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We carry out a parallel study of the covariant phase space and the conservation laws of local
symmetries in two-dimensional dilaton gravity. Our analysis is based on the fact that the Lagrangian
can be brought to a form that vanishes on shell giving rise to a well-defined covariant potential for
the symplectic current. We explicitly compute the symplectic structure and its potential and show
that the requirement to be finite and independent of the Cauchy surface restricts the asymptotic
symmetries.
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I. INTRODUCTION

A great deal of effort has been applied recently to
the study of two-dimensional dilaton gravity theories.
The reason for this interest is that these theories serve
as toy models in which we can develop and test tech-
niques and methods to be further applied to more re-
alistic (higher dimensional) gravity theories. Remark-
ably, the string-inspired model [Callan-Giddings-Harvey-
Strominger (CGHS) model] of Ref. [1] (see also [2)) ad-
mits black hole solutions and, therefore, provides an in-
teresting toy model to study black hole issues.

One of the aims of this paper is to study the physi-
cal phase space of the CGHS model as a Grst step to-
wards a rigorous study of the model in the framework of
the (nonperturbative) reduced phase-space quantization.
Our work is based on the covariant phase-space formal-
ism [3—7] and extends the results of a previous paper [8].
The covariant formalism has already been applied to the
CGHS model in Refs. [9,10] although their results are
valid for the case of a closed space only.

Moreover, for Lagrangians vanishing on shell,
Noether's procedure can be incorporated, in a rather nat-
ural way, to the covariant canonical formalism. There-
fore, we shall also study, in a parallel way, the covari-
ant phase space and the conservation laws associated
with diffeomorphism invariance. Our analysis will shed

new insight on the controversy about the notion of mass
in two-dimensional (2D) dilaton gravity [13] (see also
[11,12]).

In Sec. II we present briefl. y the covariant phase-space
formalism pointing out the fact that, for Lagrangians
vanishing on shell, the space of solutions can be endowed
with a natural potential for the symplectic structure.
The Noether charge technique is naturally incorporated
in this scheme. In Sec. III we study in a systematic
way the conservation laws associated with the diffeo-
morphism invariance and, in particular, with the asymp-
totic (Poincare) symmetries of the CGHS model. In Sec.
IV we determine the symplectic potential of the CGHS
model. The condition of having a well-de6ned potential
(i.e. , finite and independent of the Cauchy surface) will
restrict the allowed asymptotic symmetries. The Lorentz
symmetry break down and the spatial translation turns
out to be a gauge-type transformation. This will per-
mit to understand the results of Sec. III. We shall also
consider, in Sec. V, the case of spherically symmetric
3+1 Einstein gravity, which can also be regarded as a 2D
dilaton gravity model (see [14] for a related perspective).
Although the stringy and Schwarzschild black holes have
the same canonical structure they differ in the form of
the potential. As a byproduct, this accounts for the nu-

merical factors in the Komar-type formulas for the mass
in gravity models. We state our conclusions in Sec. VI.

On leave of absence from IFIC and Instituto Carlos I
de Fisica Teorica y Computacional, CSIC, and Facultad de
Ciencias, Universidad de Granada, Campus de Fuentenueva,
18002, Granada, Spain.

II. COVARIANT PHASE SPACE
AND CONSERVATION LAWS

Given a field theory with dynamical fields 4' (z) and
action S = S(@ (x)), the phase space can be defined, in
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a covariant way, as the space of solutions of the classical
equations of motion. The standard formula

6$(X ) = j X + B„j"(SX&,)

III. ENERGY-MOMENTUM CONSERVATION
IN THE CGHS MODEL

The action of the CGHS model is

can be interpreted now as the exterior derivative of S,
on the covariant phase space, acting on a tangent vector

(which solves the linearized equations of motion).
In contrast with the variational calculus which takes the
variation X vanishing on the boundary of M, it is now
the first term of the right-hand side (RHS) of (1) which
vanishes automatically. Therefore, the covariant phase
space can be equipped with a presymplectic two-form

1
ScGHs = — d xg g—e [R+ 4(V4) + 4A ]

JH

—-(&4')1 2

2

By setting p = e we obtain

(7)

bj"do.„, (2) ScGHs ——— d xg—g [R(p + 4(V'p) + 4A p ]

where Z is a Cauchy hypersurface and b stands for the
exterior derivative operator. Because of the fact that the
symplectic current u" = bj" is conserved, the presym-
plectic form (2) is, in general grounds, independent of
the Cauchy surface with a suitable choice of boundary
conditions.

