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We discuss various models of an inflationary uxuverse with 0 g 1. A homogeneous universe with
0 ) 1 may appear due to the creation of a universe "from nothing" in theories where the effective
potential becomes very steep at large P, or in theories where the ixxfiaton field g nonminimally couples
to gravity. InQation with 0 ( 1 generally requires an intermediate first-order phase transition with
bubble formation and with a second stage of in6ation inside the bubble. It is possible to realize
this scenario in the context of a theory of one scalar 6eld, but typically it requires artificially bent
efFective potentials and. /or nonminimal kinetic terms. It is much easier to obtain an open universe
in models involving two scalar 6elds. However, these models have their own specific problems. We
propose three different models of this type which can describe an open homogeneous in6ationary
universe.
PACS nuxnber(s): 98.80.Cq, 98.80.Bp, 98.80.Hw

I. INTRODUCTION

One of the most robust predictions of inflationary cos-
mology is that the universe after inflation becomes ex-
tremely flat, which corresponds to 0 = 1. Here 0 = p/p„
p being the energy density of a flat universe. There were
many good reasons to believe that this prediction was
quite generic. The only way to avoid this conclusion is
to assume that the universe inflated only by about e
times. Exact value of the number of e-foldings N de-
pends on details of the theory and may somewhat difFer
&om 60. It is important, however, that in any particular
theory inflation by an extra factor e would make the
universe with 0 = 0.5 or with 0 = 1.5 almost exactly
flat. Meanwhile, the typical number of e-foldings, say, in
chaotic inflation scenario in the theory m P /2 is not 60
but rather 10i2 [1].

One can construct models where inflation leads to ex-
pansion of the universe by the factor e . However, in
most of such models small number of e-foldings simulta-
neously implies that density perturbations are extremely
large. Indeed, in most inflationary models the process of
inflation begins at the point where density perturbations
bp/p II /P are very large. The simplest example is the
original new inflation scenario [2], where inflation begins
at the top of the efFective potential with P = 0. If there
are less than 60 e-foldings &om this moment to the end
of inflation, then we would see extremely large density
perturbations on the scale of horizon.

It may be possible to overcome this obstacle by a spe-
cific choice of the efFective potential. However, this would
be only a partial solution. Indeed, if the universe does
not inflate long enough to become flat, then by the same

*Electronic address: lindeophysics. stanford. edu
~ Electronic address: arthurophysics. stanford. edu

token it does not inflate long enough to become homoge-
neous and isotropic. Thus, the main reason why it is dif-
ficult to construct in8ationary models with 0 g 1 is not
the issue of fine-tuning of the parameters of the models,
which is necessary to obtain the universe inflating exactly
e times, but the problem of obtaining a homogeneous
universe after inflation.

Fortunately, it is possible to solve this problem, both
for a closed universe [3,4] and for an open one [4—9]. The
main idea is to use the well-known fact that the region
of space created in the process of a quantum tunneling
tends to have a spherically symmetric shape, and homo-
geneous interior, if the tunneling process is suppressed
strongly enough. Then such bubbles of a new phase tend
to evolve (expand) in a spherically symmetric fashion.
Thus, if one could associate the whole visible part of the
universe with an interior of one such region, one would
solve the homogeneity problem, and then all other prob-
lems will be solved by the subsequent relatively short
stage of inflation.

For a closed universe the realization of this program
is relatively straightforward [3, 4]. One should consider
the process of quantum creation of a closed inflationary
universe from "nothing. " If the probability of such a
process is exponentially suppressed (and this is indeed
the case if inflation is possible only at the energy density
much smaller than the Planck density), then the universe
created that way will be rather homogeneous from the
very beginning.

The situation with an open universe is much more com-
plicated. Indeed, an open universe is infinite, and it may
seem impossible to create an infinite universe by a tun-
neling process. Fortunately, this is not the case: any
bubble formed in the process of the false vacuum decay
looks &om inside like an infinite open universe [5—8]. If
this universe continues inflating inside the bubble [7, 9,
4], then we obtain an open inflationary universe.

These possibilities became a subject of an active in-
vestigation only very recently, and there are still many
questions to be addressed. First of all, the bubbles cre-
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ated by tunneling are not absolutely uniform even if the
probability of tunneling is very small. This may easily
spoil the whole scenario since in the end of the day we
need to explain why the microwave background radiation
is isotropic with an accuracy of about 10 . Previously
we did not care much about initial inhomogeneities, but
if the stage of inflation is short, we will the see orig-
inal inhomogeneities imprinted in the perturbations of
the microwave background radiation.

The second problem is to construct realistic inflation-
ary models where all these ideas could be realized in a
natural way. Whereas for the closed universe this prob-
lem can be easily solved [3, 4], for an open universe we
again meet complications. It would be very nice to ob-
tain an open universe in a theory of just one scalar field
[9]. However, in practice it is not very easy to obtain a
satisfactory model of this type. Typically one is forced
either to introduce very complicated effective potentials,
or consider theories with nonminimal kinetic terms for
the inHaton Held [10]. This makes the inodels not only
Bne-tuned, but also rather complicated. It is very good
to know that the models of such type in principle can be
constructed, but it is also very tempting to find a more
natural realization of the inflationary universe scenario
which would give inflation with 0 ( 1.

This goal can be achieved if one considers models of
two scalar fields [4]. One of them may be the standard
inHaton field P with a relatively small mass, another may
be, e.g. , the scalar field responsible for the symmetry
breaking in grand unified theories (GUT's). The pres-
ence of two scalar fields allows one to obtain the required
bending of the inflaton potential by simply changing the
definition of the inflaton field in the process of inflation.
At the first stage the role of the inflaton is played by a
heavy field with a steep barrier in its potential, while on
the second stage the role of the inflaton is played by a
light field, rolling in a Hat direction "orthogonal" to the
direction of quantum tunneling. This change of the di-
rection of evolution in the space of scalar fields removes
the naturalness constraints for the form of the potential,
which are present in the case of one fie/d.

Inflationary models of this type are quite simple, yet
they have many interesting features. In these models the
universe consists of infinitely many expanding bubbles
immersed into an exponentially expanding false vacuum
state. Each of these bubbles inside looks like an open
universe, but the values of 0 in these universes may take
any value from 1 to 0. In some of these models the sit-
uation is even more complicated: The interior of each
bubble looks like an infinite universe with an effective
value of 0 slowly decreasing to 0 = 0 at an exponen-
tially large distance from the center of the bubble. We
will call such universes quasiopen. Thus, rather unex-
pectedly, we are obtaining a large variety of interesting
and previously unexplored possibilities.

In this paper we will continue our discussion of infla-
tionary models with 0 g 1. In Sec. II we describe a
model of a closed inflationary universe. In Sec. III we
consider the possibility to implement an open inflation
scenario in the theory of one scalar field. In Sec. IV
we discuss the issue of a spherical symmetry of the bub-

bles produced by a tunneling process. In. Secs. V—VII
we describe several diferent models of an open inflation-
ary universe. Finally, in the last section of the paper we
summarize our results and discuss the most important
question: What does inflationary cosmology say now to
those trying to determine 0 &om observational data?

II. CLOSED INFLATIONARY UNIVERSE

For a long time it was not quite clear how one can ob-
tain a hoinogeneous closed inHationary universe. In [9]
it was even argued that this is impossible. Fortunately,
it turns out to be a relatively easy task [3, 4]. For exam-
ple, one can consider a particular version of the chaotic
inHation scenario [ll] with the efFective potential

v($) = exp ( )
Potentials of a similar type often appear in supergrav-
ity. In this theory inflation occurs only in the interval
Mp/2 & P & CMp. The most natural way to realize
inflationary scenario in this theory is to assume that the
universe was created "from nothing" with the field P in
the interval Mp/2 + P & CMp. The universe at the
moment of its creation has a size H, and then it be-
gins inHating as H i cosh Ht. According to [12—15], the
probability of creation of an inflationary universe is sup-
pressed by

3MP4

)

Therefore the maximum of the probability appears near
the upper range of values of the field P for which in.—

Hation is possible, i.e. , at Pe CMp (see more dis-
cussion about this below). The probability of such an
event will be so strongly suppressed that the universe
will be formed almost ideally homogeneous and spheri-
cally symmetric. As pointed out in [3], this solves the
homogeneity, isotropy, and horizon problems even be-
fore inflation really takes over. Then the size of the
newly born universe in this model expands by the factor
exp(2mg&Mp ) exp(2m C ) during the stage of inHation
[1]. If C & 3, i.e., if Po + 3Mp 3.6 x 10 GeV, the
universe expands more than e times, and it becomes
very flat. Meanwhile, for C (( 3 the universe always re-
mains "underinflated" and very curved, with 0 && 1. We
emphasize again that in this particular model "underin-
Qation" does not lead to any problems with homogeneity
and isotropy. The only problem with this model is that
in order to obtain 0 in the interval between 1 and 2 at the
present time one should have the constant C to be fixed
somewhere near t = 3 with an accuracy of a few percent.
This is a fine-tuning, which does not sound very attrac-
tive. However, it is important to realize that we are not
talking about an exponentially good precision; accuracy
of a few percent is good enough.

