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R+ R2 gravity as R+ back reaction
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The quadratic theory of gravity is a complicated constraint system. We investigate some con-
sequences of treating quadratic terms perturbatively (higher derivative version of back reaction
effects), which is consistent with the way the existence of quadratic terms was originally established
(radiative loop effects and renormalization procedures which induced quadratic terms). We show
that this approach overcomes some well-known problems associated with higher derivative theories,
i.e., the physical gravitational degree of freedom remains unchanged from those of Einstein gravity.
Using such an approach we first study the classical cosmology of R+ PR theory coupled to matter
with a characteristic p oc a(t) dependence on the scale factor. We show that for n ) 4 (i.e.,

p ) —p) and for a particular sign of p, corresponding to the nontachyon case, there is no big bang
in the traditional sense. And, therefore, a contracting FRW universe (k ) 0, k = 0, k ( 0) will

rebounce to an expansion phase without a total gravitational collapse. We then quantize the corre-
sponding minisuperspace model that resulted from treating the PR as a perturbation. We conclude
that the potential W(a), in the Wheeler-DeWitt equation 8 /Ba + 2—W(a) @(a) = 0, develops

a repulsive barrier near a = 0 again for n ) 4 (i.e., p ) —p) and for the sign of p that corresponds
to the nontachyon case. Since a 0 is a classically forbidden region, the probability of finding a
universe with a singularity (a = 0) is exponentially suppressed. Unlike the quantum cosmology of
Einstein s gravity, the formalism has dictated an appropriate boundary (initial) condition. Classical
and quantum analyses demonstrate that a minimum radius of collapse increases for a larger value
of ~P~. It is also shown that, to first order in P, the PR term has no effect during the radiation

(p = —p) and infiationary (p = —p) era. Therefore, a de Sitter phase can be readily generated by
incorporating a scalar field.

PACS number(s): 04.50.+h, 98.80.Hw

I. INTRODU CTIION

Since the discovery of the singularity theorem of Hawk-
ing and Penrose [1], the speculation of creating a nonsin-
gular theory by incorporating the quantum property of
gravity and/or using non-Einstein gravity has attracted
some interest. Because of advances in quantum field the-
ory, the two avenues of speculations seem to be mathe-
matically related. That is, even if one starts with Ein-
stein s gravity, the renormalization consideration dictates
that the action for gravity must have terms that are
quadratic in the Ricci tensor [2].

In quantum cosmology, canonical quantization is the
preferred formalism. This is because, for a universe that
is homogeneous and isotropic in large scales, there are
no asymptotically "in" and "out" fields, which are nec-
essary in order to implement the covariant quantization
formalism. The task of identifying dynamical degrees of
&eedom for quadratic gravity has been reduced to solv-
ing the constraint system of Boulware [3]. Because of the
technical diKculties of solving such constraints, quantum
cosmology for quadratic gravity has been solved for only
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simple systems such as a vacuum [4,5].
In this paper, we explore the consequences of view-

ing R+ R2 gravity as R + perturbation (higher deriva
tive version of back reaction) [6]. In essence, in this ap-
proach, the physical gravitational degree of &eedom is
not changed &om that of Einstein gravity. It is shown
that this view overcomes the bulk of the technical difFi-

culties with the higher derivative content of quadratic
gravity. In Sec. II, we argue that this view is also
in agreement with the way the existence of quadratic
terms was originally established (via renormalization pro-
cedures that treat quadratic terms perturbatively).

Using such an approach (Sec. III), we study the classi-
cal cosmology of R+ pR2 theory coupled to matter that
has a characteristic p oc a(t) dependence on the scale
factor. We show that for n ) 4 (i.e. , p ) sp) and for
a particular sign of P, corresponding to the nontachyon
case, there is no big bang in the traditional sense, and
therefore, even for a close Friedmann-Robertson-Walker
(FRW) metric, the universe will rebounce without a com-
plete collapse.

