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We examine from first principles one of the basic assumptions of modern quantum theories of
structure formation in the early Universe, i.e., the conditions upon which Huctuations of a quantum
field may transmute into classical stochastic perturbations, which grew into galaxies. Our earlier
works have discussed the quantum origin of noise in stochastic infiation and quantum fiuctuations
as measured by particle creation in semiclassical gravity. Here we focus on decoherence and the
relation of quantum and classical Quctuations. Instead of using the rather ad hoc splitting of a
quantum field into long and short wavelength parts, the latter providing the noise which decoheres
the former, we treat a nonlinear theory and examine the decoherence of a quantum mean field by
its own quantum Buctuations, or that of other fields it interacts with. This is an example of how a
quantum system can be viewed as effectively open and decoheres through its own dynamics. The
model we use to discuss Quctuation generation has the in8aton field coupled to the graviton field.
We show that when the quantum to classical transition is properly treated, with due consideration
of the relation of decoherence, noise, Huctuation, and dissipation, the amplitude of density contrast
predicted falls in the acceptable range without requiring a Bne-tuning of the coupling constant of
the in8aton field. The conventional treatment which requires an unnaturally small A 10 in a
AP in8aton field stems from a basic 8aw in naively identifying classical perturbations with quantum
fluctuations.

PACS number(s): 98.80.Cq, 03.65.Sq, 05.40.+j, 04.62.+v

I. INTRODUCTION AND SUMMARY

In this paper we shall examine, starting &om Grst prin-
ciples, under what circumstances the Huctuations of a
quantum field. transmute into classical, stochastic Huctu-
ations. To do so we shall analyze the relationship between
the phenomena of d.issipation, Huctuation, noise, and de-
coherence [1], first in an interacting scalar field theory
in fiat space-time [2], and then in the more complex but
realistic case of a scalar field interacting with gravitons
in an expanding universe.

The main motivation for this work is to develop the
necessary tools to analyze the quantum to classical tran-
sition of primordial density Huctuations in the early Uni-
verse. Indeed, this is the third of a series of papers by
the authors and collaborators on the quantum statisti-
cal theory of structure formation. The first one [3] calls
into question conventional treatments of this issue, and
focuses on decoherence and the quantum origin of noise
in stochastic infiation. The second one [4] explains how
noise and Huctuations originate &om particle creation in
semiclassical gravity, and casts doubt on the conventional
practice of simplistically identifying quantum and clas-
sical fluctuations. In this paper we will discuss how a
quantum mean field can be decohered by its own quan-
tum fluctuations, and turn into a classical field with a
stochastic component which is hitherto unnoticed or ig-
nored in quantum field theory. We will also explain how

a proper treatment of quantum and classical fluctuations
can lead to a much improved prediction of the density
contrast in the inflationary cosmology.

A. Outstanding issues in the quantum theories
of galaxy formation

Let us begin by placing the present discussion within
the larger context of theories of structure formation in the
Universe. A standard mechanism for galaxy formation is
the amplification of primordial density fluctuations by
the evolutionary dynamics of space-time [5,6]. In the
lowest order approximation the gravitational perturba-
tions (scalar perturbations for matter density and tensor
perturbations for gravitational waves) obey linear equa-
tions of motion. Their initial values and distributions are
stipulated, generally assumed to be a white noise spec-
trum. In these theories, fashionable in the 1960s and
1970s, the primordial Huctuations are classical in nature.
The standard model of Friedmann-Lemaitre-Robertson-
Walker (FLRW), where the scale factor of the Universe
grows as a power of cosmic time, generates a density
contrast which turns out to be too small to account for
the observed galaxy masses. The observed nearly scale-
invariant spectrum [7] also does not find any easy expla-
nation in this model [8,9].

In the infiationary cosmology of the 1980s [10—12] a
constant vacuum energy density of a quantum field 4, the
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inflaton, drives the universe into a phase of exponential
expansion, with the scale factor a(t) = ao exp(JIt), where
H = a/a is the Hubble expansion rate, assumed to be a
constant for the de Sitter phase of the evolution (a dot
over a quantity stands for a derivative with respect to
cosmic time). The scalar field 4 evolves according to the
equation

4 + 3IIC + V'[4] = 0,

where the potential V[4] can take on a variety of forms,
such as 4 (auth's original "old" inflation via tunnel-
ing [10], or Linde's chaotic inHation via rolling down
the potential [13]), Coleman-Weinberg ("new" inHation
[11,12]), or an exponential form (for power law inHation
[14]). Consider the "eternal inHation" stage where the
Universe has locally a de Sitter geometry, with a con-
stant Hubble radius (de Sitter horizon) li„= H i. The
physical wavelength I, of a mode of the inflaton field is

= p i = a/k, where A, is the wave number of that
mode. As the scale factor increases exponentially, the
wavelengths of many modes can grow larger than the
horizon size. After the end of the de Sitter phase, the
Universe begins to reheat and turns into a radiation-
dominated Friedmann universe with power law expan-
sion a(t) t". In this phase, the Hubble radius grows
much faster than the physical wavelength, and some in-
flaton modes will reenter the horizon. The fluctuations of
these long-wavelength inflaton modes that go out of the
de Sitter horizon and later come back into the FLRW
horizon play an important role in determining the large
scale density fluctuations of the early Universe, which in
time seeded the galaxies [15].

With the exponential expansion in the de Sitter phase,
any classical primordial inhomogeneity will likely be red-
shifted to insignificance by the time the relevant modes
leave the horizon, and one may wonder where such fluc-
tuations could arise. In stochastic inflation, Starobinsky
[16] and others observed that the inHaton field driving
inflation is itself subject to quantum fluctuations, which
may provide the seeds for structure formation. They as-
sume that the inflation field is divided into two parts
at every instant according to their physical wavelengths,
1.e. )

(1.2)

The first part P (the "system field" ) consists of field
modes whose physical wavelengths are longer than the
de Sitter horizon size l ) eH, or p ( eII (e = 1). The
second part @ (the "environment field" ) consists of field

As we shall discuss in more detail below, agreement with
the average amplitude of primordial energy density Quctua-
tions requires, in the conventional approaches, that the scalar
potential has a Hat plateau, which generally is only possible if
the potential is 6ne-tuned for that purpose. For at least this
reason, none of the implementations of inBation proposed so
far is regarded as totally satisfactory.

modes whose physical wavelengths are shorter than the
horizon size, or p ) ~H. Inflation continuously shifts
more and more modes of the environment field into the
system, stretching their physical wavelengths beyond the
de Sitter horizon size. It is often stated that this pro-
cess generates an effective interaction between system
and environment, and the system field would then be
randomly driven by the unknown environment Beld, de-
veloping stochastic fluctuations which are the required
primordial fluctuations. We have doubts on this mecha-
nism, noting that a free field cannot generate noise.

While this overall picture is generally agreeable, not
least because of its qualitative depictive power (it makes
present day structures correspond to near-Planckian
scales early enough in the inflationary period, whereby
the physics of these fluctuations is expected to be mostly
model independent), it has some basic shortcomings, like
the oversimplified treatment of the quantum to classical
transition and the unnecessarily special role it ascribes
a system-environment split. As we shall show below, in
taking these conceptual points seriously one can signifi-
cantly improve on the quantitative predictions on infla-
tionary models. Let us now discuss these issues in more
detail, as an introduction to the main body of this paper.

f. Houi quantum fields acquire classical stochastic
behavior: Deeoher ence

Consider the model of a free, massless, minimally-
coupled inHaton field. Using the separation (1.2), the
equation of motion for the system field P is given by

~(t) +3II~+ V (~) = ~(l) (1 3)

(&(t)) = o (((t)((t')) = ~(t —t'). (1.4)

The common belief is that the short wavelength field
modes (the bath) contribute a white noise source
to a classical Langevin equation governing the long-
wavelength (system) field modes. A Fokker-Planck equa-
tion can also be derived which depicts the evolution of the
probability distribution of the scalar field P(P, t). Much
recent effort is devoted to the solution of this Langevin
equation or its related Fokker-Planck equation for de-
scriptions of the inflationary transition and galaxy for-
mation problems. Although this scenario leads to the
prediction of an essentially scale-&ee distribution of den-
sity fluctuations, consistent with the observational data
[7], and in spite of continued efforts, no satisfactory im-
plementation of these ideas has been proposed so far.

Note that in transforming a quantum Geld theoretic
problem to a classical stochastic mechanics problem as
in here, two basic assumptions are made: (1) the low fre-
quency scalar field modes (the system field) behave clas-

where, according to authors of [16], ( is a white noise
originating from the high frequency modes of the bath
field @ with properties,
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sically, and (2) the high frequency quantum field modes
(the environment field) behave like a white noise.