A similar result can be obtained even without changing
the shape of the effective potential. It is enough to as-
sume that the field P has a nonminimal interaction with
gravity of the form —(BP /2. In this case inHation be-
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comes impossible for P ) Mp/+8vr( [16, 17]. Thus in
order to ensure that only closed inflationary universes
can be produced during the process of quantum creation
of the universe in the theory m P /2 it is enough to as-
sume that Mp/+8vr( & 3Mp. This gives a condition
( ) 1/72~ 4 x 10

To make sure that this mechanism of a closed uni-
verse creation is viable one should check that the uni-
verse produced that way is sufficiently homogeneous.
Even though one may expect that this is guaranteed
by the large absolute value of the gravitational action,
one should check that the asymmetry of the universe at
the moment of its creation does not exceed an extremely
small value 10, since otherwise our mechanism will
produce anisotropy of the microwave background radia-
tion exceeding its experimentally established value AT/T- 10-'.

Calculation of the probability of creation of a closed
universe is a very controversial subject, and determina-
tion of its quantum state and of its possible asymmetry is
even more complicated. However, one can make a simple
estimate and show that the absolute value of the action
~S~ = 3Mp4/16V(P) on the tunneling trajectory describ-
ing the universe formation will change by A~S~ 1 if one
adds perturbation of the standard amplitude 8P H/27r
to the homogeneous background of the scalar field P. Tra-
jectories with A~S~ & 1 are not strongly suppressed as
compared with the original tunneling trajectory. There-
fore tunneling into configurations with bP H/2a can be
possible, whereas we expect that tunneling with creation
of the universes with 8P )) H/2m should be exponentially
suppressed as compared with the tunneling with creation
of the universes with bP H/2vr.

This result suggests that expected deviations of the
scalar Geld from homogeneity at the moment of the uni-
verse creation have the usual quantum mechanical am-
plitude H/27r which is responsible for galaxy formation
and anisotropy of the microwave background radiation
in the standard versions of inflation in a Bat universe.
In addition to this, there will be certain irregularities of
the shape of the original bubble, since its size H
at the tunneling is defined with an accuracy Mp
The resulting anisotropy H/Mp is similar to the am-
plitude of gravitational waves produced during inflation.
In other words, both scalar and gravitational perturba-
tions induced at the moment of the universe creation are
expected to be of the same magnitude as if the universe
were inflating for an indefinitely long time. Therefore
tunneling may play the same role as inflation from the
point of view of the homogeneity and isotropy problems
[3, 4]

This possibility is very intriguing. Still, we do not
want to insist that our conclusions are unambiguous. For
example, one could argue that it is much more natural
for the universe to be created with the density very close
to the Planck density. However, the effective potential
(1) at the Planck density is extremely steep. Therefore
such a universe will not typically enter the inflationary
regime, and will recollapse within a very short time. It
could survive long enough for inflation to occur only if it
was extremely large and. relatively homogeneous &om the

very beginning. If the probability of creation of such a
large universe is smaller than the probability of a direct
creation of a homogeneous closed inflationary universe
which we studied above, all our conclusions will remain
intact. Some preliminary estimates of the probability of
creation of a large universe which subsequently enters the
stage of inflation can be found in [18];however, this issue
requires a more detailed investigation.

Leaving apart this cautious note, our main conclusion
is that it may be possible to make inflation short and the
universe closed and homogeneous. The remaining prob-
lem is to understand why our universe does not have
0 = 100. But in fact it is very easy to answer this ques-
tion: Value of 0 changes in a closed universe while it
expands. It spends only a small &action of its lifetime in
a state with 0 )) l. About half of its lifetime before the
closed universe becomes collapsing it has 0 only slightly
greater than 1. Therefore a considerable &action of all
observers who may populate a closed universe should live
there at the time when 0 is not much greater than 1. It
is as simple as that. The situation with an open universe
is much more complicated, since an open universe spends
only a finite amount of time at the beginning of its evo-
lution in a state with 0 1, and then 0 d.ecreases and
stays for an inde6nitely long time in a state with 0 « 1
(0 ~ 0 for t ~ oo).

III. OPEN UNIVERSE IN THE MODELS
%'ITH ONE SCALAR FIELD

As we have already mentioned in the Introduction, the
way to obtain an open homogeneous inflationary universe
is to use the mechanism outlined in [5—9]. An open uni-
verse corresponds to an interior of a single bubble ap-
pearing in the decaying false vacuum. This picture can
be consistent with observations only if the probability of
tunneling with the bubble formation is sufficiently small,
so that the bubbles do not collide until the typical size of
the bubble becomes greater than the size of the observ-
able part of our universe. The corresponding constraints
are very easy to satisfy in the theories with small cou-
pling constants, where the tunneling rate is very small [7].
However, if one modi6es the theory in such a way that
the probability of the bubble formation at some moment
becomes so large that the phase transition completes in
the whole universe (see, e.g. , [19]), then there will be a
danger that an observer inside the bubble will see inho-
mogeneities created by other bubbles. Therefore we will
not study here theories of such type.

It is not very easy to find a reasonable model which
will lead. to tunneling and inflation by about e times
after the bubble formation. The simplest idea [10] is to
realize this scenario in the chaotic inflation model with
the effective potential

V(y) = m'/2y' —S/3y'+ W/4y' .

In order to obtain an open inflationary universe in this
model it is necessary to adjust parameters in such a way
as to ensure that the tunneling creates bubbles containing
the field P 3Mp. In such a case the interior of the
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bubble after its formation inQates by about e times,
and 0 at the present time may become equal to, say,
0.3. This requires a fine-tuning of the effective potential.
If, for example, tunneling occurs not to P 3Mp but to

3.1Mp then the universe will become practically flat.
It is worth noting, however, that the required fine-tuning
is about the same order as for the closed universe model
described in Sec. II, i.e. , a few percent.

Fine-tuning is not the main difFiculty of this model.
The tunneling should occur to the part of the poten-
tial which almost does not change its slope during inQa-
tion at smaller P, since otherwise one does not obtain
scale-invariant density perturbations. One of the neces-
sary conditions is that the barrier should be very narrow.
Indeed, if V" « H at the barrier, then the tunneling
occurs to its top, as in the Hawking-Moss case [20]. Orig-
inal interpretation of this possibility was rather obscure;
understanding came after the development of stochastic
approach to inQation. %That happens is that the inQa-
ton field due to long-wave quantum Quctuations expe-
riences Brownian motion. Occasionally this field may
jump from the local minimum of the effective potential
to its local maximum, and then slowly roll down &om
the maxiznum to the global minimum [21, 22, 3]. If this
happens, one obtains unacceptably large density pertur-
bations bp/p H /P & 1 on the large scale, since P = 0
at the local maximum of V(P).

Unfortunately, this is exactly the case for the model (3)
[10]. Indeed, the local zninimum of the efFective potential
in this model appears at

(4)

where

$2

4%2

The local minimum of the effective potential appears for
b & 2~Am, and it becomes unacceptably deep (deeper
than the minimum at P = 0) for b & 3v A m/~2. Thus in
the whole region of interest one can use a simple estimate
b 2~Am and represent p in the form Pm/2v 2A, with
P & 1. The local maximum of the potential appears at
P = h'/2A —p. Tunneling should occur to same paint with
3Mp & P & h/2A —p, which implies that h/A & 6Mp.

The best way to study tunneling in this theory is to
introduce the field y in such a way that y = 0 at the
local minimum of V(P):

(6)

After simple algebra one can show that if the local mini-
murn is nat very deep (P « 1), the efFective potential (3)
can be represented as

V(x) - +~&Pm x ——x + —x
m. 'b' & 4
48A2 4

The Hubble constant in the local minimum is given by
H vr8 m /18A2Mg & 2' m2, which is much greater

than the efFective mass squared of the field y for P « 1,
m = 2~2Pm . In this regime tunneling should occur
to the local maximum of the effective potential, which
should lead to disastrous consequences for the spectrum
of density perturbations.

A possible way to overcome this problem is to consider
the case b 3~A/v 2m (P 1). Then the two min-
ima of the effective potential become nearly degenerate in
energy, and the Hubble constant becomes much smaller
than mz. (In this regime our estimate for H, which was
valid for P « 1, should be improved. ) However, in such
a situation we will have other problems. In this regime
tunneling occurs almost exactly to the minimum of the
effective potential at P = 0. Therefore it becomes diffi-
cult to have any inQation at all after the tunneling, and
the problem of fine-tuning becomes especially severe.