From the above expression it is clear that the one-form

0 = j"do.„

—2(&&-)
1 2

which, for our purposes, is a form of the action more easy
to deal with.

Now, it is convenient to define a new metric g „by
means of

could serve as a potential for the presymplectic form (2).
However, j~ is not, in general, conserved and hence 0 is
not well defined.

Now, let us suppose that the presymplectic potential
current j is itself conserved:

in term of which the action takes a remarkably simpler
form:

SGGHs = — d xg —g (R(p + 4A ) ——(7'Pi)
2

~j(soi = o . (4)
(10)

Then, for any field A b@ satisfying the linearized
equations of motion, we will have that J~ ——i~j is a
conserved current:

O.J~~., = O. (5)

What is the condition for a presymplectic potential
current to be conserved? On solutions we have

8 j), , ——bZ), i.
Therefore, it is enough that the Lagrangian vanishes on
the covariant phase space. In this situation the one-form
(3) is well defined (with appropriate boundary condi-
tions), J~~ ——j (A) coincides with the Noether current,
and 8(X) is the corresponding Noether charge.

R=O, Op =4k, P; =0,

&p& F = 'P gg +
I

(+(t')
2 2 (2 )

1 A A

2
(12)

and, if we add a convenient total divergence to the action
of the CGHS model in (10), we can easily bring it to a
form vanishing on shell:

The new variable g, which allows one to eliminate the
kinetic term in the action, also emerges in the gauge-
theoretical formulation [15] of the theory, and in more
general models [16].

The equations of motion are given by

SCGHS = ~CGHS — d'xg —g (Rp' + 4&' —&~V' y') +
JH JH 2

'

The symplectic potential associated to the above Lagrangian is

j = —Q—g p (g""V bg„ —g—" V'"bg„„) + V' (p )g""bg„„—g—" V'„b(p ) (14)
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It can be shown by direct computation, and using the equations of motion, that the above symplectic potential is
preserved actually.

The conserved current associated to a difFeormorphism generated by a vector field Ay = f"
& „, defined on the

con6guration space of the theory as

(bg)„= V'„f ~ V'„f„, hy = f"B„p,
can be written in the form

(16)

It has, therefore, the form of the divergence of an antisymmetric tensor and is, because of that, identically preserved
[notice, however, that arriving at Eq. (16) requires to use the equatioiis of motion]. The conserved charge associated
to Jf can be made explicit by noticing that the divergence of an antisymmetric tensor F~ can be written, in 2D, as

H'&+—" = v' —H'~ (a" u"-~ —a"~a" )+-p
1

P

2 g

with

Therefore,

with

K= —— s Ep.1 1
2 —g

Jf ——e OP% )

I

eralized Belinfante procedure [13], a symmetric energy-
momentum pseudotensor for the CGHS model:

(23)

On the other hand, in the absence of matter, any solu-
tion of the equations of motion can be brought, by means
of a difFeomorphism, to the form

(20)

In terms of the physical metric g~ the conserved current
is given by

2= 2+—
(p = ——Ax x

A
(24)

~g = -v' —~&~ v'(&"f —& f")1
f

+ (f"0'& -4' —f 4'&"4')

where x+, x can be considered as the null Kruskal co-
ordinates. The spacetime has four regions which can
be characterized by the sign of the Kruskal coordinates.
The asymptotic Hat regions are characterized by
—A~x+x ) 0. In the region I (x+ ) O, x ( 0) the
metric can be written in a static asymptotically Hat form

with the charge

&""
I

V'&pf + f~4'& 4' I

. —1 1 „„( 1

2g g ( "" 2"' "') (22)

It is interesting to compare (21) with Komar's formula
for the conserved current in 4D [13,17], and to notice that
the presence of the matter term in (21) has its origin in
the total divergence terms added to the Lagrangian. On
the other hand, these total divergence terms in the La-
grangian are the reason why Eq. (21) difFers &om other
expressions for J7 given in the literature [18] and, as we
will see, they contribute to make K 6nite, under appro-
priate asymptotic conditions.