Most previous researchers seem to hold the view that
the first condition is pretty obvious [17] and that the
second condition can be easily proven. One of us [18]
challenged this view and called attention to the need for
building a sounder foundation to the quantum theory of
structure formation. A rigorous program of investiga-
tion was outlined in [3] with quantum open system con-
cepts [19] and the influence functional formalism [20]. It
was stressed that on the issue of quantum to classical
transition, one needs to consider the decoherence process
[21,22], and on the issue of noise, one needs to trace its
origin to the quantum field interactions and the coarse-
graining measures involved. These two issues are interre-
lated, as the noise in the environment is what decoheres
the system and endows it with a classical stochastic dy-
namics.

Technically, the dynamics of the system is described
by an inBuence action, which is generally both complex
and nonlocal (it becomes local for the rather special case
of an Ohmic bath, but this is unimportant to our present
concerns). The imaginary part of this influence action
is related to both decoherence and spontaneous fluctu-
ations in the system variables; thus, decoherence is al-
ways associated with noisiness [23,24]. The nonlocal part
is associated with dissipation, and it is related to the
imaginary part through the Quctuation-dissipation rela-
tion [25—27]. Thus, in a nonlinear theory, decoherence,
Quctuation, and dissipation are interrelated aspects of
the same phenomenon [1,23,4]. We can visualize this as
dissipation representing the average action of the bath
on the system, while fluctuation describing the depar-
tures &om the average. The nonlinear interaction also
creates correlations, whose severing upon tracing of the
bath degrees of &eedom induces decoherence.

In [3] a model of two interacting fields representing the
system and the bath is used to derive the (functional)
Langevin equation and the correlator of the (colored)
noise. Further work need be carried out in Gnding solu-
tions to these stochastic equations for galaxy formation
considerations [29]. A recent work along lines similar to
ours is that of Buryak [30].

Given the complexity of the quantum to classical tran-

In order to prevent misunderstanding, let us observe that
in the case of a quantum oscillator following an accelerated
trajectory and coupled to a quantum scalar field, where the
in6uence action may be nontrivial even if the Hamiltonian is
quadratic [28], the Hamiltonian is not diagonal if expressed in
terms of "oscillator" and "field" degrees of freedom; actually,
the transformation from these "naive" modes to those that
diagonalize the Hamiltonian is nonanalytic in the coupling
strength among field and oscillator, so we cannot even speak
of a weakly coupled" regime. Therefore, in this case we may
say that the nontriviality of the in8uence action is induced
by an arbitrary partition of the degrees of freedom in relevant
and otherwise.

sition issue, one may be tempted, as is indeed the case
for most papers on this topic, to forget all about it, sim-

ply expand the quantum inHaton field in any suitable set
of modes, and identify the density profile with the am-
plitude of those modes. However, some careful thought
will reveal this position to be untenable. To begin with,
extracting the physically observable Geld variable out of
the basic quantum one is not always trivial; both are re-
lated through the renormalization process [31]. Besides,
while one can describe the quantum fluctuations in the
inQaton field as a coherent superposition of localized Quc-
tuations, this does not imply a physical inhomogeneity,
because different fluctuations are not mutually exclusive,
and the quantum state is homogeneous [32]. Only when
these Huctuations become mutually exclusive, through
the process of decoherence, and some of them are real-
ized, by the equivalent of some "measurement" process,
will it be proper to speak of inhomogeneity in the Uni-
verse. In other words, a quantum field may be expanded
in any set of basic modes (for example, Minkowsky or
Rindler modes in flat space-time), but only one preferred
set may describe the observable (classical) density Huc-
tuations. Which mechanism gives that particular set
its special character is a physical question (not unlike
which criterium picks out the preferred pointer basis in
environment-induced state reduction [21]), and should
better be answered on the basis of the dynamics of the
system itself.

g. Coarse graining a noninteracting field cannot
genes'ate noiee

Most discussions on the origin of primordial Huctua-
tions in the literature are confined to a &ee scalar Geld
propagating on a Gxed geometrical background. This
cannot, as we argued in [3] using stochastic inflation as
an example, generate any noise, and without noise the
system cannot decohere and become classical. It also
misses out on all the interesting phenomena associated
with changes of correlations in the system due to nonlin-
earities. (Even those who properly account for the mix-
ing of matter and gravitational degrees of &eedom, say,
by employing gauge invariant rather than canonical vari-
ables [6], often stop at the linearized level, thus missing
the dynamical contribution to decoherence and the evo-
lution of correlations. ) To compound the situation, most
people would agree that the initial quantum state of the
Geld should be read out of a Hartle-Hawking-like "wave
function of the Universe" [33,34], which predicts lack of
correlations among different modes. This leaves the in-
Hation practitioner with only two alternatives, namely,
either consider several &ee scalar fields and add a mix-
ing matrix [35], so that the relevant degrees of freedom
are not those that diagonalize the Hamiltonian, or else
consider a time-dependent system-bath split, so that the
correlations are carried by the modes themselves, as they
switch labels &om "bath mode" to "system mode" or vice
versa [16,35]. It should be observed that the first alter-
native detracts &om the predictive power of the model,
by introducing the elements of the mixing matrix as so
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many new &ee parameters. In the second approach, the
whole issue of structure formation seems to hang on the
special way one labels the modes which define the system.
This subjective element we Gnd rather uneasy. There is
a third alternative, which is to assuxne that decoherence
never occurred, at least at long enough wavelengths [36].
This we regard as an evasive way out. We would prefer
to see the decoherence of a system as a consequence of
its own dynamics.

8. Overproduction of density contrast
and the fine tuni-ng problem

as an example (the simplest) of the correlation hierarchy
discussed elsewhere in the context of decoherence [38].

It should be clear from the above that the proper iden-
tification of the relevant system and its environment is
an essential part of the analysis of fluctuation generation
in the early Universe. This identification reflects an arbi-
trary choice made freely by the "observer. " Contrary to
this conventional view, we note that on any given phys-
ical situation there are only a few meaningful ways to
identify the relevant system, which are prescribed by the
dynamics and the limitations of observation. Let us clar-
ify this important point, as a way to approach our main
concerns.

In addition to the problem of deriving a classical
stochastic equation &om quantum field theory, there is
also the outstanding problem of overamplification of den-
sity contrast and unnatural constraining of the field pa-
rameters. Recall that one distinct advantage of inflation
is that it provides a natural explanation of the scale-
invariant Harrison-Zeldovich spectruin [7]. But the ex-
cess amplitude in the density contrast is still an unre-
solved problem. The density contrast b'p/p can be shown
to be related to the fluctuations of the scalar Geld b4
approximately by [15]

bp Hb@

(~)

where angular brackets denote averaging over some spa-
tial range. In the conventional treatment (where quan-
tum fluctuations are treated in the same capacity as clas-
sical fluctuations), for the density contrasts to be withiii
10 when the modes enter the horizon, the coupling
constant in the Higgs field (of, say, a A/4 theory in the
standard grand unified models) has to be fine-tuned to
an unnaturally small value (A 10 ).

In summary, there are two sets of outstanding issues:
(1) How the long-wavelength modes become classical, and
the quantum fluctuations develop into classical perturba-
tions, and (2) how to get the correct order of magnitude
for the density contrast without assuming an unnatural
value for the field parameters.

We shall show in this paper that these two issues are
related to each other: decoherence of long-wavelength
modes by short wavelength modes (as done in [3]), or a
mean field by its quantum fluctuations (done here), gives
rise to a classical stochastic evolution with noise properly
determined by the coupling between these two sectors.
We shall consider a more realistic model of gravitons
coupled to the inflaton, and show that a correct treat-
ment of the relationship between quantum and classical
fluctuations can provide a much improved estimate of
the density contrast without "fine-tuning. " We shall also
investigate a different type of system-environment split,
namely, that between the mean field and its fluctuations.
This is in the spirit of the background field method used
&equently in quantum Geld theory. It is particularly rel-
evant to improvements beyond the mean Geld results in
phase transition problems [37]. We will also use this split

B. Our approach: Decoherence of a nonlinear
quantum Beld by its own quantum Quctuations

The criteria for choosing a particular subsystem for
special treatment (calling it relevant and the rest irrel-
evant [39] is already a preferential treatment), i.e. , the
definition of an open system, is, to us, as important a
physical issue as describing the evolution of the open
system. (For a general discussion, see [18,40].) The
possibility of successfully identifying a relevant system
within a complex physical problem hinges on the decou-
pling of some degrees of freedom &om the rest. If the
complete system is divisible into two sectors (subsystems)
with significant difference in their characteristic time, &e-
quency, energy, mass, length or interaction scales, then
one can view one as the (open) system and the other as
the environment. An example of mass discrepancy is the
case of quantum cosmology [33], where the much heavier
Planck mass makes it possible to treat the gravitational
sector differently via the Born-Oppenheimer approxima-
tion. Decoherence of the "massive" gravitational sector
by the "lighter" matter field sector can lead to the emer-
gence of classical space-times in the semiclassical grav-
ity regime [34]. Another example is the separation of
"slow-fast" variables [41]. On the slow time scale, only
the average action of the fast degrees of &eedom affects
the relevant slow modes in an appreciable way. Factor-
ing in the asymptotic behavior of the fast variables, one
can express their average influence in terms of the slow
variables themselves, thus obtaining an effectively closed
(and generally irreversible) dynamics for the latter [39].

