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Fluctuation corrections to bubble nucleation
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The Quctuation determinant which determines the preexponential factor of the transition rate for
minimal bubbles is computed for. the electroweak theory with sin O~ ——0. As the basic action we
use the three-dimensional high-temperature action including, in addition to temperature-dependent
masses, the TC one-loop contribution which makes the phase transition 6rst order. The results
show that this term (which has then to be subtracted from the exact result) gives the dominant
contribution to the one-loop effective action. The remaining correction is of the order of, but in
general larger than, the critical bubble action. The results for the Higgs field Huctuations are
compared with those of an approximate heat kernel computation by Kripfganz, Laser, and Schmidt;
good agreement is found for small bubbles and strong deviations for large thin-wall bubbles.

PACS number(s): 98.80.Cq, 11.10.Wx, 11.15.Kc, 64.60.+b

I. INTRODUCTION

The electroweak phase transition is at present the ob-
ject of extensive investigations [1]. If the phase transition
is first order, which is possibly the case if the mass of the
Higgs boson is not too large, the phase transition occurs
via bubble nucleation. Bubble nucleation can have var-
ious consequences for cosmology in the early universe.
The possibility of baryogenesis in bubble walls has been
investigated recently by many authors (see, e.g. , [2, 3]);
reheating after the phase transition could be mediated by
bubble nucleation and subsequent coalescence, the cre-
ation of inhomogeneities by bubble formation could be
observable (see, e.g. , [4—6] for representative discussions
of the physics of bubble nucleation and growth).

Bubble nucleation is described usually within the re-
action rate theory formulation of I anger [7] or, equiva-
lently, the semiclassical approach to quantum field theory
by Callan and Coleman [8, 9]. This iormulation requires
the existence of a saddle point in configuration space, the
minimal bubble, with one unstable mode, possible zero
modes, and real kequency fluctuation modes. The lead-
ing term in the tunneling rate is given by the negative
exponential of the minimal bubble action; the corrections
arise &om integrating out the fluctuations in the Gaus-
sian approximation, leading to a fluctuation determinant
prefactor whose negative logarithm is the one-loop effec-
tive action. If the leading approximation is good, this
prefactor should be of order 1; substantial prefactors
have, however, been found in the case of the sphaleron
transition, both from bosonic [10—12] and fermionic [13]
fluctuations. It is therefore of interest to investigate how
strongly these prefactors modify the leading-order ap-
proximation to the bubble nucleation rate.

Here we present an exact computation of the bosonic
fluctuation determinant of the critical bubble. As the
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II. BASIC RELATIONS

The three-dimensional high-temperature action is
given, in the formulation by Dine et al. [6], by
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Here the coordinates and fields have been rescaled as [19]

4 m v(T)@, A ~ v(T)A .
gv T (2.2)

basic action is determined by the usual Higgs potential
with just one minimum at the classical expectation value,
some fluctuation effects have to be included already at
the tree level in order to allow for minimal bubble so-
lutions. The exact fluctuation determinant should then
reproduce those in order to justify this modification of
the leading-order action. Following the basic work of
Coleman and Weinberg [14] such modified actions have
been proposed by many authors [6, 15—17] and used to
describe the bubble nucleation in leading order. To be
specific we use here the one given by Dine et al. [6] which
was also the basis of a recent approximate computation
of the one-loop Higgs fluctuations by Kripfganz, Laser,
and Schmidt [18].

The plan of this paper is as follows. In the next sec-
tion we will introduce the model and set up the basic
relations for the bubble nucleation rate. In Sec. III we
will d.iscuss the structure of the fluctuation operator, in
particular its partial-wave decomposition. The computa-
tion of its determinant, based on a very useful theorem,
will be described in Sec. IV. In the final section we will
present some results and conclusions.
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The vacuum expectation value v(T) is defined as

v'(T) =
A

(Tp —T'). (2.3)

redefined analogously and denoted as gs(T). By this
change of scale the high-temperature potential changes
as well; it becomes [20]

To is the temperature at which the high-temperature
potential Vht changes its extremum at @ = 0 from
a minimum at T & To to a maximum at T
To. The temperature-dependent coupling of the three-
dimensional theory is deGned as

Vi„(e 4) = ((etc)' —E(T)(4 4)

+[sr(T) —2]4 t4),
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with

(2.11)
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In terms of the zero-temperature parameters we have
m~ ——gvp/2, m~ = i/2Avp with vp ——246 GeV, and
we use the definitions of Dine et aL [6], modified by
setting e~ ——0 and therefore mar ——mz '.

The action and its rescaling differ slightly from that
of Hellmund et aL [20] and of Kripfganz et aL [18]. In
contrast with the former we do not mimic the influence
of a Debye mass by decoupling the longitudinal degrees
of f'reedom. In contrast with the second one we include
only the 4 contribution of the gauge Geld and would-
be Goldstone degrees of freedom as in Ref. [16]. This
form of the C contribution was found to yield a good
approximation for the exact results in the case of the
sphaleron [10,11],at least in the case mH/mdiv « 1. We
will Gnd, indeed, that this term dominates the effective
action.