Note that this problem is rather general. Its origin is
in the condition that in the inQationary universe scenario
the curvature of the efFective potential (the mass squared
of the inflaton field) 60 e-foldings prior to the end of in-
Qation always is much smaller than H . Therefore one
should bend the effective potential in a quite dramatic
way in order to create a local minimum at large P and
to make the curvature of the effective potential in this
minimum much greater than H . One can avoid this
problem by introducing nonminimal kinetic terms in the
Lagrangian of the inflaton field [10], but this is just an-
other representation of the artificial bending of the effec-
tive potential. Of course, it may happen that the bending
of the effective potential can appear in a natural way in
the theories based on supergravity and superstrings. The
simplest idea is to multiply the efFective potential (3) by
the factor of the type exp(P/CMp) or exp(P/CMp)
like in Eq. (1). At small P these factors will not influence
the shape of the efFective potential, but at large P they
will make it very curved. This is exactly what we need
to avoid the Hawking-Moss tunneling. Still the neces-
sity to make all these tricks with bending the potential
and making it very curved at some fine-tuned value of
the scalar field P do not make the models of this type
particularly at tractive.

Therefore in the next sections we will make an attempt
to find some simple models where an open inQationary
universe can appear in a more natural way. However,
before doing so we will consider one more problem which
should be addressed in all versions of the open inQation-
ary universe scenario.

IV. TUNNELING PROBABILITY ANI3
SPHERICAL SYMMETRY

In the previous section we have assumed that the bub-
bles are exactly spherically symmetric (or, ta be more
accurate, O(3,1) symmetric [5]). Meanwhile in realistic
situations this condition may be violated for several rea-
sons. First of all, the bubble may be formed not quite
symmetric. Then its shape may change even further due
to growth of its initial inhomogeneities and due to quan-
tum Quctuations which appear during the bubble wall
expansion. As we will see, this may cause a lot of prob-
lems if one wishes to maintain the degree of anisotropy
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of the microwave background radiation inside the bubble
at the level of 10

First of all, let us consider the issue of symmetry of
a bubble at the moment of its formation. For simplicity
we will investigate the models where tunneling can be
described in the thin wall approximation. We will neglect
gravitational efFects, which is possible as far as the initial
radius r of the bubble is much smaller than H . In this
approximation (which works rather well for the models
to be discussed) Euclidean action of the O(4)-symmetric
instanton describing bubble formation is given by

S= ——vr r +2m r 8.
2

Here r is the radius of the bubble at the moment of its
formation, e is the difference of V(P) between the false
vacuum P;„;t;~ and the true vacuum Ps„~,and s is the
surface tension:

4'final

s = V 2[V(P) —V(Ps„&)]dP .
&initial

The radius of the bubble can be obtained &om the ex-
tremum of (8) with respect to r:

(10)

Let us check how the action S will change if one considers
a bubble of a radius r+ Lr. Since the first derivative of S
at its extremum vanishes, the change will be determined
by its second derivative:

2

AS = S"(A—r) = 9m —(Er)
2

Now we should remember that all trajectories which have
an action different from the action at extremum by no
more than 1 are quite legitimate. Thus the typical devi-
ation of the radius of the bubble from its classical value
(10) can be estimated &om the condition AS 1, which
gives

(12)

Note, that even though we considered spherically sym-
metric perturbations, our estimate is based on correc-
tions proportional to (hr)2, and therefore it should re-
main valid for perturbations which have an amplitude
Lr, but change their sign in different parts of the bubble
surface. Thus, Eq. (12) gives an estimate of a typical
degree of asymmetry of the bubble at the moment of its
creation:

r 37I 8

This simple estimate exactly coincides with the corre-
sponding result obtained by Garriga and Vilenkin [23]
in their study of quantum fluctuations of bubble walls.
It was shown in [23] that when an empty bubble begins
expanding, the typical deviation Lr remains constant.
Therefore the asymmetry given by the ratio ~Ar ~/r grad-
ually vanishes. This is a pretty general result: Waves

produced by a brick falling into a pond do not have the
shape of a brick, but gradually become circles.

However, in our case the situation is somewhat more
complicated. The wave front produced by a brick in in-
flationary background preserves the shape of the brick if
its size is much greater than H . Indeed, the wave
front moves with the speed approaching the speed of
light, whereas the distance between different parts of a
region with initial size greater than H grows with a
much greater (and ever increasing) speed. This means
that inflation stretches the wave front without changing
its shape on a scale much greater than H . Therefore
during inflation which continues inside the bubble the
symmetrization of its shape occurs only in the very be-
ginning, until the radius of the bubble approaches H
At this first stage expansion of the bubble occurs mainly
due to the motion of the walls rather than due to infla-
tionary stretching of the universe, and our estimate of the
bubble wall asymmetry as well as the results obtained by
Garriga and Vilenkin for the empty bubble remain valid.
At the moment when the radius of the bubble becomes
equal to H its asymmetry becomes

~(H-') -
I

(14)

and the subsequent expansion of the bubble does not
change this value very much. Note that the Hubble con-
stant here is determined by the vacuum energy after the
tunneling, which may differ from the initial energy den-
sity e.

The deviation of the shape of the bubble from spherical
symmetry implies that the beginning of the second stage
of inflation inside the bubble will be not exactly syn-
chronous, with the delay time At Lr. This, as usual,
may lead to adiabatic density perturbations on the hori-
zon scale of the order of HAt, which coincides with the
bubble asymmetry A after its size becomes greater thanH, see Eq. (14).

To estimate this contribution to density perturbations,
let us consider again the simplest model with the effec-
tive potential (3). Now we will consider it in the limit
P —1 « 1 which implies that the two minima have al-
most the same depth, which is necessary for validity of
the thin-wall approximation. In this case 2b = 9M A,
and the effective potential (3) looks approximately like

AP (P —Po) /4, where Po ——2h/3A = g2/AM is the
position of the local minimum of the effective poten-
tial. The surface tension in this model is given by
s = gA/2/Os/6 = Ms/3A [24]. We will also introduce a
phenomenological parameter p, , such that pM /16k = e.
The smallness of this parameter controls applicability of
the thin-wall approximation, since the value of the ef-
fective potential near the top of the potential barrier at
P = Po/2 is given by M /16%. Then our estimate of per-
turbations of metric associated with the bubble wall (14)
gives [41]hp, QpAH

bubble 4vrM

Here H is the value of the Hubble constant at the begin-
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'n of inflation inside the bubble.
n

~
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5 x corr10 5 responds to the amplitu e of density per-

er COBEturbations in e oth Cosmic Background Explorer ( )
normalization) one should have

gpAII
4.M -" (16)

bp

bubble

For H &( M perturbations produced byd b the bubble walls
may be sufBciently small even if the coupling constants
are relatively large an e
their formation are very inhomogeneous.

ur sim le estimates to t eThere is a long way from our p
full theory of anisotropies of cosmic msmic microwave back-

d d b fluctuations of the domain wall. In

end on the value of O. The constraint (16) may ap-
" the scale at which the bubbleear only if one can see e scap

d th ir fluctuations. If inflation iswalls have impnnte eir
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bble walls but thendo no see e
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1 inflation isinflationary uuniverse. However, for
short, and it does not preclude us &om seeing per ur

't f the bubble walls [25]. In such a
eriousl .case one should take the constraint (16) very serious y.

In the open universe the form of the spectrum o cos-
mic microwave ac grounb k round radiation (CMBR) tempera-

be substantially different &om e
form of the spectrum of density fluctuations because o

Paper y y an
h the erturbations discussed aboveIn addition to this, e per

— urvature scale. Therefore, they pro-occur on a super-curva ur
f the Grishchuk-Zeldovich effectvide a natural source or e

modesto I th and Woszczyna [25] only the mo es(according to y an
h' h ot in conformal vacuum can e responsi
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'

g
t likel to contain super-the secondary inflation are not i e y o

curvature modes.
One can show t a in eh t ' th theories of one scalar field

'l r to the model discussed in the previous sectionslml ar 0 e
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& .s of two

this condition may ea o al d to additional restrictions on the
parameters of the models.