While there are many ways to split a complex sys-
tem into a system proper and an environment, only a
few of these lead to physically interesting theories. For
example, not only the system proper should include ev-
erything of interest to this or that particular observer,
but also the dynamics of the system proper should admit
a closed, self-consistent description (with some degree of
stochasticity). This requires that the system and bath to
be weakly coupled, the system being robust against the
perturbation induced by its environment. Thus the issue
of the proper system-bath split in a definite situation is
not to be answered by the consideration of the observer's
interests alone. On the contrary, the answer should be
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rooted in the physics of the system and the observational
context.

theories, and apply the results to fIuctuation generation
in the early Universe which is only a manifestation of' this
universal phenomenon.

Nonlinear fields and correlation dynamics

As an open system is identifiably or dynamically sep-
arated &om its environment, decoherence occurs as it
habitually interacts only with the averaged environmen-
tal degrees of freedom if and only if there are nontrivial
correlations between the system and environment vari-
ables. These correlations, in turn, may have a dynamical
origin, which requires nonlinear interactions between sys-
tem and bath, or else they may be present already in the
initial conditions [43].

Focusing on the correlational aspects, we have pro-
posed earlier [38] that a natural way to partition a closed
system is by way of the correlation functions, defining
the system as a subset of the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) (classical) or Dyson (quan-
tum) hierarchies of correlation functions. The process of
reducing the full dynamics to the autonomous dynam-
ics of the subsystem is usually described as "truncation"
and "factorization. " In the Boltzmann molecular dynam-
ics case this involves truncating the BBGKY hierarchy at
a correlation order and assuming that this order of cor-
relation function can be written as a direct product of
the lower order ones, known as the molecular chaos as-
sumption. The actual state of the environmental modes,
however, is never quite equal to their truncated value;
the small discrepancy is fed back into the evolution of the
system degrees of freedom as noise. Effective autonomy
of the relevant system is needed for the stability and ro-
bustness which are defining properties of classicality; but
it is undermined constantly by the effect of noise and
Huctuations, which, as we have seen before [1,23], is in-
strumental to decoherence and the emergence of classical
behavior. Because dissipation and noise are two aspects
of the same underlying physics, they are linked by consis-
tency relations, known categorically as the Huctuation-
dissipation relations [25], which underly the theory of
Buctuations in the stochastic, kinetic, and hydrodynamic
regimes [44]. (Under equilibrium conditions, these rela-
tions take the form of the famous Green-Kubo formulas
[25]. The existence of such a relation in nonequilibrium
conditions is explored in [4,27].) Such is the necessary dy-
namical balance which prevails in the quantum-classical
interface.

In what follows, we shall concentrate on nonlinear the-
ories, and seek to understand the generic conditions for a
certain subset of the degrees of freedom to decouple from
the rest, while being decohered and randomly driven by
the remaining degrees of freedom. Our goal is to show
how these processes actually occur in interacting Beld

There are more sophisticated ways to define an open sys-
tem, such as by the partition of either physical or phase space
into relevant and irrelevant sectors (see, e.g. , [42]).

g. Mean field and quantum Pnctnations

In Geld theory applications, the different scales are usu-
ally associated to the masses of the different particles, the
mass being, in natural units, the inverse correlation scale
[45]. In the presence of spontaneous symmetry breaking,
another set of scales appear, associated with the devel-
opment of phase transition on one hand, and of quan-
tum Quctuations around the instantaneous value of the
mean field on the other [37]. In addition to these, there
is an intrinsic scale separation associated with nonlinear
quantum Geld theories, which arises because the physi-
cal, observable excitations of the Geld are "dressed" by a
cloud of virtual, microscopic quantum Quctuations. Thus
we can distinguish between the scale associated with the
physical or dressed excitations, and that associated with
the microscopic, elementary fluctuations [46]. The deco-
herence of quantized dressed excitations is the main focus
of this paper.

The description of the quantum to classical transition
in terms of the decoherence of the dressed Geld has several
advantages over the conventional procedure of splitting
the Geld modes by hand into relevant and irrelevant, the
most important being that in this approach we do not
have to prejudge the importance of the different modes.
Thus, for example, in the actual application to Gelds in
de Sitter space, we shall not require any a priori consider-
ation on the behavior of the different excitations on hori-
zon crossing. These considerations are sometimes hard
to justify on a rigorous basis, since the de Sitter horizon
is an observer-dependent construction, with no objective
geometrical meaning. Moreover, our approach turns out
to be just the simplest of a hierarchy of increasingly accu-
rate descriptions of the field, where not only the dressed
Geld but also other composite operators are retained as
relevant. We have presented the details of the full ap-
proach elsewhere [38].

8. Organisation of this paper

The paper is organized as follows. In Sec. II we dis-
cuss the decoherence of fluctuations in the dressed field
of a self-interacting, symmetry breaking Geld theory in
Bat space. For simplicity, we shall only consider fluctu-
ations around the false vacuum state, rather than the
phase transition in full generality. Our objective is to lay
down the basic elements of our approach, putting strong
emphasis on the physical processes linking dissipation,
noise and decoherence to each other. Section III applies
the formalism above to a massless minimal field in a de
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Sitter background. This can be taken as a simple model
describing the physics of fIuctuations in the infiaton field
in the early stage of infIation. Despite its appearance, the
theory is nonlinear, because of the coupling of the scalar
field to gravitons. Of course, since we do not allow for
correlations to be present in the initial state, nonlinear-
ity is a necessary condition for decoherence. The mini-
mal coupling of field and gravitation is the only nonlinear
term which does not detract from the predictive power of
the model. In Sec. IV we discuss the main consequences
of our findings.

A word about notations. We shall consider throughout
a real scalar field in flat space-time. The signature shall
be (—,+ + +). Fourier transforms are defined as

d4k
A(x):—

(2m) 4
e'" A(k),

where kx = k~x" = —cut+ k - x. Always ~ = k . In the
case of translation-invariant kernels, we shall also define

II. CLASSICAL BEHAVIOR
OF QUANTUM FIELDS

In this section we shall discuss the quantum to classical
transition in a nonlinear quantum Beld theory, taking as
a working example the emergence of classical stochastic
behavior in a gPs scalar field in Hat space-time. We shall
adopt the consistent histories approach to quantum me-
chanics [22], considering coarse-grained histories whose
constitutive fine-grained configurations are small depar-
tures from a given mean field. This mean field may be
interpreted as the physical quantum field, dressed by the
microscopic quantum fluctuations around it. We shall
-show that, in the limit where the allowed variations of
the field are small enough, the decoherence functional is
largely insensitive to the details of the "window function"
defining the coarse-graining procedure. Moreover, in this
limit these histories are consistent among themselves, in
a sense to be made precise below. The decoherence of
these "quantum mean field" histories is closely related to
the phenomena of noise and dissipation also present in
the theory.

d4k

(2n.)4

A. Wave equation for fluctuations
in the quantum mean Beld

We consider a scalar field theory with action

We shall assume that all interactions are adiabatically
switched ofI' in the distant past, where the state of the
field is the IN vacuum. At finite times, the state of the
field will have evolved due to the influence of a nontriv-
ial background field. The notation () = (IN~~IN) will
always denote an expectation value with respect to this
state evolved &om IN vacuum. As a particular case,
when the background Geld vanishes the IN vacuum per-
sists; we shall identify expectation values taken at zero
background as ()0.