The process of bubble nucleation is, within the ap-
proach of Langer [7] and Coleman and Callan [8, 9], fol-
lowed by the work of AfHeck [21], Linde [22], and others,
described by the rate

In terms of these parameters the high-temperature po-
tential is given by
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This minimum is degenerate with the one at 4 = 0 at a
temperature deGned implicitly by

The rescaling Eq. (2.2) with the scale v (T) inakes sense
only for T & To. On the other hand the high-temperature
potential has, before rescaling, a secondary minimum at
~@'~ = v(T) with

Here S is the high-temperature action, Eq. (2.1), with
the new rescaling, minimized by a classical minimal bub-
ble configuration (see below), and g is the fiuctuation de-
terminant which describes the next-to-leading part of the
semiclassical approach and which will be deGned below;
its logarithm is related to the one-loop effective action by

S,~' = —ln& .1—l (2.13)

—4 (r) ——4 (r)+ =0,], 2 ] dVht

r d@(r)
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Finally u is the absolute value of' the unstable mode
frequency.

The classical bubble configuration is described by a
vanishing gauge Geld and a real spherically symmetric
Higgs field 4(r) = ~4~(r) which is a solution of the Euler-
I agrange equation

Tc = Tp/Ql —E2/DATo . (2.9) with the boundary conditions

lim 4(r) = 0 and 4"(0) = 0 . (2.15)
T~ marks the onset of bubble formation by thermal bar-
rier transition. In the work of Hellmund et al. [20] and
Kripfganz et al. [18] the vacuuin expectation value of the
broken symmetry phase v(T) is chosen for the rescaling
of the fields; i.e. , in Eq. (2.2), v(T) is replaced by v(T),
and the high-temperature coupling constant Eq. (2.4) is

Our notation ddfers from the one of Refs. [18, 20].
We do not introduce a tilde for the rescaled fields.
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This differential equation can be solved numerically, e.g. ,
by the shooting method. The solution will be denoted as
Hp(r).

1 3 1
SGF= 2 d x —XX (3.6)

temperature action by adding to it the gauge-fixing ac-
tion

III. FLUCTUATION ANALYSIS

b2S
ab z ~ g ~ I p=pb~bbye ) (3.1)

In terms of the action S the fluctuation operator is
defined generally as

and the Faddeev-Popov action

SFp=, d xq
~

—a+1 s t ( Hp25

gs T 4) (3.7)

where P stands for the various gauge and Higgs field
components and Pb„bbi, is the field configuration of the
miniinal bubble. An analogous derivative, taken at P =
P„, = 0, defines the vacuum fiuctuation operator MP
In both configurations the gauge fields vanish, and the
Higgs field is given by

(3.2)

W„=a„,
4=( Hp+h +rp ) ~ 1 ~

fob
(3.4)

Here the fields denoted with small letters, a, h, and P,
are the fluctuating fields.

Before we discuss fluctuations we have to fix the gauge.
We work here in the 't Hooft —Feynman background
gauge. The gauge conditions read

1
W = ~,a" + Hpp =0—

The total gauge-fixed. action St is obtained &om the high-

in the bubble configuration and vanishes in the vacuum.
The fiuctuation determinant J' appearing in the rate

formula is defined by

det" M
det MP

Here the symbol det" denotes the determinant with re-
moved translation zero modes and with the unstable
mode &equency replaced by its absolute value.

The analysis of fluctuations of the minimal bubble can
be related to a similar analysis performed recently for the
electroweak sphaleron without gauge fixing in Ref. [23]
and in the 't Hooft —Feynman background gauge in Ref.
[11].We will use this latter analysis. One can take over
the fluctuation operator with two modifications which
represent at the same time essential simplifications: The
high-temperature effective potential has to be modified
&om the one in Eq. (2.7) to the one in Eq. (2.10);
the sphaleron and the broken symmetry vacuum config-
urations are replaced by the bubble and the symmetric
vacuum configurations defined above.

Furthermore we use here [see Eq. (2.2)] for the coordi-
nates the scale (gv) instead of the scale M~ ——2/gv
used in Ref. [11].

The expansion of gauge and Higgs fields reads then [11]

d2 2 d l„(l„+1)
dr2 r dr

+ r2 (3.8)

with masses m„given by (0, 0, m~), respectively, for the
three components and with centrifugal barriers corre-
sponding to angular momenta l given analogously by
(l + 1, l —1, l). The nonvanishing components of the po-
tential are

Vi i ——V22 ——Hp /4,
V,.= H,'/4 ~ (AT/4g') (4H,' —3.H, ),

l + 1 dHp

2l+ 1 dr
Vi3= V3i =— (3.9)

V23 = V3
l dHp

2l+ 1 dr
(3.1o)

For l = 0 the second component is absent due to the
vanishing of the vector spherical harmonic rV'Yp . These
amplitudes have a triple degeneracy due to isospin be-
sides the ordinary degeneracy (2l + 1) &om spin.