A/4/4. In this section we will explore an extremely sim-
ple model of two sca ar e s,p e l fields where the universe after
in8ation becomes open (or quasiopen,en see below in a
very natural way [4].
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'
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be required.
leNote that so ar we if d'd not make any unreasona e

~ ~ ~ ~the standard chaotic inflation scenario;complications to e s an a
e GUTat large in a ion is r8 t' '

driven by the field P, and the
an wa . In order topo en iat t l is necessary in the theory anyway. In or er o

ar am litudeo tain ensi y perb '
d t erturbations of the necessary amp

'

the mass m of the sca ar e1 fi ld P should be of the order of
10 sM 10is GeV [1].

t V(~ cr) M . At this stage fluctu-Inflation begins at, 0
s of both fields are very strong, and the universe en-ations o o e s a

ters the stage of self-reproduction, w ic ius
field on y w en i1 h it becomes smaller than Mp Mp m

M3 10 6M4d h er density drops down to mMp

7

in the local minimum of V o a o. =
low evo ution o sucf h domains. Since the energy density

V. THE SIMPLEST MODEL OF A (QUASI OPEN
INFLATIONARY' UNIVERSE

S . III it is rather diKcult toAs we have seen in ec.
erse in the models of one scalar fieobtain an open universe m e m

with simple potentials, such as, e.g. ,s e. . m2$ /2—

ld d t sh between the infinite size of an open
universe and the Gnite distance from us to the hub e wa s
along the light cone.

FIG. 1. Effective potential V(P, rr = m,rr = m, 2+V(o), Eq.
he fields o. and g. Dashed(17). Arrows show evolution of the e

whereas the solid lines showline corresponds to tunne ing, w ereas
slow rolling.
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in such domains will be greater, their volume will grow
with a greater speed, and therefore they will be especially
important for us.

One may worry that all domains with o = 0 will tunnel
to the minimum of V(o ) at the stage when the field P was
very large and quantum Buctuations of the both fields
were large too. This may happen if the Hubble constant
induced by the scalar field P is much greater than the
curvature of the potential V(o):

&M.
Mp

(18)

One can easily check that at the moment when the field

P decreases to MMp/m and the condition (18) becomes
violated, we will have

P(o) ( C)
exp

J

——
P(«) (2o)

where C is some constant, C 1. After this moment the
probability of the false vacuum decay typically becomes
much smaller. Thus the fraction of space which survives
in the false vacuum state o. = 0 until this time typically
is very small, but finite (and calculable). It is important
that these rare domains with o = 0 eventually will dom-
inate the volume of the universe since if the probability
of the false vacuum decay is small enough, the volume
of the domains in the false vacuum will continue growing
exponentially without end.

The main idea of our scenario can be explained as fol-
lows. Because the fields o and P do not interact with each
other, and the dependence of the probability of tunnel-
ing on the vacuum energy at the GUT scale is negligibly
small [5], tunneling to the minimum of V(o.) may occur
with approximately equal probability at all sufIiciently
small values of the field P (see, however, below). The pa-
rameters of the bubbles of the field 0. are determined by
the mass scale M corresponding to the effective poten-
tial V(o). This mass scale in our model is much greater
than m, . Thus the duration of tunneling in the Euclidean
"time" is much smaller than m . Therefore the field

This decay can be easily suppressed if one introduces a
small interaction g2$2o~ between these two fields, which
stabilizes the state with o = 0 at large P. Another
possibility, which we have already mentioned in Sec.
II, is to add a nonminimal interaction with gravity of
the form —(RP /2, which makes inflation impossible for
P & Mp/+8m(. In this case the condition (18) will never
be satisfied. However, there is a much simpler answer to
this worry. If the efFective potential of the field P is so
large that the field o can easily jump to the true min-
imum of V(o), then the universe becomes divided into
infinitely many domains with all possible values of 0. dis-
tributed in the following way [21, 1]:

P(o = 0) ( 3Mp4 3Mp4

P(~ = «) ' P
~8V(y, 0) 8V(y, o) ~

( 3M4 3M4

(4[m y2 + 2V(0)] 4m y2)

P practically does not change its value during the tun-
neling. If the probability of decay at a given P is small
enough, then it does not destroy the whole vacuum state
o = 0 [6]; the bubbles of the new phase are produced
all the way when the field P rolls down to P = 0. In
this process the universe becomes filled with (nonoverlap-
ping) bubbles immersed in the false vacuum state with
o = 0. The interior of each of these bubbles represents
an open universe. However, these bubbles. contain dif
ferent values of the field P, depending on the value of
this field at the moment when the bubble formation oc-
curred. If the field P inside a bubble is smaller than 3Mp,
then the universe inside this bubble will have a vanish-
ingly small 0, at the age 10 years after the end of in-
Bation it will be practically empty, and life of our type
would not exist there. If the field P is much greater than
3Mp, the universe inside the bubble will be almost ex-
actly Bat, 0 = 1, as in the simplest version of the chaotic
inBation scenario. It is important, however, that in an
eternally e2isting self reprodu-cing universe there mill be

infinitely many universes containing any particular value
of 0, from 0 = 0 to 0 = 1, and one does not need any
fine-tuning of the efI'ective potential to obtain a universe
with, say, 0.2 & 0 & 0.3.

Of course, one can argue that we did not solve the
problem of fine-tuning, we just transformed it into the
fact that only a very small percentage of all universes will
have 0.2 & 0 & 0.3. However, Brst of all, we achieved
our goal in a very simple theory, which does not require
any artificial potential bending and nonminimal kinetic
terms. Then, there may be some reasons why it is prefer-
able for us to live in a universe with a small (but not
vanishingly small) A.

The simplest way to approach this problem is to find
how the probability for the bubble production depends on
P. As we already pointed out, for small P this dependence
is not very strong. On the other hand, at large P the
probability rapidly grows and becomes quite large at P &
MMp/m. This may suggest that the bubble production
typically occurs at P & MMp/m, and then for M/m )) 3
we typically obtain Bat universes, 0 = 1. This is another
manifestation of the problem of premature decay of the
state o = 0 which we discussed above. Moreover, even
if the probability to produce the universes with difI'erent

P were entirely P independent, one could argue that the
main volume of the habitable parts of the universe is
contained in the bubbles with 0 = 1, since the interior
of each such bubble inBated longer. Indeed, the total
volume of each bubble created in a state with the field

P during inflation in our model grows by the factor of
exp (6m/ /Mp) [1]. It seems clear that the bubbles with
greater g will give the largest contribution to the total
volume of the universe after inBation. This would be the
simplest argument in favor of the standard prediction
0 = 1 even in our class of models.

However, there exist several ways of resolving this
problem: involving coupling g P cr2, which stabilizes the
state rr = 0 at large P, or adding nonminimal interac-
tion with gravity of the form —(RP2/2. In either way
one can easily suppress production of the universes with
0 = 1. Then the maximum of probability will correspond
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to some value 0 ( 1, which can be made equal to any
given number from 1 to 0 by changing the paraxneters g
and (.

For example, let us add to the Lagrangian the term
(B—P /2. This term makes inflation impossible for) P, = Mp/+8vr( I. f the initial value of the field

P is much smaller than P„the size of the universe dur-
ing inflation grows exp(2vrg /Mp) times, and the volume
grows exp(6vrg /Mp) times, as in the theory m2$ /2
with ( = 0. For initial P approaching P, these ex-
pressions somewhat change, but in order to get a very
rough estimate of the increase of the size of the universe
in this model (which is sufficient to get an illustration
of our main idea) one can still use the old expression
exp(27rg /Mp2). This expression reaches its maximum
near P = g„atwhich point the efFective gravitational
constant becomes infinitely large and the in8ationary
regime ceases to exist [16,17]. Thus, one may argue that
in this case the main part of the volume of the universe
will appear Rom the bubbles with initial value of the field
P close to P, . For ( « 4.4 x 10 one has P, )) 3Mp.
In this case one would have typical universes expanding
much more than e times, and therefore 0 —1. For
( &) 4.4 x 10 one has P, (( 3Mp, and therefore one
would have 0 (& 1 in all inBationary bubbles. It is clear
that by choosing particular values of the constant ( in the
range of ( 4.4 x 10 one can obtain the distribution
of the universes with the maximum of the distribution
concentrated near any desirable value2 of 0 ( 1. Note
that the position of the peak of the distribution is very
sensitive to the value of (: to have the peak concentrated
in the region 0.2 ( 0 ( 0.3 one would have to fix ( (i.e. ,
P, ) with an accuracy of a few percent. Thus, in this
approach to the calculation of probabilities to live in a
universe with a given value of 0 we still have the problem
of fine-tuning.