From the above expressions it is not diKcult to ob-
tain, by choosing f~ = s&"x„+a~ and following the gen-

ds' = — 1 ~ —e-"~ d~+d~-,
A

—24 m ~ 2Acr

A
(26)

by means of the coordinate change

»+ =e't + &
)

—A(~ —~)Ax = —e

A+= —e'~+ ~
)

—p(~ —~)Ax =e (30)

In the other asymptotically Hat region II (z+
0, x ) 0) the static metric can be achieved by the
change
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If we calculate the energy of the basic solution of the
CGHS xnodel, Eqs. (25) and (26), by means of this EM
pseudotensor we will, surprisingly, not find any sensible
result. In fact, the resulting expression is divergent and
even do not involve the constant m. In the next sections,
we will find the explanation for this result: the construc-
tion of a symmetrized EM pseudotensor requires the the-
ory to be invariant under asymptotic Lorentz transforma-
tions. We will show, however, that in order to have a well
defined physical theory, we can not allow pure-Lorentz
asymptotic rotations.

Going back to Eq. (21), the contribution to the con-
served charge for the basic solution in (25) and (26) is

2Acr

2 [ A

+ —+e 0 +2m
(cr—++oo

(31}

where the subindex I refers to the region in which the
above current has been evaluated. With the asymptotic
fall-off conditions

e2Acl g fT P

2Acrg fa ~~~
p (32)

the Noether charge associated with the Killing timecr-+~
translation (f —1) is Kx = m. Terxns like Ae2" f
that would appear in the expression for the Noether
charge had we started with Lagrangian (8), cancel out in
(31). It is just the Lagrangian (13) which gives directly
the finite terms only. The reason is that the Noether
charge (31) can be seen as the result of contracting the
presymplectic potential with the infinitesimal diffeomor-
phism X associated with the asymptotic time translation
(in region I). Both quantities are well defined in the co-
variant phase space, as we will see in the next section.
The charges associated with the asymptotic spatial trans-
lations and Lorentz transformations are zero and diver-
gent, respectively.

Moreover we also want to stress that the Noether
charge (31) just gives the mass of the black hole with-
out the discrepant factor 2, as happens in the Komar's
formula for energy in general relativity. We shall also
understand this fact in the context of the canonical for-
malism.

IV. CANONICAL STRUCTURE
AND ASYMPTOTIC SYMMET RIES

OF THE CGHS MODEL

Let us begin our analysis of the canonical structure of
the CGHS model by writing the general classical solu-

I

tion of the theory without matter. It is well known that
any solution is equivalent under diffeomorphisms to the
solution

m
d8 = —dx+dx y = ——A x+x (33)

The solutions are characterized by an unique diffeomor-
phism invariant parameter, m, and therefore the vari-
able canonically conjugate to m should be "hidden" in
the group of diffeomorphisms. The situation is some-
what similar to the trivial example of the &ee particle.
Any solution is equivalent, under the Galileo group, to
the one with the particle lying at rest and, therefore, the
canonical degrees of &eedom of the system are found in
the symmetry (Galileo) group.

Our aim now is to find the degrees of &eedom of
the theory that are "hidden" in the group of diffeo-
morphisms. To this end we shall compute explicitly
the two-form (2) [xnore precisely, the potential one-form
(3)]. This requires to adjust the boundary condition ad-
equately for the potential form to be finite and indepen-
dent of the spacelike Cauchy surface. Therefore, we shall
assume the metric g„ to be Hat at spatial infinity with
a specific falloff behavior.

Let us apply a general diffeomorphism to the basic so-
lution (33). We find

ds = —dPdM,

p = ——A PM,
A

g—g = e~B PBpM—,
2

A p, g/ pQI pp A

g (g )g
g~P

f „., = '[a.a,Pa„M-+-a.@~Ma„P],P

I'"& — e""[0 BpPO„M —8 BpMO„P] .1

2g—g
(4O)

Obviously we also have

V VpM =0, V' V'pP=0, Vab,

and, therefore, for the metric parametrized. as in Eq.
(36),

where P and M are two arbitrary functions P, M: M m
R; z+ = P(~, 0), z = M(r, cr).