The fluctuation operator for the scalar part of the
Higgs field is given by

2 d l(l + 1)———+ ~ + mH + V44(r),M

V44 —— (12Hp —6eHp),
4g2

m~ = (3e —4) .AT

4g2

(3.11)

It ls the action St = Sht+ SGF+ SFP which has to be
used in the definition of the fiuctuation operator (3.1).

The Hilbert space of fluctuations decomposes into sub-
spaces defined by the symmetries of the background field.
The fluctuation operators given below have been derived
&om those of Ref. [11].This analysis was based on a K
spin basis (K = 1 + I). Alternatively one might have
used here simply an analysis based on ordinary spin, i.e. ,
an expansion where the Higgs field, the Faddeev-Popov
field, and the time components of the gauge fields are
expanded with respect to spherical harmonics and the
space components of the gauge fields with respect to vec-
tor spherical harmonics xYi rV l an l

The electric components of the gauge field and the
isovector (would-be Goldstone) components of the Higgs
field form a coupled (3 x 3) system. The fiuctuation op-
erator can be written in the form M = M +V. The &ee
operator M is diagonal. It consists of &ee partial-wave
Klein-Gordon operators
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This channel being an isosinglet, its degeneracy is just
(2l + 1).

The time components of the gauge fields, the Faddeev-
Popov fields, and the magnetic components of the vector
potentials all satisfy the same equation

Mr4's = ~'gs (3.12)

Ho
&55 =

4 (3.14)

which vanishes exponentially as r ~ oo. There is no l = 0
component of the magnetic vector potential since the vec-
tor spherical harmonic LY& vanishes. In the Huctuation
determinant all of these contributions cancel, and only
the s-wave Faddeev-Popov contribution survives, due to
the lack of its magnetic counterpart. It is triply degen-
erate due to isospin and has to be subtracted.

The partial-wave decomposition of the Huctuation op-
erator decogxposes also its determinant:

ln J' = ) (2l + 1) ln Jj . (3.15)

We now need a method for computing numerically the
determinants of the partial-wave Huctuation operators.
Such a method has been developed recently by Kiselev
and Baacke [29] and will be presented briefly in the fol-
lowing section.

It consists of a Bee massless partial-wave Klein-Gordon
operator

dz 2 d 1(l+1)
d2 G1

and a potential

det(M+ vz) . detf(v, r)v llmdet(Me + vz) ~-+~ det fe(v, r)
(4.4)

f„(r) = [b„+h„(r)]i)„(v.„r), (4.5)

with the boundary condition h (r) -+ 0 as r ~ 0. The
values l and e„= gmz + v~ depend on the channel as
specified in the previous section. This way one generates
a set of linearly independent solutions which near r = 0
behave like the free solution as required by the theorem
which then takes the form

&(v) = lim det(h„+ h„(r)) . (4.6)

The functions h„(r) satisfy the differential equation [31]

where the determinants on the left-hand side are deter-
minants in functional space, and those on the right;-hand
side are ordinary determinants of the n x n matrices de-
fined above. If the theorem is applied at v = 0, it yields
the desired ratio of fluctuation determinants g—:J'(0).
The consideration of finite values of v is necessary in the
discussion of zero modes.

The theorem has found previously some applications
in (1 + 1)-dimensional models [25—27]; the generaliza-
tion to partial waves and to finite-temperature compu-
tations, using the analytic properties of Dost functions,
has been given by Bochkarev [28]. It has been developed
into a numerical method for computing Huctuation deter-
minants for three-dimensional systems, including renor-
malization, in [29,30]. These numerical applications have
shown that the method yields very precise results and in
addition is very fast.

In the numerical application the solutions f were
written as [31]

IV. THE FLUCTUATION DETERMINANT
OF THE ELECTRO%'EAK BUBBLE

and

(M;~ + v b;, )f, (v, r) = 0 (4.1)

(M,-, + v b;, )f (v, r) = 0, (4.2)

respectively, with regular boundary conditions at r
0. The lower index denotes the n components, and the
diferent solutions are labeled by the Greek upper index.
I et these solutions be normalized such that

limf(v, r)[fe(v, r)) ' = l.
Then the following equality holds:

(4.3)

A very fast method for computing fluctuation determi-
nants is based on a theorem on functional determinants;
references to earlier work and an elegant proof are given
in Ref. [24]. Generalized to a coupled (n x n) system it
can be stated in the following way

let f(v, r) and fe(v, r) denote the (n x n) matrices
formed by n linearly independent solutions f; (v, r) and
f, e(v, r) of

h„(r) +
~

—+ 2r„."
~

—h„(r)
(P (2 i', (K„r)) d

dr gr 1,i K~r ) dr

= V„„(r)[h„,+ h„, (r)] "' ", (4.7)
Zl Kn P

which can also easily be used for generating the functions
h order by order in V. In particular, if this differential
equation is truncated by leaving out the term 6, on the
right-hand side, one generates the first-order contribution
to h which is the tadpole term. For more technical details
we refer to Refs. [29, 30].