However, calculation of probabilities in the context of
the theory of a self-reproducing universe is a very am-
biguous process, and it is even not quite clear that this
process makes any sense at all. For example, we may
formulate the problem in a diferent way. Consider a do-
main of the false vacuum with o. = 0 and P = Pi. After
some evolution it produces one or many bubbles with
o' = rro and the field P which after some time becomes
equal to P2. One may argue that the most efficient way
this process may go is the way which in the end pro-
duces the greater volume. Indeed, for the inhabitants of
a bubble it does not matter how much time did it take
for this process to occur. The total number of observers
produced by this process will depend on the total volume
of the universe at the hypersurface of a given density, i.e.,
on the hypersurface of a given P. If the domain instan-
taneously tunnels to the state oo and Pi, and then the
field P in this domain slowly rolls from Pi to P2, then
the volume of this domain grows exp (2m($2i —$22)tMp2)

Thus we disagree with the statement made in [19] that this
model typically predicts empty universes.

times [1]. Meanwhile, if the tunneling takes a long time,
then the field P rolls down extreinely slowly being in the
false vacuum state with o = 0. In this state the universe
expands much faster than in the state with o. = o.o. Since
it expands much faster, and it takes the field much longer
to roll from Pi to P2, the trajectories of this kind bring
us much greater volume. This may serve as an argument
that most of the volume is produced by the bubbles cre-
ated at a very small P, which leads to the universes with
very small 0.

One may use another set of considerations, studying
all trajectories beginning at Pi, ti and ending at P2, t2.
This will bring us another answer, or, to be more precise,
another set of answers, which will depend on the choice
of the time parametrization [26]. A very interesting ap-
proach was recently proposed by Vilenkin, who suggested
to introduce a particular cutoff procedure which (almost)
completely eliminates dependence of the final answer on
the time parametrization [27]. A more radical possibil-
ity would be to integrate over all time parametrizations.
This task is very complicated, but it would completely
eliminate dependence of the final answer on the time
parametrization [28].

There is a very deep reason why the calculation of the
probability to obtain a universe with a given 0 is so am-
biguous. For those who will live inside a bubble there
will be no way to say at which stage (at which time from
the point of view of an external observer) this bubble was
produced. Therefore one should compare all of these bub-
bles produced at all possible times. The self-reproducing
universe should exist for an indefinitely long time, and
therefore it should contain infinitely many bubbles with
all possible values of 0. Comparing infinities is a very
ambiguous task, which gives results depending on the
procedure of comparison. For example, one can consider
an infinitely large box of apples and an infinitely large
box of oranges. One may pick up one apple and one or-
ange, then one apple and one orange, over and over again,
and conclude that there is an equal number of apples and
oranges. However, one may also pick up one apple and
two oranges, and then one apple and two oranges again,
and conclude that there is twice as many oranges as ap-
ples. The same situation happens when one tries to com-
pare the number of bubbles with diferent values of 0.
If we would know how to solve the problem of measure
in quantum cosmology, perhaps we would be able to ob-
tain something similar to an open universe in the trivial
AP theory without any first-order phase transitions [28].
In the meantime, it is already encouraging that in our
scenario there are infinitely many in8ationary universes
with all possible values of 0 ( 1. We can hardly live in
the empty bubbles with 0 = 0. As for the choice be-
tween the bubbles with diferent nonvanishing values of
0 & 1, it is quite possible that eventually we will find
out an unambiguous way of predicting the most proba-
ble value of 0, and we are going to continue our work in
this direction. However, it might also happen that this
question is as meaningless as the question whether it is
more probable to be born as a Chinese rather than as
an Italian. It is quite conceivable that the only way to
find out in which of the bubbles do we live is to make
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observations.
Some words of caution are in order here. The bub-

bles produced in our simple model are not exactly open
universes. Indeed, in the models discussed in [5—9] the
time of reheating (and the temperature of the universe
after the reheating) was synchronized with the value of
the scalar field inside the bubble. In our case the sit-
uation is very similar, but not exactly. Suppose that
the Hubble constant induced by V(0) is much greater
than the Hubble constant related to the energy density
of the scalar field P. Then the speed of rolling of the
scalar field P sharply increases inside the bubble. Thus,
in our case the field o. synchronizes the motion of the
field P, and then the hypersurface of a constant field
P determines the hypersurface of a constant tempera-
ture. In the models where the rolhng of the field
can occur only inside the bubble (we will discuss such
a model shortly) the synchronization is precise, and ev-
erything goes as in the models of Refs. [5—9]. How-
ever, in our simple model the scalar field P moves down
outside the bubble as well, even though it does it very
slowly. Thus, synchronization of motion of the fields o.

and P is not precise; hypersurface of a constant 0 ceases
to be a hypersurface of a constant density. For exam-
ple, suppose that the field P has taken some value Po
near the bubble wall when the bubble was just formed.
Then the bubble expands, and during this time the field

P outside the wall decreases, as exp( —m t/3Hi), where
Hi = H(re = 0 = 0) is the Hubble constant at the
first stage of inflation, Hi = /87rV(0)/3Mp2 [1]. At
the moment when the bubble expands e times, the
field P in the region just reached by the bubble wall
decreases to P exp( —20m /Hi) from its original value

The universe inside the bubble is a homogeneous
open universe only if this change is negligibly small. This
may not be a real problem. Indeed, let us assume that
V(0) = M4, where M = 10i~ GeV. (Typically the energy
density scale M is related to the particle mass as follows:
M A ~ M.) In this case Hi ——1.7 x 10is GeV, and
for m = 10 GeV one obtains 20m /Hi 10 . In such
a case a typical degree of distortion of the picture of a
homogeneous open universe is very small.

Still this issue requires careful investigation. When the
bubble wall continues expanding even further, the scalar
field outside of it eventually drops down to zero. Then
there will be no new matter created near the wall. In-
stead of infinitely large homogeneous open universes we
are obtaining spherically symmetric islands of a size much
greater than the size of the observable part of our uni-
verse. We do not know whether this unusual picture is
an advantage or a disadvantage of our model. Is it possi-
ble to consider different parts of the same exponentially
large island as domains of different "effective" B? Can
we attribute some part of the dipole anisotropy of the mi-
crowave background radiation to the possibility that we
live somewhere outside of the center of such island? In
any case, as we already mentioned, in the limit m (& Hi
we do not expect that the small deviations of the geom-
etry of space inside the bubble &om the geometry of an
open universe can do much harm to our model.

Our model admits many generalizations, and details

y2 ) ( 3m&y&M4 )
(21)

One can check that for M 4.3 x 10 7 GeV the typical
value of the field P inside the bubbles will be 3 x
10 GeV. Thus, for M ) 4.3 x 10 GeV most of the
universes produced during the vacuum decay will be fIat,
for M ( 4.3 x 10 GeV most of them will be open.
It is interesting that in this version of our model the
percentage of open universes is determined by the stringy
scale (or by the GUT scale). However, since the process
of bubble production in this scenario goes without end,
the total number of universes with any particular value
of 0 & 1 will be infinitely large for any value of M.
Thus this model shows us the simplest way to resurrect
some of the ideas of the old infIationary theory with the
help of chaotic inflation, and simultaneously to obtain an
inflationary universe with 0 ( 1.

Note that this version of our model will not suffer from
the problem of incomplete synchronization. Indeed, the
average value of the field P in the false vacuum outside
the bubble will remain constant until the bubble triggers
its decrease. However, this model, just as its previous
version, may sufFer from another problem. The Hubble
constant Hi before the tunneling in this model was much
greater than the Hubble constant H2 at the beginning of
the second stage of inflation. Therefore the fluctuations
of the scalar field before the tunneling were very large,

Hi/27r, much greater than the fluctuations gener-
ated after the tunneling, bg H2/27r. This may lead to
very large density perturbations on the scale comparable
to the size of the bubble. For the models with 0 = 1 this
effect would not cause any problems since such perturba-
tions would be far outside the present particle horizon,
but for small 0 this may lead to unacceptable anisotropy

of the scenario which we just discussed depend on the
values of parameters. I et us forget for a moment about
all complicated processes which occur when the field P is
rolling down to P = 0, since this part of the picture de-
pends on the validity of our ideas about initial conditions.
For example, there may be no self-reproduction of infIa-
tionary domains with large P if one considers an effective
potential of the field P which is very curved at large P,
as in Eq. (1). However, there will be self-reproduction of
the universe in a state P = 0 = 0, as in the old inflation
scenario. Then the main portion of the volume of the
universe will be determined by the processes which occur
when the fields P and o. stay at the local minimum of the
efFective potential, P = rr = 0. For definiteness we will
assume here that V(0) = M, where M is the stringy
scale, M 10 —10 GeV. Then the Hubble constant
Hi ——/8z'V(0)/3Mp /8vr/3M /Mp created by the
energy density V(0) is much greater than m 10is GeV.
In such a case the scalar field P will not stay exactly at
P = 0. It will be relatively homogeneous on the horizon
scale Hi, but otherwise it will be chaotically distributed
with the dispersion (Pz) = 3H4/8vrzm [1]. This means
that the field P inside each of the bubbles produced by
the decay of the false vacuum can take any value P with
the probability
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of the microwave background radiation. Fortunately, this
may not be a real difhculty. A possible solution is very
similar to the bubble symmetrization described in the
previous section.