In curved space-time we shall use Misner- Thorne-
Wheeler (MTW) conventions throughout [47]. We shall
only consider Gelds on a Gxed background de Sitter ge-
ometry, or rather, that part of de Sitter space which can
be described as a spatially fIat FLRW Universe. In this
case the role of IN vacuum shall be filled by the massless
limit of the de Sitter invariant vacuum. Again, we shall
use () and ()0 to denote expectation values at finite or
vanishing background field, respectively.

Later on, we shall have opportunity for computing vari-
ational derivatives of various objects. The basic formula
is

(2 1)

where the potential is4

V(C') = c@+—m 4 ——gc' .
2 6

(2.2)

= 0. (2 S)

To identify the quantum mean field P, we write C = P+p,

The Heisenberg equations of motion are identical in form
to the classical field equation

bg (x) = b (2:,y),

where h(x, y) denotes the covariant Dirac distribution,
defined from

(1.9)

Of course, more general forms are also possible, but this one
is convenient, for example, to study the onset of first order
phase transitions. For renormalization purposes, it is neces-
sary to include a quartic term as well; we shall ignore this,
assuming that the corresponding coupling constant vanishes
after all necessary subtractions have been carried out. See,
e.g. , [48].
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where p represents small quantum fluctuations around
P. Thus, p obeys the linearized equation

—H&p+ m i(i —gPy = 0. (2 4)

Subtracting this kom the full equation, we find the equa-
tion for the quantum mean Geld

—&4 + c+ m 4 — g4 ——-g(V ) = -g(V —
{V )),2 2 2 2 2

2 2 2

(2.5)

where () denotes the vacuum expectation value of the ip

field, in the background provided by the P field. Later on,
we shall use the notation {) o to single out the expectation
value computed at zero background Beld.

Comparing (2.5) with the original Heisenberg equation
(2.3) we notice that the presence of the i(i field has mod-
ified the inertia of the P field. We interpret the solutions
to (2.5) as describing the dynamics of real excitations,
surrounded by a cloud of virtual p quanta. We shall
consider the P field as the system, and y as its environ-
ment. This procedure is meaningful insofar as the details
of the y excitations are either irrelevant or inaccessible,
or both. In particular, we should be able to average out
"fast" variables such as the phase of the p Geld, or equiv-
alently, to assume that these phases are actually random.
In this regime, the right-hand side of (2.5) becomes small.
When neglected, then (2.5) admits a solution with P—:0,
the so-called "false vacuum, " provided

1 2 1
c = —g{&p )o = —g&&(x *)

2 2
(2.6)

where

A» (x, x') =
4d k,.~( )

(2ir) 4 (k2 + m2 —i~)
(2.7)

is the Feynman propagator of quantum fiuctuations
around the false vacuum. Henceforth, 4 will always de-
note the Green function of a microscopic quantum Buc-
tuation y, that is, expectation values of binary products
of p field operators. In the following, we shall be con-
cerned as well with the propagation of perturbations in
the dressed field P itself, which may also be described in
terms of Green functions (for which we shall use capital
G letters).

Assuming that P remains small, we can linearize the

left-hand side of (2.5), to obtain the wave equation for the
propagation of small Buctuations in the quantum mean
Geld. The right-hand side is assumed to be already small,
and therefore is evaluated at the false vacuum value P =
0. Thus we obtain

—H P(x) + m P(x) ——g d4x' P(x')
2 bP(x')

qb=p

= »(x) (2 8)

where

I
j(x) —= -(~'(x) —(V')o(*)).

2

For latter use, let us call

(2.9)

~(~')(x) 2gD(x—, x')
p=o

(2.io)

and observe the elementary identity

D(x, x') = (Im]A&(x, x')]')8(t —t') (2.11)

While we have the necessary data to compute this ker-
nel explicitly, it is actually more conducive for our pur-
poses to observe that, because of Lorentz invariance and
the analytic properties associated with time ordering, the
square of the Feynman function admits a Lehmann rep-
resentation

1 d k ~

I ( i
ds h(s)

2 (2vr)4 o
—(k + ie)2 —s

(2.i3)

[we use the notation (k+ ie) = —(u + ie) + k ]. We
may now write down the equation of motion for the Huc-
tuations of the quantum mean Geld

a4k OO

(2vr)4 o (s+ k' —ie) '

(2.i2)

where the function 6 is positive and vanishes for s & sp,
sp being a positive threshold [an actual evaluation yields
h = gl —(4m2/s)0(s —4m2)]. We find immediately

The only requirement for the decomposition O' = P + p
is that i(~ is small compared to P; both are quantum in na-
ture. This is the case when there exists some discrepancy in
space, time, or energy scales in two sectors described by the
fields. The inore precise meaning of @ and rp, in relation to the
conventionally de6ned classical mean field and quantum Buc-
tuation field will become clear in the conceptual framework
of consistent or decoherent history interpretation of quantum
mechanics. See footnote at the end of Sec. II B.

+m*)4(z) + g' f d'x' D(x, z')p(x') = gj(x),

(2.i4)

where the right-hand side is given by (2.9). Obviously
the expectation value of the driving force vanishes, but
its higher momenta do not. In particular, we find

((j(x),j(x'))) = 2~(x, x') = Re[&~(x, x')]'. (2 i5)

More explicitly,
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1 d4k
N(x, z') =—

2 (2m. )4
(2.16)

sp + — ds
g2 A (a) 2 g2 lV(a)&m & — ds (2.17)
2 (s —sp) 2 S

(which is largely satisfied within one loop accuracy) then
this theory admits stable one-particle asymptotic states
of mass M2 & Bp, where

g ~(a)M + — ds( M2)
——m. (2.18)

The properties of the quantum Quctuations of the
mean field P are largely determined by the retarded prop-
agator G„, defined through its Fourier components

The kernel N, or rather, its Fourier transform JV = h,
also plays a distinguished role with respect to dissipation
in this model. To begin with, let us observe that if

Hadamard function for the quantum mean fields (e.g. ,
from the Kubo-Martin-Schwinger (KMS) condition at
zero texnperature [49]) to be

Gi(k) = 2m Bb(k + M )

2

+
I

—
I

h(-k') IG-(-k') I' (2 22)
&2)

Since on-shell Quctuations are undamped, we may as-
sume that the on-shell contribution to the Hadamard
function was already present in the initial conditions for
the mean field. However, such an interpretation would
be untenable above threshold, because there the P field is
damped, and the memory of initial conditions is eventu-
ally lost. On the other hand, in this part of the spectrum
we have P(k) = gG (k)j(k), so the Quctuations in the
driving force induce Quctuations in the mean field by an
amount

G, (k) = ([(k+xe)*+m~j ——
2 p a+ k+xe

(2.19)

Or else, isolating the pole at —k = M,

G„k B
[(k+ie)2+ M2]

g2 ds JV(a)+
2 [(k+,,), +,]

IG. (s)I' (2.20)

where

g2 JV(a)B = 1+ — da
( M2)2 (2.21)

and G„(a) means the propagator evaluated at any mo-
mentum k with k2 = —a. Equation (2.20) implies that a
perturbation of the quantum mean field propagates as an
elementary free scalar field with mass M, superimposed
to a continuous spectrum of fields with masses ranging
from Sp to oo. The on-shell oscillations, with k = —M2,
are undamped. Above the Sp threshold, however, oscil-
lations are damped, as it can be seen from the P field
self-energy developing a positive imaginary part. As we
can see Rom (2.19), this imaginary part is again given
by the function h( —k2). The same conclusion may be
derived booxn the Feynman propagator for the P field,
which, assuming vacuum initial conditions, is obtained
from the retarded propagator by analytical continuation
(k+ie) -+ (k —ie). As usual, this absorptive part in the
field self-energy is associated with the emission probabil-
ity of real p quanta. Indeed, we have shown in [48] that
the total amount of energy dissipated from the quantum
mean field is exactly the mean energy carried away by
the created particles.

The dual role of the N kernel in both fluctuation
and dissipation, far from being an accident, follows from
the Quctuation-dissipation theorem. Indeed, always as-
suming vacuum initial conditions, we may derive the

G, (k) = 2g'IG. (k) I'a(k). (2.23)

Comparing this with (2.22) we conclude that the force
self-correlation must indeed be given by (2.16). The con-
nection between these fluctuations and particle creation
is equally straightforward: While dissipation describes
the mean efFects of particle creation, the source j ac-
counts for the deviation of the actual number of created
particles from this mean. The relationship between Quc-
tuation and particle creation is explored in full in Ref.
[4].

It is interesting to observe that the structure of the
Hadamard kernel (2.22) as the suxn of on-shell and oif-
shell contributions, the latter being related to dissipation,
suggests that these Quctuations may be regarded as inde-
pendent. Should there be several decay channels for the
quantum mean field, then each would provide a further
term to the Hadamard function, so that the Quctuation-
dissipation balance may hold.