With the partial-wave fluctuation operators given in
the previous section the application of the theorem to the
case of the electroweak bubble is straightforward. Some
points to be considered are the subtraction of the diver-
gent tadpole graphs, double counting of gauge and would-
be Goldstone Huctuations, removing the translation zero
mode, and removing a particular gauge zero mode. We
will discuss these briefly. We will add also some remarks
on details of the numerical computation.



6764 J. BAACKE

A. Tadpole diagrams

The high-temperature three-dimensional theory has
only linear divergences of the form of tadpole diagrams
which renormalize the mass term of the Higgs field. They
have to be subtracted in the numerical computation to
obtain finite results. This was done in each partial wave,
for which the tadpole contribution may be computed [29,
30] either by solving a truncated differential equation
or [31] as an analytic expression using the partial-wave
Green function. After these contributions have been sub-
tracted, the partial-wave contributions converge as 1/l2
and have a Bnite sum.

Of course this contribution has to be added back, af-
ter having been regularized and renormalized. Part of
these diagrams has already been taken into account in
the renormalization of the four-dimensional theory and
in giving the vacuum expectation value (2.3) of the Higgs
Beld a quadratic temperature dependence. Some terms
linear in the temperature survive, however, and con-
tribute [10, 11, 32] (after dividing by the temperature)
to the one-loop effective action, i.e., the logarithm of
the fluctuation determinant. If the mass of the field
in the loop is m; and its coupling to the external field
is described by the potential V;, their contribution to
the effective action is given by rn, /8zr—J dsxV;(r) The.
fluctuating gauge Belds have vanishing mass and do not
contribute. However, we receive contributions &om the
fluctuating Higgs fields. The mass circulating in the loop
is then mH which is, including the temperature depen-
dence and rescaling, given by Eq. (3.11). The potentials
are V33 with triple isospin degeneracy and V44. So we
have to restitute the terms

part of our computation is now at the two-loop level,
without constituting a complete and systematic two-loop
analysis. This applies in particular also to the tadpole
terms for which this could be a more severe problem since
they are the finite remnants of divergent graphs. We can
appeal here only to an argument, common in many per-
turbative calculations, that possible inconsistencies are
of higher order and acceptable at an intermediate level
as they will be cured in a complete higher-order analysis.

B. Double counting of gauge field Huctuations

As mentioned in Sec. II we are working with an ac-
tion that contains already the part of the one-loop effec-
tive potential induced by integrating out the gauge Beld
and would-be Goldstone boson fluctuations. These are
present in the temperature scale factors and couplings
and appear especially in the high-temperature effective
potential as the term proportional to 4 . While the T
contribution to the vacuum expectation value (2.3) comes
&om the tadpole diagrams and has been taken into ac-
count along with these, the 4 term is contained in our
exact one-loop effective action. In order to avoid dou-
ble counting it, this term has to be subtracted &om our
numerical results. The incorporation of this term into
the tree-level action was necessary in order to obtain a
Brst-order phase transition and bubble solution. If this
was a good leading-order approximation the gauge field
action should be well approximated by this term. This is
indeed the case (see below) but this also implies that the
remaining gauge and would-be Goldstone field contribu-
tions are small differences of large terms, and that they
cannot therefore be expected to be very precise.

g tad 2 ~4
0 4 2 0

(4.8)

for the gauge fields and

S„', ~ = — diaz 6 (2HO —eIIo)
2 4g2

for the Higgs field to the one-loop effective action.
We should like to remark on two slight inconsistencies

of this procedure. The Brst one concerns our choice of the
high-temperature action. We have adopted the action of
Dine et at. [6] since it sets a certain standard and since
it has been used also in Ref. [18] to which we want to
compare part of our results (and which shares the incon-
sistency). In this action the T term does not include the
contribution of the Higgs loop tadpole. This can be seen
from the coefficient D in Eqs. (2.6) which should include
a term m~ in addition to 3m~+ 2m~. The contribution
was neglected already in Ref. [17], "taking the Higgs bo-
son suKciently light. " Since the expression is dominated
by the top quark contribution whose fluctuations are not
included at all here, this omission may be tolerated at
the present level of accuracy. In a more refined analysis
it should and can easily be remedied.