Indeed, let us consider more carefully how the long-
wave perturbations produced outside the bubble may
penetrate into it. At the moment when the bubble is
forxned, it has a size (10), which is smaller than Hi
[5]. Then the bubble walls begin moving with the speed
gradually approaching the speed of light. At this stage
the comoving size of the bubble (from the point of view
of the original coordinate system in the false vacuuxn)
grows like

(22)

During this time the fluctuations of the scalar field P of
the amplitude Hx/2' and of the wavelength Hi, which
previously were outside the bubble, gradually become
covered by it. When these perturbations are outside the
bubble, inQation with the Hubble constant Hq prevents
them &om oscillating and moving. However, once these
perturbations penetrate inside the bubble, their ampli-
tude becomes decreasing [29, 30]. Indeed, since the wave-
length of the perturbations is Hi (( H2 (& m
these perturbations move inside the bubbles as relativis-
tic particles, their wavelength grows as a(t), and their
amplitude decreases just like an amplitude of electromag-
netic field, bP a (t), where a is the scale factor of
the universe inside a bubble [29]. This process continues
until the wavelength of each perturbation reaches H2
(already at the second stage of inflation). During this
time the wavelength grows Hi/H2 times, and the am-
plitude decreases H2/Hi times, to become the standard
amplitude of perturbations produced at the second stage
of inflation: (H2/Hi) (Hx/27r) = H2/27r.

In fact, one may argue that this computation was too
naive, and that these perturbations should be neglected
altogether. Typically we treat long-wave perturbations
in an inQationary universe like a classical wave for the
reason that the waves with the wavelength much greater
than the horizon can be interpreted as states with ex-
trexnely large occupation numbers [1]. However, when
the new-born perturbations (i.e. , fluctuations which did
not acquire an exponentially large wavelength yet) enter
the bubble (i.e. , under the horizon), they effectively re-
turn to the realm of quantum Quctuations again. Then
one may argue that one should simply forget about the
waves with the wavelengths small enough to fit into the
bubble, and consider perturbations created at the second
stage of inQation not as a result of stretching of these
waves, but as a new process of creation of perturbations
of an amplitude H2/27r.

One may worry that perturbations which had wave-
lengths somewhat greater than H& at the moment of
the bubble formation cannot completely penetrate into
the bubble. If, for example, the field P differs froxn some
constant by +Hx/2vr at the distance Hi to the left of the
bubble at the moment of its formation, and by Hx/27r-
at the distance Hz to the right of the bubble, then this

diR'erence remains &ozen independently of all processes
inside the bubble. This may suggest that there is some
unavoidable asymmetry of the distribution of the Geld in-
side the bubble. However, the field inside the bubble will
not be distributed like a straight line slowly rising &om

Hx—/27r to +Hx/27r. Inside the bubble the field will be
almost homogeneous; the inhomogeneity bP Hi—/2rr
will be concentrated only in a small vicinity near the
bubble wall.

Finally we should verify that this scenario leads to bub-
bles which are symmetric enough, see Eq. (16). Fortu-
nately, here we do not have any problems. One can eas-
ily check that for our model with m 10 GeV and
M A x~4M ) 10x~ GeV the condition (16) can be
satisfied even for not very small values of the coupling
constant A.

The arguments presented above should be confirmed
by a more detailed investigation of the vacuum structure
inside the expanding bubble in our scenario. If, as we
hope, the result of the investigation will be positive, we
will have an extremely simple model of an open inQation-
ary universe. In the meantime, it would be nice to have
a model where we do not have any problems at all with
synchronization and with large Quctuations on the scalar
field in the false vacuum. We will consider such a model
in the next section.

VI. HYBRID INFLATION WITH 0 & 1

The model discussed below [4] is a version of the hybrid
inflation scenario [31], which is a slight generalization
(and a simplification) of our previous model (17) (see
Fig. 2):

(23)

We eliminated the xnassive term of the field P and added
explicitly the interaction ~2 gPcr2, which, as we have men-

FIG. 2. Effective potential V(P, o) = g P o /2 + &(o),
Eq. (23).
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tioned already, can be useful (though not necessary)
for stabilization of the state o = 0 at large P. Note
that in this model the line o. = 0 is a Bat direction
in the (P, cr) plane. At large P the only minimum of
the effective potential with respect to o is at the line
o = 0. To give a particular example, one can take
V(a) = M a.2/2 —o.Mo + Ao' /4 + V(). Here Vo is
a constant which is added to ensure that V($, 0) = 0
at the absolute minimum of V(P, (r). In this case the
minimum of the potential V(P, (r) at a P 0 is deeper
than the minimum at 0' = 0 only for P & P„where
())), = M+2n2/A 1/g—. This minimum for P = P, ap-
pears at o = o', = 2nM/A.

The bubble formation becomes possible only for P &
After the tunneling the field P acquires an effective

mass m = ger and begins to move toward P = 0, which
provides the mechanism for the second stage of inBation
inside the bubble. In this scenario evolution of the scalar
field P is exactly synchronized with the evolution of the
Geld o, and the universe inside the bubble appears to be
open.

Effective inass of the field P at the minimum of V(P, 0)
with P = P, 0 = o, = 2nM/A is m = ger, = 2gnM/A.
With a decrease of the field P its efFective mass at the
minimum of V(P, o') will grow, but not significantly. For
simplicity, we will consider the case A = n . In this
case it can be shown that V(0) = 2.77M4/A, and the
Hubble constant before the phase transition is given by
4.8M /~AM„. One should check what is necessary to
avoid too large density perturbations (16). However, one
should take into account that the mass M in (16) cor-
responds to the curvature of the effective potential near
P = P, rather than at P = 0. In our case this implies
that one should use i/2M instead of M in this equation.
Then one obtains the following constraint on the mass M:
M~y, & 2 x 10is GeV. Note that the thin-wall approx-
imation (requiring y, &( 1) breaks down far away from

Therefore in general Eq. (16) should be some-
what improved. However for P = P, it works quite well.
To be on the safe side we will take M = 5 x 10 GeV.
Other parameters may vary; one may consider, e.g. , the
theory with g 10 s, which gives ()t), = M/g 5 x 10io
GeV 4Mp. The effective mass m after the phase tran-
sition is equal to 2gM/~A at P = P„and then it grows
by only 25%%uo when the field P changes all the way down
from P to P = 0. As we already mentioned, in order
to obtain the proper amplitude of density perturbations
produced by inflation inside the bubble one should have
m ~ 10 GeV. This corresponds to A = n = 10

The bubble formation becomes possible only for P &
If it happens in the interval 4Mp ) P ) 3Mp, we

obtain a flat universe. If it happens at P & 3Mp, we
obtain an open universe. Depending on the initial value
of the field P, we can obtain all possible values of 0, from
0 = 1 to 0 = 0. The value of the Hubble constant at
the minimum with o g 0 at P = 3Mp in our model does
not differ much from the value of the Hubble constant
before the bubble formation. Therefore we do not expect
any speci6c problems with the large-scale density pertur-
bations in this model. Note also that the probability of
tunneling at large P is very small since the depth of the

minimum at P P„o o., does not difFer much &om
the depth of the minimum at o. = 0, and there is no tun-
neling at all for P & P . Therefore the number of flat
universes produced by this mechanism will be strongly
suppressed as compared with the number of open uni-
verses, the degree of this suppression being very sensitive
to the value of P . Meanwhile, the life of our type is
impossible in empty universes with 0 ~ 0. This may
provide us with a tentative explanation of the small but
nonvanishing value of 0 in the context of our model (see,
however, discussion of uncertainties related to this issue
in Sec. V).

VII. "SUPERNATURAL" INFLATION
WITH Ag1

Vo(f) =
4

(f' —fo)

The term Vi(4) = Vi(f, f) is the explicit U(l) symme-
try breaking potential which in many models t~'. .s the
following form in the limit f m fo

v&(f, d) = A4(f) 1 —cos(——e)fo
(26)

Here A4(f) is some relatively slowly varying [in com-

Natural inBation has been proposed some time ago
[32, 33] as a model in which the inflaton field has a
self-coupling constant whose smallness, required by the
amplitude of cosmological inhomogeneities, is protected
by the approximate global symmetry of the underlying
particle physics. The pseudo Nambu-Goldstone boson
(PNGB) field P, which serves as an inflaton in these
models, would have been exactly massless if not for
explicit U(1) symmetry breaking induced by nonper-
turbative effects. The hierarchy between the scale of
spontaneous symmetry breaking with generation of the
Nambu-Goldstone mode and the scale of explicit symme-
try breaking which gives a mass to this mode is exploited
to explain the smallness of the effective mass.