In Sec. IV, we quantize the corresponding min-
isuperspace model, which resulted Rom treating the
PR2 as a back reaction. We conclude that the
potential W(a), in the Wheeler-DeWitt equation

8 /Ba + 2W(a) @—(a) = 0, develops a repulsive bar-
rier near a 0 again for n & 4 (i.e., p & i

p) and for
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a particular sign of P, corresponding to the nontachyon
case.

The sign conventions used in this paper are as fol-
lows. g = (—,+, +, +), R» —2g„,„R = (+) 87rGT»,
(+) R(p, v) = 7'„V'„—V'„V'„—V'(„ dr'

ds = dt —+a
~

+r d02I,
q1 —kr' (2.5)

In this paper, we shall consider only the simplest met-
ric, that of a spatially homogeneous and isotropic uni-
verse (i.e. , FRW metric):

II. PRELIMINARIES

The most general quadratic action for gravity coupled
to matter is

I=- I TQ—gR —f d x PzR*+ pgR tR
16~G

with the standard energy-momentum tensor

Tb=pg b+ (p+ p)U Ub,

U =1,U'=O, i =1,2, 3.

Using

(2.6)

+p3R~b, ~R '" + I ~qq«+ surface term (2.1) a (a) kR=-6 -+i -
i

+ —,
a a) a (2.7)

We have formally included a surface term to cancel any
boundary term that would result in applying the varia-
tional principle. By dimensional analysis, Pi, P2, and
P3 are dimensionless. We will be interested in applying
the formalism to a homogeneous and isotropic metric,
i.e. , the Weyl tensor vaiushes C b,g = 0 [2]. By defi-
nition of the Weyl tensor CagcgC '" = RagcgR
2RagR + —R . This gives one relationship among the
possible quadratic terms.

The second relationship is &om the four-dimensional
generalization of the Gauss-Bonnet formula [2]

R —4R bR + R~b, dR '" = exact derivative. (2.2)

The two relationships, combined with the fact that Eu-
ler Lagrange equations are unchanged by addition of an
exact diff'erential, allow any two of Pi, P2, and Ps to be
set equal to zero in the action (2.1). We choose to set
ps= p2=o

Upon variation of the metrics, the resulting Euler La-
grange equations are

1 1 2
Rg~b ——R~b + 16~GP

~

—R g~b —2RR~b
2 (2

+2R::g., —2R..., ~

=8~GT.b (2.3)

The trace of this equation is

6 x 16~GPR' + R = 8~GT (2.4)

which reduces to a familiar form for P = 0.
For the P = 0 case, it is well known that both the

left and the right side of (2.3) vanish under a covari-
ant derivative (the right-hand side by local conservation
of the energy-momentum tensor and the left-hand side
by the Bianchi identity). It is interesting to note that
this is true even for P g 0 (the additional term is also
a covariant constant by virtue of the Bianchi identity).
This consistency is expected since local conservation of
the energy-momentum tensor and Bianchi identity is in-
timately related to reparametrization invariance of the
action (2.1).

for the Ricci scalar, one gets, for the time-time compo-
nent of (2.3),

( a) k 16vrGP (1 2 a ~t (a &tR)+ —,— R+ 6R— —2—
(a) a2 3 (2 a

and, for any one of the space-space components,

a (a)' k 1 22-+
~

—
~

+ —,—16~GP -R'
a (a) a2 2

a (a) 2k 4 (a 4R)+2R —+2
~

—
~

+ ——2
a (ap a2 a2

= —8~Gp. (2.9)

1bBI'e g + IIlBtteX' (2.10)

by quantum loop efFects &om both gravity and matter,

As is evident, for P g 0, (2.8) is transformed from a
first order to a third order, and (2.9) is transformed from
a second order to a fourth order di8'erential equation.