The second point is the fact that we have included al-
ready one-loop effects into the tree-level action, so that

C. Translation zero mode and unstable mode

Translation invariance is broken by the classical solu-
tion, and so a zero mode appears. It occurs in the l = 1
partial wave of the fluctuation operator of the isoscalar
part of the Higgs Beld. It is easily removed using the
prescription given in [29]: One applies the theorem men-
tioned above at finite v and defines

( @4(v, r) l
+&=1,Higg»mvm0 r mao ( l/2Z~-(&'p) )

(4.10)

where r = gv2 + m, 2~. Removing three eigenvalues
0 gives the ffuctuation determinant J' the di-

mension (energy) . The rate gets then a dimension
(energy)s = 1/(length)s. An additional dimension en-
ergy=l/time comes from the unstable mode prefactor
[see (2.12)]. The numerical computation is based on en-
ergy units gv(T) which are given, in the tables below.

The unstable mode makes the determinant of the p-
wave contribution negative. Replacing it by its absolute
value means just to revert the sign of the determinant
before taking the logarithm. We note that, in contrast
to Ref. [18] and in analogy to Refs. [10, ll], we du not
remove the zero mode from the fluctuation determinant.
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D. Gauge zero mode

Though we have imposed a gauge condition, there is
one residual gauge degree of freedom. It is analogous
to a constant gauge function for the free theory. Indeed
in the latter case a constant gauge potential A(x) = gp
does not contribute to the vector potential and is there-
fore not eliminated by the gauge condition 0~a" = 0. In
the case of the bubble background field there is a sim-
ilar but nontrieial mode which satis6es the background
gauge condition and is therefore not eliminated by it. It
manifests itself as a zero mode in the electric system for
l = 0. The form of this mode (and the fact that it is really
an exact zero mode) was found after extended numerical
experiments. It is given by a gauge function g(r) which
satisfies the same differential equation as the electric and
Faddeev-Popov modes, Eq. (3.12), i.e. ,

H2I/+ I Q 0 (4.11)r 4
With regular boundary conditions at r = 0, g(r) becomes
constarit as r ~ oo, in analogy to the free case. Then
the functions

gi(r) = -2g'(r),
vt)s(r) = Hpg(r) (4.12)

satisfy the coupled system for the electric modes at l = 0
which is given explicitly by

2, 2 HQ I0i + 0i ——2A—=
4 4i —Hp@s,

2

+ —@s —mH@s —— gs + (4Hp —3eHp)gsff 2 / 2 HQ AT

Hp@i . - (4»)
It can be checked easily that this gauge zero mode satis-
fies the background gauge condition (3.5) and is therefore
not eliminated by it. Since this zero mode is not due to a
symmetry broken by the classical solution as the transla-
tion mode, it cannot be handled in the usual way. On the
other hand we observe that precisely for the 8-wave the
Faddeev-Popov contribution has survived; furthermore,
to each Faddeev-Popov mode with Gnite energy, i.e., a
solution of

(4.14)

there is a solution of the electric 8-wave system con-
structed exactly as that for the gauge zero mode, i.e., Eq.
(4.12), with g replaced by @5. So there is a cancellation
of all electric modes of this type with the corresponding
Faddeev-Popov ones, except for the mode with u = 0.
There i8 of course a solution of the Faddeev-Popov equa-
tion at this energy, but it is "singular" at infinity, going to
a constant there. The corresponding mode in the electric
system is normalizable, however, since only its derivative
is involved in @i and its product with the exponentially
decreasing function Hp in @s. The cancellation between
the s-wave electric modes (4.12) and the Faddeev-Popov
ones can be extended therefore to the zero mode if the
boundary condition at r ~ oo for the latter ones is re-
placed by gs(r) ~ 0. This can be done in analogy with

the procedure described in the previous section by com-
puting the Quctuation determinant of the Faddeev-Popov
mode at finite v via

gg p Fp(v) = lim
/

t'@,'(v, r) ).-" E 'I(vr) )
(4.15)

Then the Faddeev-Popov system at l = 0 exhibits a zero
mode as well; the limit

lim[lngi=p, t(v) —ln jt=p, Fp(v)] (4.16)

is finite and defines the s-wave part of the logarithm
of the Quctuation determinant. This way the Faddeev-
Popov term cancels all unwanted longitudinal electric
modes for l = 0, including the one with frequency zero.
We note that the change of boundary condition as r ~ oo
affects only the s wave and only for massless fields. The
definition (4.15) yields results identical to the usual one
(4.4) if l g 0 and/or the fields are massive.

E. Some numerical details

The analysis was performed as described in previous
publications [29, 30]. Contributions of angular momenta
up to l „=30 were computed numerically; the higher
ones were included by performing a power Gt Al +
Bl +CL through the last Ave computed contributions
and by adding a corresponding sum from l to oo. This
was done already at lower values of I,, treating the highest
included angular momentum as the actual value of l
The resulting expressions were found to be independent
of l within typically four significant digits for l ) 20.