B. Decoherence of the mean Beld
by its quantum fiuctuations

So far we have derived the wave equation for the quan-
tum mean field P. The equation of xnotion (2.14) admits
c-number solutions only under the Hartree-Fock approx-
imation j 0. We now proceed to study under what
circumstances, if any, the dressed field is able to shed its
quantum nature. We adopt to this end the consistent
histories approach to quantum mechanics [22].

The basic tenet of this view of quantum mechanics is
that quantum evolution may be considered as a result of
the coherent superposition of virtual fine-grained histo-
ries, each carrying full information on the state of the
system at any given time. If we adopt the "natural" pro-
cedure of specifying a fine-grained history by defining the
value of the field O(x) at every space-tixne point, these
Geld values being c numbers, then the quantum mechani-
cal amplitude for a given history is iii[4] e' ~ j, where
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S is the classical action evaluated at that particular his-
tory. These histories are virtual because there exists in-
terference between pairs of histories. The strength of
these effects is measured by the "decoherence functional"

z)[@ @'i] @[c]y[@,t)e i(s[4]—s[4"]) (2.24)
xcxp[J]o.p [J']', (2.29)

@[a]= J D4 e'~n[c]. (2.25)

On the other hand, actual physical observations re-
fer only to "coarse grained" histories, where several fine-
grained histories are bundled together. A coarse-grained
history is defined, generally speaking, by a filter func-
tion" o. , which determines which fine-grained histories
belong to the superposition, and their relative phases.
For example, we may have a system with two degrees
of freedom x and y, and define a coarse-grained history
by specifying the values xo(t) of x at all times. Then the
filter function is n[x, y] = P~&& h [x(t) —x(](t)]. The quan-
tum mechanical amplitude for the coarse-grained history
is defined as

where

iw[J, J'] D@ D@l i(s[4]—s'[4']+&4—J 4 ) 2 go

is precisely the closed-time-path (CTP) generating func-
tional [50]. Since the filter functions are smooth, we may
evaluate the integrals over the J's by saddle point meth-
ods, thus obtaining

We assume that the relevant information on the quantum
state has been encoded into the initial conditions for the
paths in the integration domain. The decoherence func-
tional for two coarse-grained histories is [22]

&i~~ ~~] = ~(& &')e*'"''. (2.31)

p[~ ~] f g@lgo~ .(~(@')—~(o*)l~[@~]~[O~].

(2.26)

The two histories 4 and 4 are not independent: they
must assume identical values on a t = T = const sur-
face in the far future. Decoherence means physically that
the different coarse-grained histories making up the full
quantum evolution acquire individual reality, and may
therefore be assigned definite probabilities in the classi-
cal sense. Therefore, as long as we remain within the
accuracy afforded by the coarse-graining procedure, we
may disregard the quantum nature of our system, and
describe the d.ynamics as the self-consistent evolution of
c-number variables.

For our particular application, we wish to consider as
a single coarse-grained history all those fine-grained ones
where the full field 4' remains close to a prescribed quan-
tum mean field configuration P. Thus the filter function
n4, (4) takes the form

We recognize that I' is the closed. -time-path effective ac-
tion, and C is a slowly varying prefactor:

~ [
I' ~ l ~ [—I' ~ ]'

h'2I'
x Det

hP. (x)hfdf(x~)
(2.32)

where a, b = 1, 2, (e.g. , Pi = P, ()t2 = gV). Equation
(2.31), which establishes the connection between the de-
coherence functional for "mean field" histories and the
closed-time-path effective action, is a major result re-
ported here. Of course, it is. only a particular case of the
more general "correlation" histories discussed in [38]. For
simplicity, we shall ignore the prefactor in what follows.

The evaluation of the closed-time-path effective action
is standard. To one-loop accuracy it is given by [51,48]

n(, (o) = J DJ e' ( ~)n(, (J), (2.27)

J4= d 2: Jx@x. (2.28)

The decoherence functional between two of these
"mean field" histories is then

where ny(J) is a smooth function (we explicitly exclude,
however, the case ny = const, where there is no coarse
graining at all). In (2.27) we use the summation conven-
tion over continuous indices: i.e.,

I'[@ ] = S[gP] ~ —lnDet
Z b2S

(2.33)

where S[gP] is taken to mean S[P]—S[gV]' (coinplex con-
jugation applies if an i e term has been included to enforce
the boundary conditions), and the "internal" index a is
lowered with the "metric" g s = diag(1, —1). Function-
ally expanding I' in powers of P, and retaining only up
to quadratic terms, we get
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i'f4 1
=

2 f ~'«'*'i —fd)(*)D(* *')(4i(*')

+'g'[&](x)~(x *')[4(*')) (2.34)

h- [&] =(&' —&') (&& =(&'+&'),

D(x, x') = (—Cl +m )b(x —x') + g2D(x, x') (2.35)

fluctuations in the process.
This phenomenon may only occur in a nonlinear the-

ory, and it is independent of any a priori partition of
Gelds or modes into relevant and irrelevant. Besides
these, there is a rather powerful and comprehensive the-
ory describing it, built with well-proven techniques &om
nonequilibrium quantum field theory [20,50]. We shall
now turn our attention to the problem of fluctuation
generation in the early Universe, and show it may be
understood with the same set of basic principles.

and the "dissipation" (D) and "noise" (N) kernels are
defined in Eqs. (2.11) and (2.15), respectively.

As discussed in the Introduction, fluctuations, namely,
the presence of the driving force (2.9) on the right-hand
side of the wave equation (2.14) and decoherence, namely,
the suppression of the decoherence functional (2.31) be-
tween difFerent mean 6eld histories both depend on one
and the same kernel N, related to the positive imaginary
part of the efFective action, and are therefore revealed as
aspects of the same phenomenon. Note that both efFects
vanish if the cubic interaction is switched ofF, revealing
the essential role played by nonlinearity in this problem.
In turn, the presence of fluctuations is associated with
the back reaction of particle creation and thereby to dis-
sipation: the two efFects are linked by the fluctuation-
dissipation theorem. This manifests the interrelation of
decoherence, noise, and dissipation [4,52]. As have been
shown earlier [20], the equations generated by the effec-
tive action (2.34) are equivalent to the linearized mean
6eld equations coupled to a stochastic Gaussian source
gj, the noise kernel N being the autocorrelator of the
source j. Comparing this with the full equations (2.8),
(2.9) we see that this equation lies in between mean field
theory, where the source is simply ignored, and the full
quantum theory. This approximation, moreover, success-
fully captures the main property of the driving term,
namely its mean square value (2.15). To fully account
for non-Gaussian statistics, we must go to higher loops
and also include more complex correlation functions, em-
ploying the more general methods described in [38].

By repeating the arguments in the previous subsec-
tion, we see that the mean-squared value of the decohered
quantum mean Geld, as driven by the stochastic source,
is again given by (2.23). It is clear that this amounts to
only a &action of the full quantum fluctuations, given by
the Hadamard function (2.22). Thus seeking the amount
of classical fIuctuations subsequent to the quantum to
classical transition by simply equating the classical and
quantum correlators, without a further analysis of the
decoherence process, is definitely unwarranted, unless it
is meant as a simple order of magnitude estimate. As
shown elsewhere [4], this Huctuation is related to the un-
certainty in the number of created particles from the dy-
namical quantum mean field.

Clearly, there is much more to be done to achieve a
full understanding of the quantum to classical transition
in this model. For our present concerns, however, we are
satis6ed with the observation that the quantum mean
6elds may decohere through interaction with quantum
fluctuations around them, developing random classical

Thus in the consistent or decoherent history conceptual
framework, we see a clearer rationale and justification in the
decomposition of 4 = P + p. P represents the local value
of the field measured within one particular history, while y
represents the deviations of this field from the actual or to-
tal field C. What makes p nonvanishing is that the histories
are coarse grained. The important observation explained in
this section (Sec. IIB) is that as long as the deviations stay
at the order of magnitude of the quantum Huctuations, then
the decoherence functional is largely independent of the de-
tails of the decomposition. Specifically, the properties of the
deviations are defined by the window function n in (2.25).
But at the level of the decoherence functional, only the pref-
actor (which we discarded) depends on n; the exponential
term is universal. So the only condition on the o. functions is
that the prefactor (2.32) be slowly varying. In other words,
n should not be too narrow (too little coarse graining) nor
too wide (excessive coarse graining). Within these limits, a
family of sufIiciently diferent P's actually represent consistent
histories, so treating it as a c-number field is justified. (This,
incidentally, is the reason why one can couple it to a classical
gravitational field, as we will do in Sec. III.)