Even on a classical level, there are pathological prob-
lems with higher derivative theories [6,7]. One is the
need for additional initial conditions to completely spec-
ify a system, and whether solutions obtained by solv-
ing (2.8) and (2.9) for P g 0 have well-behaved proper-
ties as P ~ 0, and the existence of runaway solutions.
A review of motivation for studying quadratic gravity
(i.e., renormalization considerations) seems to offer an
alternate method of handling higher derivative theories
of gravity.

In perturbative covariant quantization, even if one
starts with Einstein's action coupled to matter as the
bare action,
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the effective action acquires terms with higher derivatives

2 ab
leffective —Ibare + O'1+ + O'2+ah+

+O3B b dR (2.11)

with divergent a1, o.2, and o.3. The precise nature of the
divergence depends on the choice for the matter field.

The perturbative renormalization prescription is to
add terms to the bare action to precisely cancel these
infinities: i.e., R + cu ~R+ (u R = 0. (2.17)

Yet it is straightforward to verify that (2.15) admits an
~0

unphysical solution R = Ce with w = 2e /3mc .
For a weak radiative loss, there are well-known ap-

proximate methods of handling these problems, which
result in physically acceptable solutions. For the simple
harmonic oscillator (SHO) problem, weak radiative loss
means that the solution should be harmonic to first or-
der, R ——~ R. Upon substitution, the resulting effec-
tive equation of motion is returned to the original second
order: i.e.,

Ibare ~ g+ + Imatter + Icounterterm (2.12)

Icounterterm — 1 O'1 + + 2 O'2 +ab Itt

+(Ps —as)R b,gR b'"] (2.13)

This renders the resulting effective action finite, which
may be used for semiclassical analysis. (For a fuller
discussion of unitarity and renormalizability, please see
[2,7].) The crucial observation is that the physical de-
grees of &eedom for asymptotic "in" and "out" fields
were those of Einstein action. Moreover, even when the
bare action had higher derivative counterterms (2.12),
the higher derivative terms were treated perturbatively
and not on an equal footing with the Einstein action.
This is in marked contrast with [3]. The details of our
proposed procedures will be shown in Sec. III. Our pro-
posal for gravity is similar to the procedure of Jaen et
al [6] for red. ucing a general Lagrangian system with ar-
bitrary higher derivatives into a second-order differential
system.

A further support of this interpretation of theories
in which higher derivatives were induced can be found
in classical electrodynamics. For a pedagogical review,
please see Barut [8]. Consider a nonrelativistic harmonic
oscillator. It obeys the Newton law:

For a general F &, one can still eliminate unphysical
solutions by using an integration factor and surgically
choosing initial conditions for R(0). In either case, the
lesson is that the induced higher derivative forces were
treated as back reactions which did not increase the phys-
ical degree of &eedom.

The analogy is even stronger for the action at a dis-
tance treatment of classical electrodynamics. In this case,
the back reaction force is not deduced by balancing en-
ergy but by a dynamical process. Here the back reaction
force can be split into contributions &om near and far
field produced by the particle. The back reaction force
Rom the far field is a relativistic generalization of (2.16),
and the back reaction force &om the near field results in
classical mass renormalization.

The similarity between induced higher derivatives (via
radiative processes) in classical electrodynamics and the
present problem with gravity is obvious. Therefore, using
these as motivations and possibly even as justifications,
we shall also treat the higher derivative terms pertur-
batively when implementing the canonical quantization
procedure (i.e., Wheeler-DeWitt equation). The rest of
the paper can be categorized as consequences of such an
approach.

III. CLASSICAL EVOLUTION OF R+ Ri
GRAVITY COUPLED TO MATTER

mR —Fext mQ) R (2.14)

~0

mR = Fext + Frag (2.15)

with

If the particle is also charged, then the accelerated par-
ticle emits radiation and in turn must effect change on
the motion of the particle. One can take account of this
radiative loss of energy by an effective radiative back re-
action force

In (2.3) and (2.4), we are interested in treating con-
tributions &om R as a perturbation. We will use P as
a dimensionless expansion parameter and study the first
order correction to the equation of motion. The value of
P is of course unknown, but in order to implement the
perturbation method we will also have to assume that
P is small. Hopefully, the results obtained by assuming
small P will only be amplified by a larger P. We will
return to this issue at the end.