A more subtle point is the extrapolation to r = oo
implied in Eq. (4.4). In the previous analyses [29, 30]
the fields had Rnite mass and the approach to r = oo
was exponential. For the massless fields the Bessel func-
tions i~(rr) are replaced by r /(2l + 1)!!and the func-
tions hi and hz approach their asymptotic value only as
ti + const/r. The extrapolation was performed using
this ansatz. An exception occurs in the electric p-wave
system, where 62 picks up a logarithmic dependence on
r due to the cross term with hs (r) on the right-hand
side (RHS) of Eq. (4.13) which decreases only as 1/r
However, this logarithmic dependence being strictly pro-
portional to b's + hs (oo), i.e., to the third row of the ma-
trix, it does not contribute in the determinant, as also
observed numerically.

The tadpole contributions were computed in two ways,
once by solving a truncated differential equation as de-
scribed in [29, 30] and performing the analogous extrap-
olation, and once as an integral using the partial-wave
Green function. In comparing the two results the ex-
trapolation was found, for the tadpole contributions, to
be reliable to four significant digits typically.

Judging the accuracy of the results from the stability
with respect to varying extrapolations as r —+ oo and for
large l, we would think that the purely numerical part is
accurate to 1 jp. The restituted tadpole contributions are
given by expressions (4.8) and (4.9) whose evaluation im-
plies simple numerical integrals; they can be considered
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as exact analytic expressions. This restitution implies no
delicate cancellations. However, even with a precision of
1% for the nuinerical results the final values of the gauge
field contribution have substantial errors since the numer-
ical part plus the tadpole contribution is almost canceled
by the analytic C contribution. Unfortunately, in con-
trast to the sphaleron computation [11],the cancellation
ist not merely one between two analytic expressions, the
tadpole and 4 contributions, but between the numerical
results and the analytic 4 contribution.

V. RESULTS AND CONCLUSIONS

The numerical results are given in Tables I to IV. Here
Table I is based on the values of Higgs and gauge boson
masses mH ——m~ ——80.2 GeV, and a value of the top
mass of mq ——170 GeV. For the vacuum expectation of
the Higgs field we used vp = 246 GeV and for the gauge
coupling the value g = 0.6516. For the computation of
Table II the values mH ——60 GeV, mq ——170 GeV were
used. Table III corresponds to values m~ ——60 GeV and
mq ——140 GeV, Table IV to values m~ ——80.2 GeV and

mq ——140 GeV; these latter tables are presented in order
to compare with results obtained in Ref. [18) using the
heat kernel expansion. The values for the temperature
chosen correspond to ten equidistant steps of the quan-
tity e(T), defined in Eq. (2.11), between the onset of
bubble nucleation at r = 2 and the critical temperature
To where bubble nucleation ends at e = 4/3. This choice
is equivalent to the choice of Kripfganz et al. [18] who
parametrize this range of temperatures by a variable y
taking values between 0 and 1. Since Kripfganz et al.
use a somewhat difI'erent effective potential, the relation
between y and e is not precise; it is essentially given by
y = 3 —2~ which we use as a definition of "our" y. At
small y the bubbles are large with thin walls, and for
y 1 the bubbles are small and have thick walls.

Tables I and II are split into a part (a) which contains
the essential parameters for the minimal bubble and, in
the last column, the nucleation rate R without fluctuation
corrections. The part (b) contains the fluctuation correc-
tions, i.e., the one-loop efI'ective action. The results for
mq ——170 GeV are given separately for the isoscalar part
of the Higgs field as Sh and for the system of would-

TABLE I. (a) Parameters of the minimal bubbles for mH = 60 GeV and mq ——170 GeV. The re-
sults are given as a function of temperature in equidistant steps of the variable e [Eq. (2.11)].v(T) is
the temperature-dependent vacuum expectation value of Eq. (2.3), AT the temperature-dependent
renormalized C coupling. S is the minimal bubble action (or energy divided by T). u is the
square of the frequency of the unstable mode, given in units of ger(T) . The last column contains
the logarithm of the nucleation rate zoithout the one-loop corrections. (b) Sq „„ is the one-loop of
the isoscalar part of the Higgs field as obtained in the numerical analysis. Sh is the total Higgs part
of the one-loop effective action, obtained from Sh „„byadding the tadpole contribution Sh
S~ „„ is the one-loop gauge and would-be Goldstone field action obtained by the numerical anal-
ysis; S~ is again obtained by including the tadpole contribution. The next colum gives the C
term as included into the high-temperature action. AS~ is the gauge field action after subtraction
of this 4 contribution. AS & is the total effective action after removing the C contribution.