Concretely, our discussion here shows that for a wide range
of coarse graining based on approximated histories of the field,
the decoherence functional takes the form (2.31), with I' given
by (2.34). The most likely histories (in the sense of what his-
tories contribute most to the path integrals representing the
expectation values of observables) are those where the mea-
sured field P obeys the Langevin equation (2.14) with noise
kernel given by (2.15). The end result is that the quantum
mean P field is decohered into a classical mean field and the
part p which measures its deviations from the actual value 4
is regarded as quantum Quctuations around this mean field.

It is clear that our definition of the mean field from the con-
sistent or decoherent history viewpoint is conceptually differ-
ent from the conventional view, which defines P as some kind
of average on the full field. It is true that for reasons given
above, the ensemble average of our field is equal to the quan-
tum average of the full field, but the rationale is different.
In fact, the conventional approach to structure formation by
treating quantum Huctuations naively as classical Buctuations
misses the whole point about decoherence which gives rise to
the classical mean field, and the expedient practice of taking
the vacuum expectation values of the quantum fields amounts
to throwing away the baby with the water, since it suppresses
quantum Huctuations altogether.
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III. C}UANTUM FLUCTUATIONS AND DENSITY
PERTURBATIONS IN DE SITTER UNIVERSE

Sg ——m,„d x —g~ R —2A (3.I)

and

Sg = —— d xg g&8„48"4—
2

(3.2)

As in the previous section, we shall consider coarse-
grained histories de6ned by the values of the quantum
mean fields g„„and P. The decoherence functional is
related to the CTP efFective action as in (2.31). Fol-
lowing the usual prescription for the computation of the

In this section we shall turn our attention to quantum
fields in de Sitter space-time. Our goal is to describe,
within the theory developed in the previous section, how
a quantum scalar field loses its quantum coherence, and
undergoes stochastic fluctuations in the process. Dur-
ing the inflationary period, when the space-time can be
approximated by the de Sitter geometry and the infla-
ton field described as a free, massless scalar field, this
may be seen as a model for the generation of primordial
fluctuations in the early Universe.

Here we shall seek a dynamical origin for decoherence
(rather than imposing a relevance criterium by hand). As
we have seen in the previous section, decoherence &om
an uncorrelated initial state can only occur in a nonlinear
theory. On the other hand, adding a self-coupling to the
inflaton field, even leaving aside the stringent conditions
imposed by the requirement of "successful inflation, " nec-
essarily implies the inclusion of new parameters into the
model, making it correspondingly less compelling. There-
fore we are led to consider the only available parameter-
&ee source of nonlinearity, namely, the gravitational cou-
plings of the inflaton. To appeal to quantum effects of
the gravitational 6eld immediately evokes a number of
difhculties arising Rom the nonrenormalizability of gen-
eral relativity. In this work we shall sidestep this issue,
by considering only one loop effects. Moreover, as in the
previous section, we shall not carry through the renor-
malization procedure explicitly, but rather assume that
the theory has already been rendered 6nite by adding
suitable counterterms to the classical action. In fact, we
shall base our analysis on the Einstein-Hilbert form of
the action, without including higher order terms which
could arise in the renormalization process. This proce-
dure is fully justified at the scales of interest [53]. An-
other feature of quantum gravity which we shall sidestep
is the gauge character of the gravitational 6eld. To high-
light the physical ideas in our approach, we shall take
the simple-minded view of fixing the gauge at the clas-
sical level, considering only quantum fluctuations of the
"physical" degrees of freedom [54]. We shall present the
results of a more complete calculation elsewhere.

Thus we shall consider a theory involving two quantum
6.elds, the gravitational 6eld g~„and the inflaton field 4.
The classical action functionals are given, respectively,
by

one-loop effective action, we write both flelds in terms of
the quantum mean (or dressed) fields and their pertur-
batlons:

and

gPV gPV + hPV (3.3)

(3.4)

To make sure that the fluctuations are physical, we work
with the transverse traceless gauge in synchronous coor-
dinates, namely,

I & = 6"„.„=0 6'„= o) gg (3 5)

where indices are raised and lowered with the background
metric, and the derivative is taken with the background
Levi-Civita connection [54]. Observe that the classical
equations of motion admit a solution with

g„„=(II~) (3.6)

Note that the metric Geld g„„also has fiuctuations and,
in general, there is no clear separation between the metric
and matter Geld 6uctuations. Indeed, linearized gravitational
perturbations behave like massless minimally coupled scalar
fields. One can use the gauge-invariant formalism of Bardeen
and others [6j to treat the gravitational Snctuations. How-
ever, since we are interested here speciGcally in the nonlinear
e8ects, for simplicity, we have ignored the gravitational Quc-
tuations since we regard the behavior of linear Quctuations to
the scalar Geld as representative of both the matter and grav-
itational field Buctuations. Nonlinear gravitational Quctua-
tions can likely generate qualitatively new eKects and should
merit more attention, but the present state of knowledge is
not adequate to treat them in an intelligent way.

and with vanishing field. Here w ( 0, where w = I dt/a is
the conformal time, A = 3H, and g&v is the flat space-
time metric. (This solution, of course, represents only
one-half of de Sitter space-time [55].) Since we are not
concerned at this moment with the stochastic fluctua-
tions of the gravitational field itself (see [4] in this connec-
tion), we shall compute the noise and dissipation kernels
for this value of the gravitational background, leaving
only P arbitrary. ~

Continuing with the computation of the dissipative and
stochastic elements in the dynamics of the inflaton, we
should expand the classical action in powers of the per-
turbations, and retain. terms only up to quadratic orders.
This is of course equivalent to computing the full nonlin-
ear equation, and linearizing afterwards, as we did in Sec.
II, but in a more complex theory, this approach is more
efBcient. Beginning with the scalar action for simplicity,
we obtain three kinds of terms which are independent of,
linear, and quadratic in y, respectively. The term which
does not contain y is necessarily quadratic in both h"„
and P. To one loop accuracy it only appears in "tadpole"
graphs, with no relationship to the nonlocal part of the
noise and dissipation kernels, and we will not consider it
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further. The part quadratic in p defines the propagator
for these microscopic 6uctuations. It takes the form

d7-d ~ ~~ —2 (3.7)

where the prime stands for a v derivative. The yh cross
term is the source of dissipation, decoherence, and noise
in this model. For physical gravitational perturbations
(that is those obeying ho = ho = h', = h~ . = 0), it is
given by

s~(") = — a~ d'~ a~ -';, n', ~, 3.8

where Latin indices run &om 1 to 3.
Expanding the Einstein-Hilbert action we can read out

the &ee graviton propagator. The quadratic terms in
the action are

m2g() d~d ~ II~ — h'g j p,
' h& g9

However, the graviton components h'- are not indepen-
dent, since they are linked through the gauge conditions.
It is convenient to write the graviton field explicitly in
terms of the independent physical degrees of freedom, as
in [54]

h, '. (z, &) =
~ i

d y(G+. '(x —y) h+ (~, g)
(I & s +' - - +

+G, (~ —y)" (r y)) (3.10)
where

d3kG+i
(

~ ~) ik(s —g) A+i
(2 )s' r., (3.11)

and a similar formula exists for the cross (x) polarization.
The A matrices obey

(3.12)

A."k
A+'A. + = A"'A" = h'—

kj —kl kj —kl l y2 (3.13)

(3.14)

The graviton action thus splits into two parts:

s(') = s++s" (3.15)

each being the action for a massless, real scalar Geld,
(3.7). We also find

d'T d xd
p

(3.16)

While it is possible to derive the eEective action for this model, in order to Bnd the noise and dissipation kernels it is
simplest to proceed &om the equations of motion, as given in Sec. II A. Let us begin with the Heisenberg equation of
motion for the inBaton Geld

2

~&' — &;"f &v v (~ *") &G'* (*—~) h' (~ ~) + G"' (*—~) h" ( g) ) = o (3.17)
p

It is clear that in the absence of a nontrivial background Beld, the expectation value

(3.18)

Thus the linearized equation for the mean field reads

(3.19)

where

2

D(T, T') = 8,, d y G+'(2 —gj —( p(~, x) h+ (~, g)) ~y 0 + (+ m x)) .
mp b x' (3.20)