By (2.4), R = 87rGT + O(P) and R~b
—8mG (T b

—
2 Tg~b) + 0(P) . Therefore Eq. (2.3) is

26
Frau =

3c (2.16)
2

Rg b —R b = GT —b+ 2G P ~

GT g~b —2GTT b—
2

The resulting equation of motion is changed &om sec-
ond to third order. Besides the necessity of additional
initial conditions, (2.15) also has an unphysical runaway
solution. For example, if F t ——0, then there should be
no acceleration and hence no radiative loss, i.e., R = 0.

2T 'g b + 2T, ,b ~
+—O(.P ).

%'e have introduced the notation G = 8+G.

(3.1)
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Using (2.5)—(2.7), to first order in P the time-time coxn-
ponent is

After simplifying, we get

a +2U(a) = 0, (3.7)
Ca) k 1- -2 (1-

+ —,= G-p —2G'Pl —G(3p —p)(p+ p)(a) a 3 (2

+2 —~~(» —p) l. (3.2)

And any one of the space-space components gives the
single equation

a (al' k2-+
i

—
i + —,= Gp+-G'~i G(3p p)(p-+ p)a (a) a2

4O, (a'O, (3p —p)) )
I

~ (3.3)

The matter sector xnust satisfy local conservation of the
energy-momentum tensor

d(pa')
da

(3.4)

For P = 0, it is well known that solutions obtained by
(3.2) and (3.4) automatically satisfy (3.3). As pointed
out in Sec. II, this is guaranteed even for P g 0 by
reparametrization invariance of the action (2.1). There-
fore we shall proceed to solving (3.2) with (3.4).

Prom the form of (3.2), one can immediately extract
several conclusions. First, to first order in P, the R2 has
no contribution in the radiation era because of p, d ——

3 p, p . Second, if the energy- momentum tensor ever
becomes dominated by an almost constant potential of a
scalar field [

—p4, py = V(P) = const] then we can again
coxiclude that the contribution from R2 vanishes (to first
order in P). Therefore, a possible de Sitter phase in R+
PR2 with a scalar field P should be more or less identical
with a de Sitter phase in standard Einstein gravity. It is
of course a separate question whether one can generate an
inflationary phase in R+ R gravity without fine-tuning.

In comparison, Mijic et aL [9] and Page et al. [10]
have studied the large P range and concluded that, even
for a vacuum, gravity alone can generate an inflationary
phase in R+ R gravity.

Now let us assume that during any epoch in the evolu-
tion of the universe the universe is dominated by a matter
with a characteristic dependence on the scale factor (i.e. ,

p = po/a ), n = 3 for the matter era, n = 4 for the ra-
diation era, and n = 0 for an inflationary era, etc. Prom
conservation of energy and momentum tensor (3.4), we

g«p = [(n —3)/3] p. /a"
Therefore

2U(a) = k (1+4n(n —4)G P—
)

2
——G 1+3n(n —4)G P—+ O(P ),QA aA

(3.8)

which can be interpreted as an equation describing a
particle with a unit mass in a potential U(a). For
P = 0, the form of U(a) is shown in Fig. 1. As ex-
pected, depending on the sign of curvature of three-space
(k ) 0, k ( 0, k = 0) the universe evolves as a bound
state, unbounded state, or as a critically opened state,
respectively.

Now, for P P 0, the contributions &om R depend
crucially on the sign of P. First, we note that P ( 0
corresponds to the nontachyon case. This can be readily
deduced from (2.4). As noted by [3—6], P = R evolves like
a scalar field with m = —1/6 x 16vrGP. Therefore, P (
0 is needed to eliminate tachyons. Mijec et al. [9], Stelle
[11],Teyssandier and Tourrenc [12], Barrow and Ottewill
[13], and Mazzitelli and Rodrigues [14] have noted that
P ( 0 is necessary otherwise the Hubble parameter grows
without bound.