T [GeV]

94.557
94.529
94.495
94.455
94.405
94.347
94.276
94.191
94.089

1.933
1.866
1.800
1.733
1.663
1.600
1.533
1.466
1.400

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

v [GeV]

48.82
50.53
52.37
54.33
56.47
58.72
61.19
63.85
66.75

10 AT

(a)
3.309
3.310
3.311
3.312
3.314
3.316
3.319
3.322
3.325

1114.2
278.47
121.40
65.218
37.875
22.686
12.891
6.3659
2.1002

10

-0.1947
-0.7911
-1.819
-3.338
-5.438
-7.814
-9.760
-9.928
-7.007

ln(R[GeV ])

-1098.7
-264.21
-107.83
-52.13
-25.20
-10.45
-1.223
4.423
7.028

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1L
Sh, —num

-389.2
-81.21
-28.77
-11.78
-4.41
-7.54
1.48
3.11
4.79

SlL

505.0
133.6
64.25
28.30
28.85
23.04
19.64
17.71
16.96

-85974
-8457
-1984
-663.6
-263.44
-118.53
-54.93
-24.85
-10.04

S1L

(b)
-102494

-9952
-2285.5
-739.33
-277.53
-113.26
-42.63
-10.04
5.53

-104089
-10170
-2338.3
-757.91
-287.56
-121.51
-51.13
-19.51
-5.14

1L+Sgauge

1595
218

52.83
18.59
10.03
8.25
8.50
9.47
10.67

2100
351.6
117.1
46.89
38.88
31.29
28.14
27.18
27.63
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TABLE II. (a) The same as Table I(a) for mls = mdiv ——80.2 GeV and mq ——170 GeV. (b) The
same as Table I(b) for mH = mar = 80.2 GeV and mq ——170 GeV.

T [GeV]

115.725
115.702
115.675
115.642
115.602
115.555
115.498
115.428
115.345

1.933
1.866
1.800
1.733
1.663
1.600
1.533
1.466
1.400

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

v [GeV]

39.75
41.16
42.67
44.29
46.05
47.91
49.96
52.19
54.49

10 AT

(a)

4.973
4.974
4.975
4.976
4.977
4.978
4.980
4.982
4.984

601.83
151.04
65.944
35.314
20.560
12.329
7.066
3.450
1.145

10 u

-0.294
-1.190
-2.733
-5.030
-8.173
-11.73
-14.65
-14.88
-10.51

In(R[GeV ])

-587.87
-138.32
-53.91
-23.76
— 9.42
— 1.61
3.09
5.82
6.64

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

-389.27
-81.76
-29.40
-12.33
-5.01
-1.36
0.87
2.51
4.20

g1L

501.83
132.93
63.66
39.39
28.22
22.42
19.03
17.09
16.36

-44642
-4463.4
-1067.5
-362.64
-148.57
-69.30
-33.64
-16.35
-7.70

g1L
g

(b)
-54007
-5236.8
-1194.4
-377.30
-137.31
-52.00
-15.43
1.26
8.91

-56066
-5513.5
-1270.6
-409.36
-155.97
-66.02
-27.78
-10.56
— 2.80

1L+~gauge

2060
276.7
76.21
32.06
18.66
14.04
12.35
11.82
11.71

gg1L

2561
409.6
139.9
71.45
46.88
36.46
31.38
28.91
28.07

be Goldstone fields and gauge fields ("gauge field con-
tribution" for short) as S, respectively. We also give
separately the parts which were obtained by the numeri-
cal analysis described in Sec. IV, denoted as Sii „„and
SiL„„, respectively. The difFerence between S&i and

S& „„ is the tadpole contibution S& t & of Eq. (4.9),
and analogously for the gauge field. Note that the tad-
pole contributions to the Higgs field are substantial. The
gauge field contribution S contains the 4 part dis-
cussed in the previous section. The numerical value of
this term is given in the column labeled "4 ." This term
should be close to the gauge field contribution, and in-
deed it is. So the basic action used for computing the

bubble profiles represents a reasonable approximation to
the exact one-loop efFective action. The gauge field con-
tribution has to be reduced by this term since it would
be double counted otherwise. The net gauge field contri-
bution is denoted as LS and given in the last column.
The correction to the rate can be simply obtained as a
factor exp( —AS+) where ASi&L ——Sii + AS . The di-
mension energy, here in units of gv, is already included
in the minimal bubble rate R. One sees that the fluctua-
tions lead to a substantial suppression of the nucleation
rate.

While the result that the effective action for the gauge
Gelds is well approximated by the efFective potential, i.e. ,

TABLE III. Comparison of the Higgs field effective action with approximate results by Kripfganz
et al. for m~ ——60 GeV amd m~ ——140 GeV. The first entries are as defined in the previous tables.
The quantity A is the Higgs part of the Buctuation determinant with removed unstable mode. Our
results are compared to the one of Ref. [18], marked with the subscript KLS.