Note that although a self-coupling A4 field is considered,
the noise kernel (3.42) is calculated here only from the vertex
S&' in (3.8). The vertex induced from the self-coupling is ig-
nored because the self-coupling contribution is much smaller
than the gravitational contribution. As we shall see [in the
paragraph after (4.11)],with A 10 the self-coupling con-
tributes a term of the order 10, much below the gravita-
tional contribution. In any case, our calculation only aims
at a parameter-free lower bound. Inclusion of self-interaction
would only add noise to this. For a more complete calculation,
see [61].

i (*) = /~'v C, v (~, *)(G'*(*—~)h'(~P),
+G". ' (x —g) Ii" (~, g) ). (3.22)

Comparing the mean field equation with the Heisen-
berg equation, we obtain the equation for the dressed
Buctuations

& &(&) — 4~(»~') &(&') = &(&)
d4z', , (H7-)

(@~1)' '
mp

(3.21)
where in principle j represents the composite operator
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(Here we have used the transversal character of the G
tensors. ) As we discussed in detail in Sec. II, upon deco-
herence we can think of j as a classical stochastic source,
whose autocorrelation is given by the noise kernel

~(* *') = (~(*)~(*')).=
2 (b(*) ~(*')))o. (3.23)

To compute the quantum expectation values in Eqs.
(3.20) and (3.23), we expand the quantuin field operators
in terms of the destruction and creation operators, as in

d3y iA:x

p(v;T) =666,) u6f~(~)+a fP (v))-

(3.31)

The time dependent amplitude P& (w) can always be writ-
ten as

4i (&) = ~pe:(~)+P)-.fa (&) ~ (3.32)

Imposing the auxiliary condition

~I (r) = c6jfa (r) + PpA (r)

can also expand the quantum mean Geld in terms of its
Fourier modes:

(3 24) and keeping the Wronskian (3.26) in mind, we find

and perform similar expansions for the graviton ampli-
tudes. All three scalar fields y, h+, and 6" are expanded
in terms of the same modes

fi, (~) = e '" [1+iI(:~],

( ) '

(3.34)

fk (~) fk (~) —f~ (~) fk' (~) = —2'k'r'. (3.26)

A. Dissipation and dynamics of free mean Belds

which are related to the Fulling-Davies vacuum, this be-
ing the natural choice of quantum state in this problem
[56]. The Wronskian of these modes is

In the absence of dissipation, the coefficients o( and P
would be constant. In the presence of the dissipation ker-
nel, they become functions of time, with evolution equa-
tions

Before continuing with the discussion of the Buctua-
tions in the quantum mean field, we want to Grst ana-
lyze the solutions to the source-&ee mean Geld equation,
(3.19). Concretely, our goal is to establish the dissipative
character of this equation, to be able later to analyze the
Huctuations in terms of the Huctuation-dissipation rela-
tion.

As we show in the Appendix, the dissipation kernel is
conveniently written as

~'p„' (r)
i a4 d7'

2k' m„'
ft

x Dg (~, r') Pg (~') .

&'~~(&) =
2~, , A':(&)

y H~')
xDI, (r, 7') pg (~'), (3.36)

D (z, z') = 0 (~ —~') (H7.) (H7-')
H4, 2, 2 d3k
m' (2')
x.'"( *')D, (~, ~')-, (3.27)

We are interested in the solution where n -+ 1 and p -+ 0
in the far past. In a first approximation, we may substi-
tute Pi, by its &ee value fi, in Eqs. (3.36) and (3.37). In
particular, we obtain, for the total integrated change in
the amplitude of the mode err, = ~n),

~

where

D„(7;7') =
~ 6(67+q —6)

(2vr) 2p 2q

xO (p, q) E„~ (~, 7')

2H d~ d7'
m„'ks

x D~ (~ r') Im [f~ (~') f~ (~)] .
(3.28)

Substituting the value of Dg, this yields

(3.38)

O(p, qQ
= p,p~pip A+-,'4 ~@+A"-'4 "~@ (3.29)

H2 d3p dsq
Loj, =— b J7+ q —km' (2~)' k»p' 2q'

Fpq(7. , 7-) = 2Im f*(v) f (w) f~(r )fq(7-) . (3.30) xs (n q) (16'~oel' —I+~~al*) (3.39)

Since the background is spatially homogeneous, we where
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d7—,f ()f;();( )

d7.
Gkp. = —.fk (~) fp (~) f. (~) .

(340) (4( )&( 0)). =

(3.41)
(3.43)

1 d ri d r2
2G-[(& ~) ri]

(H7. ) (Ht2)
x G„[(7,0), r2] N(ri, T2).

Clearly, the more rapidly oscillatory function 0 will
be much smaller than E, and we shall neglect it in what
follows. It should be observed, besides, that when k =
p+ q, the condition k = p+ q, enforced by the delta
function in (3.39), implies that p and q are collinear, in
which case 8 (g7, q) = 0. Because of this, the integrand in
Fppq is always oscillatory, and the integral is independent
of the lower limit of integration.

To summarize, if we ignore the efFects of Quctuations,
we must conclude that the mean Geld is dissipated by
its interaction with the environment, losing an amount
b,ok of its original amplitude (and an equal amount
of its original Klein-Gordon charge) over the de Sitter
period of cosmic evolution. Since on the other hand zero
point fluctuations cannot disappear, we should expect
that an equal amount will be provided by the environ-
ment, now under the guise of random driving force, so
that the Quctuation-dissipation balance may be kept. We
turn now to investigate this issue.

B. Noise and the Huctuation-dissipation balance

Let us return to the full dynamics of the quantum mean
field, as described by (3.21). We see that, besides the
dissipative terms just analyzed, the Geld is coupled to a
random source j, whose mean square value is given by the
noise kernel (3.23). Substituting the mode decomposition
(3.24), it is straightforward to find the explicit expression

d3k d3~( ) =~ "" "" '("+)(- ')
(2') 2k (2~) 2p

XO(k, RRe fk (q) fp (~) f (k~') f p(~')

(3.42)

More interesting than the noise kernel are the Quctua-
tions induced on the quantum incan field P itself. From
the point of view of the theory of primordial Quctuations
in the Universe, the most relevant quantity is the mean
square value of the Quctuations at a given time, which
are given by

The homogeneous term in P as a solution to the Langevin
equation is ignored here. The rationale lies in the belief that
inQation can only happen if the initial 6eld is homogeneous on
scales larger than the horizon [57]. Assuming that inflation
once did happen, as most authors on this subject do, pur-
ports observational evidence that the 6eld in the patch which
in6ated was very smooth initially, at least in the very short
scales much below the horizon of interest to later observers,
thus rendering the homogeneous solution negligible. The ac-
tual happening depends on the semiclassical physics between
the post-Planckian and the preinflationary [grand unified the-
ory (GUT)] epochs. See [58].

In a first approximation, we may use &ee retarded prop-
agators for the Green functions

d3k

(2m) 2ks

x (fk (&) fk (&i) —fk (&i) fk (&)) (3.44)

The result is

(~( )4( 0)). = J ~ "~ P4'&~i (7') (3.45)

where

H2 F (~, I )
(2z) 2ks

(3.46)

and

H2 d3 d3

i(fk(~) Fkpq(~) —fk (~) Gk„(~)) I'

(3.47)

[0 was defined in (3.29), I' and G in (3.39)]. If, as in the
previous subsection, we neglect G compared to E, this
reduces to the simple result

S (~, k) = -a~k ~fk(~)~'. (3.48)

IV. GENERATION OF FLUCTUATIONS
IN INFLATIONARY COSMOLOGY

So far we have presented a comprehensive &amework
to study the transmutation of quantum into classical Quc-
tuations in nonlinear field theories, and applied it to a
scalar field propagating on a de Sitter background while

This result, of course, is exactly what we should ex-
pect &om the Quctuation-dissipation arguments. The en-
vironment injects into the system exactly the amount of
Quctuations necessary to maintain consistency with equi-
librium against the tendency of the mean field to dissi-
pate away. We could say that the environment returns as
noise what it had previously absorbed as dissipation; the
important point is that in the process these Quctuations
have been degraded &om coherent quantum Quctuations
to incoherent stochastic ones. This reprocessing of part
of the quantum mean field by the environment is the
physical content of the decoherence process.

An important consequence of (3.48) is that only a, frac-
tion, and indeed a very small part, of the total zero point
Quctuations may ever become classical, and thus con-
tribute to structure formation, unless the Hubble param-
eter H is of the order of the Planck mass. This is the
crucial point relevant to the cosmological problem, and
therefore deserves to be elaborated in some detail.
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interacting with gravitons. I et us now apply these results
to the problem of the generation of primordial Quctua-
tions during the inQationary era. We shall contrast the
well-accepted results in the literature with that obtained
by our method.