Confining ourselves to P ( 0, notice that, for n ) 4
(i.e. , p & s p), U(a) develops a potential barrier near
a 0 (Fig. 2). The interpretation is straightforward.
For such a case, a contracting FRW universe (k & 0, k =
0, k ( 0) will rebounce to an expansion phase without a
total gravitational collapse. The graph of region p ) 3p
is shown in Fig. 3(a). For comparison, the strong en-
ergy condition for an isotropic and homogeneous system
[15], which predicts the existence of a singularity, gives

p + 3p & 0 and p + p ) 0, Fig. 3(b). As is obvious
from Figs. 3(a) and 3(b), most of the parameter space
(p, p) which is predicted to have a singularity in Einstein
gravity does not have a singularity in R+ PR gravity.

Several comments are in order. First, the strong energy
condition comes from study of Raychaudhuri's equation,
which describes how a congruence of timelike geodesics
deviate &om one another. Indeed, the appropriate strong
energy condition for R+ R2 is difFerent &om that of Ein-
stein gravity and can be shown to be in agreement with

U(a)

—K&0

and

(3p —p)(p+ p) = —n(n —4)pp' (3.5) K(0

a )'al' po-a, (3J —p) = -n(n-4)
~

—~—
a ia) a~

k 1- ) pp= —n(n —4)
~

——+ —Gp
~

—+ O(P).a2 3 p
a~

(3.6) FIG. 1. U(a) for k ) 0 and k ( 0 universe, )3 = 0.
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V(a) IV. QUANTIZATION OF MINISUPERSPACE
MODEL

K)0

K(0

ter era

radiatea2'

FIG. 2. U(a) n ) 4, P ( 0.

the present result [16].
Second, Page [10], and Coule and Madsen [17] have

studied a vacuum model and noted a bounce solution for
only A; ( 0. The difference from the present work is more
than a vacuum versus a nonvacuum model.

As explained in detail in Sec. II, in our approach,
we have treated the PB as a back reaction on Einstein
gravity [6]. In essence, the physical gravitational degree
of &eedom has not been changed &om that of Einstein
gravity. This approach has the advantage of having a
smooth limit as P ~ 0, and avoids the pathological situ-
ation with the necessity for "extra" initial conditions in
higher derivative theories.

On the other hand, the method of [10,17] is straight-
forward yet the field content and gravitational degree of
&eedom are different &om those of Einstein gravity, and
the existence of the limit as p + 0 is questionable.

The prediction &om classical analysis is indeed inter-
esting, but near the Planck time a quantum analysis is
needed. There has been some literature on quantizing the
ininisuperspace model for B+R gravity [4,5]. In the lit-
erature, because of the technical difBculties of quantizing
higher derivative theories, only very simple cases (i.e. , no
coupling to matter) have been considered. With our pro-
posal of treating the B term as a perturbation, we can
readily address more realistic systems with matter.

Even though B contains terms with higher time
derivatives than in Einstein's action, we are treating it
as a perturbation. Therefore the physical degrees of &ee-
dom (e.g. , canonical momenta) are determined by Ein-
stein's action alone [6].