We will consider the case when the PNGB mode is de-
scribed by the pseudoscalar field P, appearing as a phase
of a complex scalar 4. The scalar sector of the effective
theory of the pseudo Nambu-Goldstone mechanism is in
general described by the action

S(C&) = f d4x g g[g" B„d8 O——VQ(~4() '„Vf(4)].

(24)

In our notation 4(x) = f(x) e'~~ l~ '/i/2 the field f (x)
is the radial component, the PNGB field P(x) is the phase
component, and fo is a dimensional parameter which is
equal to the value of the scalar field f(x) after symmetry
breaking. The function Vo(~e~) = Vo(f) is the sponta-
neous symmetry breaking part of the potential for the
complex scalar which remains globally U(1) symmetric
under the transformation P(x) m P(x) + c. In the ver-
sion of this theory considered in [33] this potential was
taken in the simplest form
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parison with Vp(f)] function of the radial field, which
vanishes at f = 0. This term inay appear due to in-
stantons in a theory with a gauge group with a "con-
finement" scale A, just like the term which is respon-
sible for the axion mass. Another reason for the ap-
pearance of such terms is the possibility that quantum
gravity violates global symmetries [34—37]. This violation
can be described by adding vertex operators of the type
g„ /MP+" (4"4* e ' ~" l + H.c.). After sponta-
neous symmetry breaking the terms with a minimal de-
gree of global symmetry violation (~n —m~ = 1) lead to
the appearance of terms of the type of (26).

The standard assumption of this scenario is that the
effective potential Vi(f, P) is much smaller than Vp(f)
everywhere except for f = fp The.refore the functional
form of A (f) should not be very important as far as (26)
is the leading term in the PNGB effective potential at
low energies, but does not give a significant contribution
into the potential of the radial field away from the value

fp Thus .in what follows we will simply write A = A(fp)
instead of A(f ) Witho. ut loss of generality we can assume
0 = 0 as long as there are no other terms in the low energy
potential depending on it.

The potential in this theory resembles a slightly tilted
Mexican hat (see Fig. 3). In this scenario inflation occurs
when the field P falls from the maximum of the potential
(26) at P 7rfp (for 0 = 0) to P = 0. Just like in the
ordinary chaotic inflation scenario, the necessary condi-
tion for inflation to occur is 7rfp Mp. Inflation will
be long enough and density perturbations produced dur-
ing this process will have a suKciently flat spectrum for

fp & Mp. For definiteness, and in agreement with [33],
we will assume here that fp Mp. The parameter A

is determined by normalization of density perturbations
produced during inflation. For fp Mp 10 GeV
one must have A(fp) M~iiT 10 GeV (see [33] for
detailed references).

In order for the radial part of the Geld to remain frozen
and to not participate in natural inflation there has to
be the case that A & 32m A4/3MP fp 10, which
also ensures that the top of the "mexican hat" is higher
than the highest energy of the axion A . The coupling
constant A could be as large as unity (however, it does not
have to be so large). If we consider the energy density at
the top of the "mexican hat" as the measure of how large
is the coupling A (we need this characterization since we
will soon change the shape of the potential), we see that
there is a plenty of room for play —roughly 12 orders
of magnitude in energy density between the GUT and
Planck scales, or between the scales of spontaneous and
explicit symmetry breaking.

The issue of naturalness of this scenario is not quite
trivial. It gives a natural explanation of the smallness of
mass and self-coupling of the inflaton field. However, the
possibility to implement it in the context of a natural the-
ory of elementary particle remains open. The Brst time
the possibility of inflation of this kind was investigated
by Binetruy and Gaillard in the context of superstring
theory, and their conclusion was negative, for the reason
that the typical value of the parameter fp in superstring
theory is supposed to be a few times smaller than Mp
[32]. Still, the general idea of this scenario is rather el-
egant. Here we would like to suggest its generalization,
which would allow us to obtain an inflationary universe
with 0 ( 1. We will call our scenario "supernatural in-
flation" for its ability to accommodate naturally low 0
universe s.

Our main idea is to construct models which incorpo-
rate a primary stage of "old" inflation in the false vacuum
state near C = 0, and a first-order transition which sets
up for us the open de Sitter space as a stage for ihe subse-
quent secondary stage of inflation where the PNGB field

P plays the role of the inflaton. As before, if the num-
ber of e-foldings of secondary inflation will turn out to
be just smaller 60, we will find ourselves in an open, yet
matter-rich universe today.

In order to realize this scenario one should have a
potential which has a minimum near 4 = 0. A pos-
sible way to achieve it is to add to the Lagrangian the
term —g y 4*4 describing interaction of the Beld 4 with
some other scalar field y. If the coupling constant of
this interaction is suKciently large (g & 16m A), the
effective potential of the radial part f of the field 4 ac-
quires a new minimum at f = 0 due to radiative cor-
rections [1]. For g = 32vr A the minimum of the eKec-
tive potential at f = 0 becomes as deep as the mini-
mum at f = fp, and the eKective potential acquires the
form V(f) = A(fp —f )f /2 + Af4ln f/fp Thus for.
16' A & g & 32vr A the potential has a minimum at

FIG. 3. Effective potential in. the model of supernatural
in6ation.

The name "supernatural in8ation" originally was used in
[33j to describe a possible implementation of the natural in-
Hation scenario in the context of superstring theory. However,
in the absence of such implementation this name remained va-
cant, and we decided to give it a new meaning.
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f = 0 which is somewhat higher than the minimum at
f = fo If g4 is close to 16vr2A, the potential looks like
the usual Coleman-Weinberg potential, and the phase
transition from the state f = 0 occurs by the Hawking-
Moss mechanism. However, one can show that if fo is
not much greater than Mp and if g does not differ much
from 32vr2A (which means that the minimum at f = 0
is deep enough), then the absolute value of the mass of
the field f always remains greater than the Hubble con-
stant. In such a situation the phase transition can be
well described by the thin-wall approximation neglecting
gravitational eff'ects, and (this is important) there will
be no intermediate stage of inflation during the rolling of
the field f toward fo

We do not want to discuss this issue here in great de-
tail since radiative corrections are just one of the reasons
why the effective potential may acquire a deep minimum
at f = 0, and we would like to keep our discussion as gen-
eral as possible. In particular, all subsequent results will
remain valid if the potential V(f) is given by the simple
expression which we have used in the previous sections,
V(f) = m f2/2 —bf /3 + A f /4. In order to increase
the curvature of the effective potential at C = 0 one may
also add the term (A~4~ to the Lagrangian. This term,
being U(l) invariant, does not affect the behavior of the
Goldstone mode, and therefore it does not modify the
standard picture of natural inflation, but it changes the
curvature of the effective potential. It also may preclude
inflation at large f )& fo This ma. y be useful, since oth-
erwise inflation may begin at f )) fo, and then there
will be no first-order phase transition, and the universe
will be flat. On the other hand, even if inflation begins
at f )& fo, one still may experience the second stage of
inflation at 4 = 0 and the subsequent bubble formation
if after the end of this stage of inflation at f )) fo the
oscillating scalar Geld has enough kinetic energy to climb
to the local minimum of the effective potential at 4 = 0.

An important feature of the "supernatural" inflation
scenario is a very large d.ifference between the energy
density at the stage of inflation at 4 = 0, which has the
typical energy scale AMP4/4, and the relatively small
energy density A during the last stage of inflation. As
we have already mentioned, these two scales may differ
from each other (for large A) by about 12 orders of mag-
nitude.

This implies that after the tunneling there will be
a long intermediate stage of nonexponential expansion
until the kinetic energy of the radial Geld and the en-
ergy density of particles produced by its oscillations be-
come smaller than A . It takes time of the order of
H i(A) Mp/A2 to complete this intermediate stage.
During the subluminal expansion epoch 0 stays very
small and we can safely assume that the second infla-
tionary stage starts at 0 = 0. One can derive the adi-
abatic perturbation spectrum, modified by the fact that
the natural inflation starts Rom the curvature dominated
stage. Typically, the modiGcation of the density pertur-
bation spectrum is not great (remember, however, that
the observable CMBR temperature fluctuations may dif-
fer considerably, see Sec. IV).

Note that in this scenario the Hubble constant dur-

ing inflation at f = 0 is much greater than the Hubble
constant at the second stage of inflation. In this respect
supernatural inflation resembles the simple model which
we discussed in Sec. V. The main difference is that at
the Grst stage of inflation in the supernatural scenario
the mass of the field f is supposed to be much greater
than the Hubble constant. (This condition is satisfied if
the minimum at f = 0 is sufficiently deep. ) Therefore
there are no inflationary fluctuations of the scalar Geld
produced outside the bubble in the supernatural inflation
scenario. Moreover, even if the mass is not much greater
than H, quantum fluctuations at f = 0 do not lead to
any quantum fluctuations of the angular field P, which
is responsible for density perturbations after inflation.
Thus, in this scenario we do not have any complications
related to perturbations penetrating the bubble from the
false vacuum.