We have

g„„=— (O„PO M—+ B„MO P),1
P~ 2

1
hg p = (OpMhO P+——0 PhOpM+ BpPhB M + 0 MbBpP)

2

[V' (VpMhP+ V—&—PbM)+ V&(V' PhM+ ~ MhP)]
2

hp+ V'ph (43)
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where the one-form 6„ is given by

h„= (—7—'„Pb'M+ V'~MbP) w h = —g—"(V„PbM'+ 7'„MbP) .1
P 2 P P 2 P (44)

We can easily see that, with the one-form h de6ned
above, we can write, as well,

V„b(p = V'„(h V' y2), Vp . (45)

So, to get the symplectic potential for the general solution
given in (34) and (35), it is enough to replace in Eq. (16)
the diffeormorphism f" by the quantities h" as defined
in (44).

The symplectic potential will therefore be given by the
divergence of an antisymmetric tensor (K is now a one-
form)

B. Sympleetic potential

The symplectic current potential is given by

j =e "O„K, (54)

The interpretation of (51) and (52) on the light of (49)
is obvious: the only allowed diffeomorphisms (C, R) are
those that asymptotically are Poincare transformations
in the coordinates 7, o.. Surprisingly we will 6nd addi-
tional constraints on the asymptotic transformations in
the computation of the (on-shell) symplectic potential.

and the symplectic form will be a pure-boundary term,
thus implying that the theory has a Gnite number of de-
grees of &eedom.

A. Conditions of 8atness at spatial infinity

1 0&PB~M + B&MO~P spaceiike
gPv 2 ~2+M ~ IPv r (47)

&-1 01
)0 1 l

andm= p.

In region I(P = x+ ) 0 and M = x ( 0) we can
make

AP=e" )
—XM =e"R. (48)

spacelike
Using (47) and because of —PM + + oo, we arrive
at

(49)

or, what is the same,
~ space like

'7

I spacelike
1

The condition for the metric to be flat at spacelike
in6nity means

with K, formally, given by (20).
The Grst consequence of the above formulas is that the

symplectic potential reads as

0= O„Ed+" =KiR —KiI

where Z is an arbitrary Cauchy surface (see Fig. 1). We
have to stress that Z is not required to intersect the bifur-
cation point of the horizon as it was in Ref. [8]. The point
now is to show that the one-form K can have well defined
values in the right and left spatial in6nities. In fact we
shall 6nd that not all the asymptotic Poincare transfor-
mations are permitted in order to have a well defined
result for 8 (i.e. , independent of the Cauchy surface).

Replacing the "di8'eomorphism" h," by its expression
in Eq. (44) we find, after a bit of algebra,

K(P, M, m) = — A(PbM —M—b'P)
2

„A PMs"P(OpPbBqM
4 —g

+gpMbBpP)

„s"P(gpPbOiM + BpMb8qP),
4 —g

(56)

requirements whose solution can be written in the form

t (~, o ) = ao+ + A + U(~, o.),

1
R(~, o) = ——o. —B+V(~, o.), (52)

where n, A, and B are real numbers, 0+ = 7 + o, o.
'T —0 ) and

spacelike
) H ~

FIG. 1. Kruskal diagram for black hole spacetime. Z is an
arbitrary Cauchy surface.
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and, after having made use of (48), we find —AP= AM=

K(C, R, m) = — A PMc "~(B~CbBqR+ B~RhBi,C)
4X

s ~(BpCbBi,R + BpRhBpC)
4X
m

b—(R——C), (5

where y is given by

C(~, o) = ~+ o + A+ U(~, o),
R(7-, o ) = —(v —cr) —B + V(w, o ),

U, V —0.
{64)

(65)

instead of (48), where the asymptotic flatness requires
that (the asymptotic I orentz transformation has already
been neglected)

1 p& + spacelike
2' (58) Proceeding in the same way as in the region I we obtain

And after the replacements in (51) and (52) we find IC()0).) = mh
~ )
&A+B

(66)

K = (m —A PM)s"~(B~UbBqV+ B~VbBqU)
4X

+ (m —A PM) !
—bB+U+ nbB V!l1 2

r'1

2X1, ( 1
(m —A PM) ! B+Ub +B V—hn !2X

m 1 2 2——h{V —U) + {m —A PM) —bn
2 2g o.'

m (1 +l (A+B )+—b !
—o. + ncr+

! + mh ! !) (59)

where now (A+ B)/2—:f (ipL ) stands for the Killing time
translation at left infinity.