For the FRW metric, the only gravitational degree of
freedom is the scale factor a(t). Therefore the canonical
momentum conjugate to a(t) is [18]

3V, . 3'
Q'I 3/2 2~k3 j2 (4 1)

In terms of vr, the time-time component of (3.2) is

vr +. 2W(a) = 0, (4.2)

f 12vr' 5 2U(a)a'
2W a (4 3)

U(a) was defined in (3.8).
We will not need the expression for the Wheeler-

DeWitt equation in its most general form. To quantize
the system, we replace vr ~ i,O/Oa in (4.2) to—get

(a) p
0 + 2W(a) vP(a) = 0. (4.4)

1P& 3P
Because we are interested in semiclassical analysis, we

have neglected the factor ordering parameter [19—21]. A
comment is in order. Rigorously, there should also be
a "kinetic" term 02/0$ representing quantum fluctua-
tion of some matter field. Indeed, the analysis gets quite

(b)
r

r r p

r

r r.r r .r rr
r

r
P

1v&- —P3

W(a)

ka (k ) 0), curvature2

) —p
~ a radiation era

- a matter era

FIG. 3. Graph of region for p ) —p (a). Graph of regions

p ) ——p and p ) —p, for strong energy condition (b). FIG. 4. W(a) for A: ) 0 universe, P = 0.
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w(a) W(a)

~ ka (k & 0), curvature2 ~ —(n —4)ga 4—2n

4~ -a, inflationary era
~ a radiation era0 ~ ka (k & 0), curvature2

~ -a matter era

FIG. 5. W(a) for very early universe during in6ationary
era, n = 0, P = 0.

FIG. 6. W(a) for n ) 4, P ( 0.

involved and it will be addressed in subsequent work.
Here, we shall be satisfied with a particular "semiclas-
sical" analysis in which only the gravitational sector is
treated quantum mechanically [18, 22—25].

As before, we will assume that during any epoch in
the evolution of universe the universe is dominated by a
single matter with p = po/a". For example, the scalar
field conformally coupled to gravity would be n = 4, a
massive quantum Geld would be n = 3, and during a
possible infiationary era p4, = V(P) = const or n = 0,
etc.

For P = 0 and closed (k ) 0), the resulting Schrodinger
equation resembles the quantum mechanical description
of unit mass in a bound state potential W(a) [18,22—24]
(Fig. 4). The form of W(a) for a universe which has un-
dergone a standard infiationary phase (via a scalar field)
is shown in Fig. 5. Since a = 0 is the boundary of a
physically allowed region, a boundary condition (initial
condition) @(a = 0) must be specified to completely de-
scribe a system [26—29].

Now, for P g 0, the situation is similar to what we
have discovered by classical analysis. Notice that again
for P ( 0 and for n & 4 (i.e. , p ) sp) W(a) develops a
potential barrier near a = 0 (Fig. 6).

The physical interpretation of g is unclear in quantum
cosmology, but if one may interpret [@ oc exp( —

~ ~)] as
an indication of small probability, then our analysis in-
dicated that a model with p ) s p and P ( 0 will have a
very small probability of a big bang or total recollapse.

Notice that, unlike Einstein s gravity, there is no issue of
boundary conditions. There is a shortcoming. In Fig. 6,
the dotted region is precisely when the first order approx-
imation breaks down.

V. CONCLUSION

In this paper, we have studied R+PR2 by treating the
B term as a perturbation. For the FRW metric with
matter, using the classical analysis, we have shown that
for n & 4 (i.e., p & s p) and for a particular sign of P that
corresponds to the nontachyon case, there is no big bang
in the traditional sense. And therefore a recollapsing
FRW closed universe will rebounce without a complete
collapse.

From quantization of the corresponding mini-
superspace model, we have shown
that the potential W(a), in the Wheeler-DeWitt equa-
tion —02/cla2+ 2W(a) @(a) = 0, develops a repulsive
barrier near a = 0 again for n ) 4 (i.e., p ) s p) and for
the sign of P that corresponds to the nontachyon case.
Since a —0 is now strictly a classically forbidden region,
the probability of finding a universe with a singularity
(a = 0) is exponentially suppressed.

And in closing we can address the effects of a larger
value of P. From (3.7), (3.8), and Fig. 2, and (4.2), (4.3),
and Fig. 6, the minimal classical radius of collapse and
the size of the classically forbidden region increase with
larger ~P~, respectively.
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