
ant under strong weak coupling duality (see for example
[16—18]). The states dual to the Kaluza-Klein monopoles
are electrically charged string winding states. It would
be interesting to calculate the pair production rate for
the elementary string states in the first quantized the-
ory and compare this with the rate calculated using the
space-time instanton techniques employed here. This is
currently under investigation.
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