In addition to the usual density perturbations pro-
duced during the second. stage of inflation inside the bub-
ble, there will be density perturbations induced by the
initial inhomogeneities of the bubble. According to Eq.
(15) we can estimate the corresponding density pertur-
bations as

8p 2/2yA 2/2pA2

p /3~f. M, /3~M,' ' (27)

where the last approximation assumes fo Mp. For
A 10 GeV and p ( 1 these perturbations are smaller
than the usual perturbations produced during the second
stage of inflation.

If the energy in the maximum of the radial potential is
mzch greater than the energy of the explicit symmetry
breaking, the tunneling is likely to occur in any direction
with equal probability. If it goes toward P = 0, one ob-
tains an empty universe with 0 (( 1; if it goes toward

7r fp, one obtains a universe with 0 = 1. Thus we
may say that it is about as likely to obtain 0 (& 1 as
to obtain 0 = 1, if we do not compare the volumes pro-
duced during the secondary inflation (the openness of the
universes which we consider makes comparing the a pos-
teriori volumes trickier). It is possible, though, to con-
struct a (fine-tuned) model which has a preferred value
of O. To do this, we should discover a reason why the
phase transition would go in a given preferred direction
rather than any other.

So far we did not consider implications of the global
symmetry breaking for the structure of the potential near
4 = 0. If the corresponding terms appear due to in-
stanton effects, which become significant only at the late
stages of the universe evolution, the shape of the effective
potential at small f remains unchanged. The physical
reason is the in&ared cutoff introduced. by the Hawking
temperature T~ ——H/2n near C' = 0. [The Hawking
temperature may suppress effects induced by instantons
if H(4 = 0) &) A.] However, as we already mentioned, in
addition to the low-energy nonperturbative effects, the
high energy nonperturbative quantum gravitational ef-
fects may also add symmetry breaking terms of the form
[34-37]
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Vp(P(x)) = —~gi Mp~ (Ce ' ' + 4*e' ')
(p(x)

gi Mp f(x) cos
~

—gi
)

(28)

The coupling gq may be strongly suppressed, so that
(28) does not change the shape of the potential (26) at
f fo (see [37] for detailed explanations). However the
linear term may play an important role at very small f,
where all other terms are of a higher order in f. It may
alter substantially the shape of the potential near the top
of the mexican hat and determine the preferable direc-
tion of the tunneling. The phase Oi, which determines
the position of the minimuin of the term (28), does not
have to be the same as 8 &om (26), so in general our
potential acquires the form of a "twisted" mexican hat.
If Oi happens to coincide with O, then the tunneling typ-
ically will produce empty universes. If Oi differs &om O

by ~ we will obtain the bubbles with typical values of
0 1. For intermediate values of Oi —O we will obtain
predominantly 0 ( 1 universes. We should emphasize
again that the calculation of probability of creation of
universes with any particular value of 0 is not unam-
biguous, see Sec. V. It is important that in all cases the
total number of the universes with any possible value of
0 will be infinitely large.

VIII. DISCUSSION

In this paper we suggested several different models of a
homogeneous inflationary universe with 0 & 1 and with
0 ( 1. At present there is no observational evidence in
favor of 0 ) 1. It is clear, however, that if observational
data are consistent with 0 = 1, they may be consistent
with 0 = 1.05 as well. Therefore it is good to have a
working model of an inflationary cosmology with 0 ) 1.

The situation with an open universe may be much more
interesting from the point of view of observational data.
That is why in this paper we concentrated on the dis-
cussion of various models of inflationary universe with
0 (1.

We have found that in the models containing only one
scalar field one typically needs fine-tuning and a rather
artificial bending of the effective potential. In the mod-
els involving two scalar fields one typically obtains an
infinite number of open universes with all possible val-
ues of 0 ( 1 [4]. The simplest model of this type was
discussed in Sec. V. This model is very natural, but it
has several unusual features. First of all, the universe
described by this theory is not exactly homogeneous. A
habitable part of it can be visualized as an exponentially
large island inside an expanding bubble. The difference
between the local properties of the island-like (quasiopen)
universe and the homogeneous open inflationary universe
in certain cases becomes very small. In these cases one
should carefully analyze the fate of large perturbations
of the scalar field. which are generated outside the bubble
but may penetrate inside it. We gave some arguments
suggesting that these perturbations in this model may
be harmless, but this question requires a more detailed
investigation.

In Sec. VI we proposed another model [4], which is
based on a certain modification of the hybrid inflation
scenario. This model is also very simple. It describe
the universe which is open and homogeneous. Finally, in
Sec. VII we described a modified version of the natural
inflation scenario. We do not want at this stage to discuss
which of the open inflation models is better. It is clear
that many other models of this type can be proposed.
However, we think that there is a good chance that many
of the qualitatively new features of the models discussed
above will appear in the new mod. els as well.

Should we take these models seriously? Should we ad-
mit that the standard prediction of inflationary theory
that 0 = 1 is not universally valid'? We are afraid that
now it is too late to discuss this question: the genie is al-
ready out of the bottle. We know that inflationary mod-
els describing homogeneous inflationary universes with
0 g 1 do exist, whether we like it or not. It is still true
that the models which lead to 0 = 1 are much more
abundant and, arguably, more natural. However, in our
opinion, it is very encouraging that inflationary theory
is versatile enough to include models with all possible
values of O.

To make our position clearer, we would like to discuss
the history of the standard model of electroweak inter-
actions [38]. Even though this model was developed by
Glashow, Weinberg, and Salam in the 1960s, it became
popular only in 1972, when it was realized that gauge
theories with spontaneous symmetry breaking are renor-
malizable [39]. However, it was immediately pointed out
that this model is far kom being perfect. In particular,
it was not based on the simple group of symmetries, and
it had anomalies. Anomalies could destroy the renor-
malizability, and therefore it was necessary to invoke a
mechanism of their cancellation by enlarging the fermion
sector of the theory. This did not look very natural, and
therefore Georgi and Glashow in 1972 suggested another
model [40], which at the first glance looked much better.
It was based on the simple group of symmetry O(3), and
it did not have any anomalies. In the beginning it seemed
that this model is a sure winner. However, after the dis-
covery of neutral currents which could not be described
by the Georgi-Glashow model, everybody forgot about
the issues of naturalness and simplicity and returned
back to the more complicated Glashow-Weinberg-Salam
model, which gradually became the standard model of
electroweak interactions. This model has about 20 &ee
parameters which so far did not find an adequate theoret-
ical explanation. Some of these parameters may appear
rather unnatural. The best example is the coupling con-
stant of the electron to the Higgs Geld, which is 2 x 10
It is a pretty unnatural number which is fine-tuned in
such a way as to make the electron 2000 times lighter
than the proton. It is important, however, that all ex-
isting versions of the electroweak theory are based on
two fundamental principles: gauge invariance and spon-
taneous symmetry breaking. As far as these principles
hold, we can adjust our parameters and wait until they
get their interpretation in a context of a more general
theory. This is the standard way of development of the
elementary particle physics.
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For a long time cosmology developed in a somewhat
diferent way, because of the scarcity of reliable observa-
tional data. Fifteen years ago many di8'erent cosmolog-
ical models [hot dark matter (HDM), cold dark matter
(CDM), 0 = I, 0 « I, etc.j could describe all obser-
vational data reasonably well. The main criterion for a
good theory was its beauty and naturalness. Right now it
becomes increasingly complicated to explain all observa-
tional data. Therefore cosmology is gradually becoming
a normal experimental science, where the results of ob-
servations play a more important role than the considera-
tions of naturalness. However, in our search for a correct
theory we cannot give up the requirement of its internal
consistency. In particle physics the two principles which
made this theory internally consistent were the gauge in-
variance and spontaneous symmetry breaking. It seems
that in cosmology something like inflation is needed to
make the universe large and homogeneous. It is true that
most of the inflationary models predict a universe with

0 = 1. Hopefully, several years later we will know that
our universe is flat, which will be a strong experimental
evidence in favor of inflationary cosmology in its simplest
form. However, if observational data will show, beyond
any reasonable doubt, that 0 g I, it will not imply that
inflationary theory is wrong, just like the discovery of
neutral currents did not disprove gauge theories of elec-
troweak interactions. Indeed, now we know that there is
a large class of internally consistent cosmological models
which may describe creation of large homogeneous uni-
verses with all possible values of 0, and so far all of these
models are based on inflationary cosmology.
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