Taking into account (62) and (66) we obtain the final
expression for the symplectic potential:

0 ™(&(4)—&(4)) .

We observe from the above expression that the cor-
responding Noether charge associated with a (right)
asymptotically Killing time translation is just the black
hole mass:

It is easy to realize &om the last expression above that
for the symplectic potential to be finite and independent
of the spacelike Cauchy surface (i.e. , independent of w),
requires first that o. = 1. That is to say, the Lorentz
transformations are not allowed. So that, we are left
with

K = (m —A PM)s"~(BpUhBi, V + BpVhBpU)
4X

1
+.—(m —A PM)(b'B+U+ bB V) (60)

2X

(A+ Bi
+mb

J

Moreover, to find a finite resulting expression for (60)
we have to require an appropriate asymptotic falloff for
the functions U and V. From a close inspection of Eq.
(60), and taking into account the asymptotic behavior of
—PM, it is not diFicult to realize that the most natural
requirement in order to have a sensible reduced phase
space is

( B
d0 ! By (

p
)

!
= dm (68)

It is now quite natural to ask about the symmetry leading
to f (i~&) —f (i&) as the corresponding Noether charge. We
shall show that the required symmetry transformation
is given by (for the meaning of this symmetry in other
context see [19])

MP +6 (69)

Because of the fact that (10) does not depend on deriva-
tives of y the Noether current J" verifies

turns out to be

B„J"= —Q—gR .
2

Taking into account (36) together with (48), (64), and
(65) and standard two-dimensional identities, it is not
difIicult to see that the Noether charge

1
Q = — J"do„

A

2AcrU 2AnV ~~~
0 )

2Ao U.r 2Ao Vr ~~~
0'I (61)

@ = &(4) —&(ii) . (72)

Therefore we have arrived at C. DifFeomorphisms in the presence of matter

(62)

where (A+ B)/2 = f (i&) is the Killing time translation
at right spatial infinity.

In the other asymptotically Hat region x+ = P(7, o) (
0, 2: = M(7, o) ) 0, we should write

When matter is present, the procedure applied above
is much more complicated. This is so because we would
not be able to write the symplectic form as a pure bound-
ary term. The model has an infinite number of degrees of
freedom and, because of that, the symplectic form has,
unavoidably, a bulk term. Intuitively we expect, however,
that diffeomorphisms should be "almost" pure gauge. In
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the covariant formalism, this means that the presymplec-
tic two-form (2) should be degenerated along the direc-
tions that corresponds to the gauge transformations of
the theory. We can arrive at this result by contracting
the symplectic two-form with the generator of a diffeo-
morphism:

The only linearized equation of motion which is not
trivial to obtain is

V„bi."~ —V.ur~„= o,

and, after a long computation, we arrive at

(hg) ~- = V~f- + V-f~ b& = f"~~a»

b4' = f"&~4' . (73)

ix~hj = DpT"

i.e., i~fu is a pure boundary term, with

(75)

T" = T"—= —Q—g(p [
—b in/ g(V"—f —V f") + (hg" V„f"'—hg""V'„f ) + (f"g""b'I'„„—f g "hI'"„„)

+(f"g" ~I'"„.—f"9""hI'„.) + (f g""hI'„" —f"g" hI'"
)1

—b&'(V f —V f )

+2(f V"hv' —f"V bv')+(f V,v'4"" —f"V v'bg ")+(f V"4'h4' —f"V 4'h4')) .

It is convenient now to rewrite the expressions above in terms of the physical metric, which has a better behavior
at spacelike infinity. We 6nd

T" = &p ( h in+ —g(V'" —f —V' f") —b in+ g(f V"—1 pn—f"V' 1n(p ) + (bg" V'„f" —bg~"V„f )

——(hg" V~ ln p f" —b'g~"V~ ln p f ) + —(V' ln p f„bg""—V'" in rp f„bg~ )

—hln&p (V' f —V f") + 2(f V"h ln'p —f"V' bl yn)) + (f V"P;bP, —f"V P;bP;) .

(76)

spacelikeIf we take, as it appears the most natural, boundary conditions such that P; -+ 0, the expression above indicates
clearly that the analysis of the model with matter reduces itself to the case without matter. Therefore, the contribution
of diffeomorphisms to the reduced phase space of the theory is the same when there are matter fields as when there

2 spacelike 2Aare not. For instance, if we take into account that p2 —e2", we see that the leading term in (77) behaves as
spacelike—h 1n&p2p2(V"f —V' f~) The fini.teness of this term implies s""B„f ~ 0, thus forbidding as symmetries of

the theory those diffeomorphisms that are asymptotically Lorentz transformations.