T [GeV]

97.311
97.268
97.216
97.153
97.078
96.988
96.879
96.748
96.590

1.933
1.866
1.800
1.733
1.663
1.600
1.533
1.466
1.400

1336.1
336.57
146.77
78.407
45.935
27.934
15.554
7.6707
2.5103

10 cu

-0.1686
-0.6965
-1.601
-2.955
-4.777
-6.891
-8.613
-8.758
-6.155

v [GeV]

56.88
58.87
61.00
63.30
65.75
68.38
71.24
74.34
77.70

~1L
~Higgs

505.2
134.2
64.60
40.20
29.13
23.23
19.83
17.89
17.18

ln (~)
-513.40
-141.56
-71.40
-46.54
-35.06
-28.83
-25.15
-23.01
-22.30

KLS

-115.
-82.0
-50.6
-36.7
-29.5
-25.4
-23.0
-21.8
-22.0
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TABLE IV. The same as Table III for m~ ——80.2 GeV and m~ ——140 GeV.

123.815
123.783
123.744
123.697
123.640
123.572
123.490
123.391
123.270

1.933
1.866
1.800
1.733
1.666
1.600
1.533
1.466
1.400

598.02
153.96
67.333
36.144
21.072
12.563
7.1533
3.5336
1.1142

10 u

-0.296
-1.175
-2.695
-4.949
-8.035
-11.58
-14.44
-14.67
-10.25

8 [GeV]

43.12
44.63
46.26
48.01
49.92
51.95
54.16
56.57
59.22

~1L
~Higgs

490.0
132.83
63.712
39.485
28.306
22.428
19.047
17.118
16.363

-500.0
-142.0
-72.32
-47.61
-36.06
-29.84
-26.18
-24.06
-23.30

KLS

-89.
-81.4
-52.0
-38.3
-31.0
-26.8
-24.4
-23.1
-23.3

the 4 term, is very rewarding a less comfortable feature
appears if one compares the one-loop effective action with
the tree level action S. If the saddle point approximation
which forms the basis of transition rate formula (2.12)
is justified, then the one-loop action should be smaller
than the tree-level one. This is not the case. Large one-
loop corrections were found already by Kripfganz et al.
[18] when computing the one-loop effective action for the
Higgs field Quctuation only. We compare our results to
theirs in Tables III and IV. Since these authors define
the fl.uctuation determinant differently they remove the
unstable mode we give, besides our result SH; „the ex-

pression ln(A/T ) where A is the square root J' ~ of
the fluctuation determinant with translation and unsta-
ble modes removed. The results are close to each other
for small e or y 1, i.e., for small thick-wall bubbles.
For small y, i.e., for large thin-wall bubbles, our exact
results are systematically larger than the approximate
ones of Ref. [18]. The question of finding reliable ana-
lytic estimates is certainly an interesting one, especially
the order in which the terms of the heat kernel expansion
are summed. In [30] it was found that a summation by
the number of derivatives ("derivative expansion") yields
very precise results if the mass of the Huctuation is much
larger than the inverse size of the background field config-
uration. In Ref. [18] the terms are summed with respect
to powers of the heat kernel time. The deviation at small

y could be due to the fact that large bubbles with thin
walls have a very substantial derivative contribution. On
the other hand we differ already by the choice of the ef-
fective potentials used to compute the bubble profiles;
one would therefore expect differences in the one-loop
corrections that go even with the volume of the bubbles
which becomes large at small y. It will be interesting
to make a more systematic analysis of various analytical

approaches. The comparison of the Higgs efFective action
with the leading minimal bubble action is less favorable
than found in. Ref. [18]. This is even more the case if the
gauge loops are included, as one sees &om the previous
Tables I and II.

In conclusion we state three essential features of our
results.

The one-loop effective action is substantial, of the or-
der of and larger than the leading-order minimal bubble
action. This sheds some doubt on the applicability of the
semiclassical transition rate theory.

The sign of the one-loop effective action is such that
the transition rate is suppressed.

The one-loop "4 " contribution which has been incor-
porated into the basic effective potential is reproduced
rather well by the one-loop action. This means that this
term in the effective potential describes relevant features
of the effective action.

It will be interesting to pursue this subject further.
Certainly the fact that the one-loop correction is larger
than the classical action is troublesome. But it means
essentially that we have not minimized the correct ac-
tion when computing the bubble profile. Especially the

term is not the exact one loop effective potential. For
small y, i.e., in the thin-wall limit, this results in one-loop
corrections that go as the volume while the leading-order
bubble action goes only as the surface, the profile being
a saddle point of that action. So the efFective potential
has to be improved and used to adjust the profile and
the critical temperature. We think that the optimal way
to handle these problems is to undertake a self-consistent
extremalization of the sum of classical and one-loop ac-
tions. Furthermore, in order to be more realistic the
effect of the fermion determinant should be studied and
included.
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