For simplicity, we follow the Guth-Pi treatment [59] for
the density contrast derived &om quantum Huctuations
in the inBaton Geld. It is estimated to be

Therefore

82
I naiad

(2 ) 2ks

hp H2 ~6O5
p C gmj

(4.8)

(4 9)

bp Hhpk

(~)
(4.1)

A@4

2mp
(4.2)

(in this discussion, we shall systematically ignore factors
of order unity). Because of the second assumption, the
equation of motion for the field is

O+ v/Am„C = 0, (4.3)

with solution

where the right-hand side is evaluated at the time a given
Inode "leaves" the de Sitter horizon, i.e., when kw 1.
As a viable example, we shall adopt the "chaotic" in-
flation [13] model, where the inflaton field self-interacts
with a A4 effective potential. During the inQationary
period, the vacuum energy dominates the stress energy
tensor of the field, and the inQaton slowly rolls down the
potential well. Because of the first assumption, the Hub-
ble parameter becomes

E l(Hil A(oi
gm„) qm„j

And, for "short" wavelength modes,

(4.10)

The physically most relevant modes are those which leave
the horizon late in the inBationary period, when 4 mp.
For these modes, the observational constraint hp/p
10 at decoupling leads to a severe bound on the inBaton
interactions A 10 . This is one of the outstanding
puzzles in inQationary cosmology.

If we compare our results for the semiclassical Huctu-
ations with the usual estimates in the literature, we find
they differ by the presence of the F factor defined in
Eq. (3.47). Closer examination reveals that the integral
defining F (w, k) depends on its arguments only through
the combination A:x, and as the mode "leaves the hori-
zon" it becomes a dimensionless constant. io (Of course,
if we take the defining expression at face value, this con-
stant would be infinite, but, since the divergence is only
logarithmic, after suitable ultraviolet and in&ared cutoffs
are introduced, the physical result shall be of order one. )
Therefore we simply obtain

@(t) @
—~Amdt (4.4) A.

bp

P
(4»)

and

-~A+2
H (t)

& 0 2v A~pt-
mp

(4.5)

mp
(4.6)

and the number of e-foldings

where we have placed the origin of cosmic proper time
at the beginning of inHation. Both assumptions break
down when 4 mp, so we estimate the length of the
inQationary period Lt as

This correction modifies the above bound on A by six
orders of magnitude, i.e. , we have hp/p 10, with
A ~ 10 . This represents a dramatic reduction in the
fine-tuning required by the model; in fact, this value
of A is consistent with the inBaton taking part in non-
Abelian gauge interactions with a coupling constant of
10 2, while the older estimate would require one to shield
the inHaton unnaturally &om radiative corrections. On
the other hand, the value of A is not so high as to make
the coupling of the inQaton with its own Huctuations pre-
vail over the gravitational couplings considered here.

As we have illustrated in this paper, with proper con-

At
n= Hdt (4.7)

A satisfactory resolution of the horizon problem demands
n & 60. This implies that the variation of H over an e-
folding is small.

With these inputs, we may compute the spectrum of
primordial Quctuations. In the conventional treatment,
where the full quantum Quctuations of the inQaton are
seen as contributing to structure formation, hfdf is read
directly out of the mode expansion as [60]

In the function E defined in Eq. (3.47), the function f&
depends only on kr [Eq. (3.25)]. Therefore F&„~ [Eq. (3.40)]
scales as v, or as k at horizon crossing, since k7 1, while
0 [Eq. (3.29)] scales as k . On the other hand, the b function
scales as k, and there is another k explicitly in front of
the integral. Thus naive power counting shows that E [Eq.
(3.47)] is dimensionless. Since all the possible dependence
on H and m~ are explicitly given, it either depends only on
the dimensionless combination kv, or else on a regularization
scale or cutoK However, the latter can only happen logarith-
mically, since this is the degree of divergence of the integral.
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sideration of decoherence and noise for quantum fields,
the possibility of developing successful inHationary sce-
narios within moderately nonlinear field theories has far-
reaching consequences. Not only can we place the inHa-
ton field in the proper ranges of conventional high energy
physics in the treatment of Quctuations, but also better
implement the inflaton dynamics [62], entropy generation
[63], and reheating problems [64]. We are continuing this
line of investigation on these outstanding issues.
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1. Dissipation kernel

Let us begin with the calculation of the dissipation ker-
nel (3.20). In order to compute the variational deriva-
tives, we must consider the equations for the y and h
fields; namely,

H~
O~(~) = y; (*) dsz(G~+'(* —~q I+ (~, ~q+ (+ ~ x)),

mp

2

Hh+ (~, g) = d z (G+' (y —z) [P;,.y] (~, z) ),
mp

(A2)

and a similar equation for the cross (x) polarization. Taking variational derivatives of both sides of these equations,
we find

~be (*)
~& (&')

hh+ (~, y)
~& (&')

2

B,d (z, z') J d ,z (G,+.
' (z' —zj h+ (z, z) + (d- z-z x )),

ri2
b'(~, ~') G+* (g —x') 8; rp (x') . (A4)

These equations may be solved as

mp

I 2

d,,4„,(z z') / d z (Gt' (z' —zj h+ (z z J + (+ z+ x ) ),

, g), ( ', )]G+
bP (z') m„

(A6)

' The remaining steps consist of substituting these in
(3.20) and computing the quantum expectation values
with the help of the mode decomposition (3.24). These
straightforward manipulations shall be omitted.

2. The propagator approach

where the prime stands for a w derivative. We derive
from it the microscopic Feynman propagator [65]

i H 'i ri7-2
2

&~(»») = —
i

—
Ii 2vr ) (v 2 —r 2 —ie)

Let us recall the action for the microscopic p field
+—in(r —~ + is) —2c,1 2 2

2
(A8)

Sf = — d7 d X H7 p — V(p (A7) where w = wi —72, r = xi —x2, and c is an undetermined
constant. The retarded propagator A = —2 1mB~0(v)
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and the Hadamard propagator Li ——2 ReL~ also follow.
The graviton Feynman propagator is a symmetric

bitensor A'z" 2(xq, x2). Out of symmetry considerations,
it must take the form [66]

Moreover, the graviton propagator is linked to the scalar
one by

(m') (A14)

where

(A9)

(A10)

+»q(&;.Qi + Q, Pi )

+&~q(&'"Q~i + &i'Q"i + Q'"&&i + qiI;")
+AqqQ'Q,

(qskq + qsqk)
i16 4»p = d'a 'a —'a Ky' (ar) .

3m o
(A15)

which provides a connection between L~~ and
namely,

QtJ j2g (A11)

(A12)

These identities allow us to write all the biscalar coeK-
cients in terxns of A~~, concretely,

1

2
(3 r2 d l

&iq =
]

—+ — I»i,(4 2 dr2)

The restrictions on physical gravitons imply a number of
identities the graviton propagator must satisfy; namely,

N(xi, x2) = Rez(xi, x2) (A16)

and the dissipation kernel

In our approach here, the correlator of decohered Buc-
tuations is not to be guessed a priori, but should rather
be deduced &om the analysis of the noise kernel induced
by the in8aton-graviton coupling. Our task is simplified
by the observation that this model has the same struc-
ture as the g@ theory &om the previous section, only
we now deal with a multicomponent field. It is therefore
immediate to write down the noise kernel

9 2d (2d)———3r —
)

r
8 dr2

g dr2)

, d (, d)'—+3r (A13)
where

D(xz, x2) = 21m'(xz, x2)8(r] —r2), (A17)

2
~(Xli X2) —

(
g2 I 2 [~i~j ~k~i (+P+ji) (Xl~ X2). (A18)

An explicit evaluation yields

68 1 1
Z(xg, x2) =

4 4 (Z —3) (1 —Z) —ln[rir2(1 —Z)] —2c
27l m T] r2 Z 1

2 (Z —5) 21 a 1 (a a+46' —————
/

—+ —
/

[1 —a arctanh(a )](Z —1)2 100 15 3b ( 5 b )
3c (1 li ( 1 l 3+—+

I

-+ —~»
I

1 ——,
~

——»[r, r2(1 —Z)]10 q4 2b) q a') 20

+ b —2bc —(b—+2)ln
~

1—2(Z —4)
(Z —1) ~

+ bin ~f(1 —Z)]a2 ) (A19)

where Z —1 = r —r /2rir2, b = r /rqr2, and a = r /r (we assume r has a small negative imaginary part to
obtain the correct time-ordering property). Observe that Z is de Sitter invariant, while a and b are not.
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