V. SYMPLECTIC POTENTIAL OF SCHWARZSCHILD BLACK HOLES

The symplectic current potential of general relativity in vacuum is given by

1 g(g""bI'„——g" bI'"„), (78)

and due to the Hilbert-Einstein Lagrangian vanishes on shell the current (78) is conserved. In this section we shall
work out the symplectic potential associated with the Schwarzschild black hole solutions. Instead of starting with the
basic solution and acting on it with a general diffeomorphism we shall assume that the relevant asymptotic symmetry
is the Killing time translation. Therefore we can write the general solution in regions I and II as

ds = —
~

1 —
~

d[t+ f(t, r)] +
~

1 —
~

dr + r (de + sin ed' ) .2m) 2m)
-'

~ ) r )
In addition, we shall choose the Cauchy surface in such a way that it connects the spatial infinities through the
asymptotically Hat regions I and II.

The symplectic potential is the integral of an exact three-form and, therefore, it receives contribution &om the
two-spheres 8& I at in6nity only

1 r(r —2m)
16m

~

~dO sing — . f'h f + r(r —2m)hf' —2fbm+ 2mb f1+f

1
dO sin8

6~ s
r(r —2m) f'8f + r(r —2m)b f' —2fbm + 2mb f1+f (8o)
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To obtain a well-de6ned result we have to assume the
following falloff behavior:

With the prescribed fallofF the integral (80) turns out to
be

that this is not the case for the CGHS model.
As a byproduct of our study we also provide an ex-

planation of the well-known factor 2 in the Komar for-
mula for the mass in general relativity. Although both
the stringy and Schwarzschild black holes have the saine
symplectic structure,

~ = -[~b(f(4) —f(&l.)) —(f(4) —f(ir, ))b~j (»)2

VI. CONCLUSIONS AND FINAL COMMENTS

In light of the results of Secs. III and IV we ob-
serve that the asymptotic falloff behavior of the diffeo-
morphisms entering in the symplectic potential (32) are
similar to that required to have a well-defined Noether
charge (61). This is a consequence of the closed relation-
ship between the canonical formalism and the Noether
theorem outlined in Sec. II.

Using the covariant phase space picture we have deter-
mined the canonical structure of the CGHS model and
the character of the asymptotic symmetries, without any
a priori assumption on the dilaton asymptotic behavior.
The requirements made in Secs. IVA and IVB on the
metric are enough to arrive at a clear result. The dif-
ference of Killing time translations at spatial in6nities
turns out to be the conjugate variable to the black hole
mass. The asymptotic spatial translations are "gauge"-
type symmetries: they decouple in the symplectic poten-
tial and lead to trivial Noether charge. The asymptotic
Lorentz transformation breaks down (it cannot be per-
mitted to have a well-defined symplectic form) and leads
to a divergent Noether charge. This results are closely
related. On general grounds, the action of a Lorentz
transformation gives linear momentum to the system. In
the CGHS model it breaks down and, therefore, the lin-
ear momentum vanishes identically, in accord with the
"gauge" nature of the spatial translations for the model.
This provides an explanation for the failure of the sym-
metric energy-momentum pseudotensor. The de6nition
of this quantity requires the theory to be invariant under
asymptotic Lorentz transformations and we have shown

they differ in the form of the symplectic potential. For
the CGHS black hole the potential contains only the term
wit»(f (4) —f(4)):

OcGHs ™(f(4) —f (tl, )) . (84)

The corresponding Noether charge associated with a
(right) asymptotically Killing time translation is just the
black hole mass:

( 0
~cGHs

I &f(.o )

es i, = —[mb(f(i&) —f(il)) —(f(iR) f(il))bm] .
2

(86)

the Noether charge is actually one-half of the mass:

8 ) m
~s ~

I gf( o
)

(87)
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In the case of Schwarzschild black hole the symplectic
potential contains a term with hm as well, so that the
Noether charge cannot coincide exactly with the mass.
Since the potential is symmetric in m and f (io&) —f (il ),
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