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We show how observations of the perturbation spectra produced during in8ation may be used
to constrain the parameters of general scalar-tensor theories of gravity, which include both an
in6aton and dilaton fjeld. An interesting feature of these models is the possibility that the curvature
perturbations on superhorizon scales may not be constant due to nonadiabatic perturbations of the
two 6elds. Within a given model, the tilt and relative amplitude of the scalar and tensor perturbation
spectra gives constraints on the parameters of the gravity theory, which may be comparable with
those from primordial nucleosynthesis and post-Newtonian experiments.
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I. INTRODUCTION

The most convincing explanation for the fatness,
isotropy, and homogeneity of the observed universe is the
inflationary scenario [1]. Moreover, the most compelling
evidence for this model is the prediction of a nearly scale-
invariant distribution of Gaussian perturbations. If these
are indeed the origin of the perturbations observed in
the microwave background sky, and of the initial inho-
mogeneities &om which galaxies formed, then they could
provide our earliest glimpse of the physics of the early
universe and, in particular, of the effective theory of grav-
ity at that time.

In this paper we consider the possible constraints that
can be placed upon the allowed gravity theory during
inflation. Precision tests of gravity in the solar system
severely constrain the effective gravity theory today [2],
while predictions &om primordial nucleosynthesis have
been used to restrict scalar-tensor deviations &om gen-
eral relativity since the radiation-dominated era [3]. Our
aim is to push back those limits to a still earlier epoch,
i.e., inflation.

We will do this within the context of general scalar-
tensor gravity theories, which involve a massless dilaton
or Brans-Dicke field [4,5]. These provide a well-defined
class of theories against which to test the predictions
of general relativity. Almost all attempts to produce a
renormalizable quantum theory of gravity seem to in-
clude scalar fields nonminimally coupled to the space-
time curvature. The low-energy efFective action of string
theory, for instance, involves a dilaton field coupled to
the Ricci curvature [6]. Scalar fields coupled directly to
the curvature tensor appear in all dimensionally reduced
gravity theories, and their inHuence on cosmological mod-
els was first seriously considered by Jordan [7]. Gravity
Lagrangians including terms of higher order in the Ricci
scalar can also be cast as scalar-tensor theories [8,9] with
appropriate scalar potentials.

Recently, Damour and Nordtvedt [10] have pointed out
that during a dust-dominated cosmological era, scalar-
tensor theories of gravity tend to approach general rela-

tivity at late times even in the absence of a potential for
the Brans-Dicke field. They realized that this would oc-
cur during most of the history of the universe, when the
trace of the energy-momentum tensor drives the scalar
field. However, this mechanism is not efFective during
the radiation dominated era [11]. The approach to gen-
eral relativity can be parametrized by the Brans-Dicke
parameter w, which determines the ratio of the tensor
to scalar couplings to matter, and tends to infinity in
the general relativistic limit. Considering a wide class of
theories where w is some arbitrary function of the grav-
itational coupling, Damour and Nordtvedt [10] calculate
how far toward the general relativistic limit the universe
might be expected to evolve (i.e. , how large w becomes)
after the radiation era. They find that it should be sim-

ply related to the number of e-foldings, 1V = ln(ao/a, q)
since matter-radiation equality.

Assuming most of the expansion of the universe to
date occurred during the inHationary era, one expects
the same approach to general relativity to occur during
inflation [12]. This has been recently discussed in the
context of string theory by Damour and Vilenkin [13].
Thus, apart from setting the scene for the conventional
hot big bang, by producing a spatially Hat, isotropic, ho-
mogeneous (but slightly perturbed) metric, it is tempting
to suggest that inflation may also produce general rela-
tivity as the low-energy efFective theory of gravity, even if
it started as a generic scalar-tensor theory at the Planck
scale [14].

We show in this paper that this can indeed occur. We
give the generalization to scalar-tensor gravity of the in-
Hationary slow-roll parameters in general relativity and
show that the vanishing of these parameters corresponds
to the usual post-Newtonian limit of Einstein gravity.
We calculate the scalar and tensor perturbations pro-
duced during inflation in a general scalar-tensor theory
and evaluate the relative amplitude and slope of the spec-
tra in terms of the slow-roll parameters. While it is difFi-

cult to obtain model-independent bounds on the scalar-
tensor parameters, we will study a particular model of
chaotic inflation for which strong bounds can be given
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that are comparable with the post-Newtonian and nucle-
osynthesis limits.

II. SCALAR —TENSOR GRAVITY THEORIES

scalar-tensor theory: o. specifies the ratio of the dila-
ton and graviton couplings to matter. A given choice of
function a(g), or equivalently f (P), determines n(Q). In
particular, it is related to the Brans-Dicke parameter u
by

The scalar-tensor field equations are derived from the
action [5]

20!2= 1

2(d+ 3
(2.4)

S= d'X —g B —2g
'

a b
—U

+~matter] (2.1)

g.b
—= e-"~~~ g (2.2)

where the conformal factor is defined as e = 2K f (r/i),
in terms of which the action in Eq. (2.1) takes the
Einstein-Hilbert form with a fixed gravitational constant
G—:K /87r, and the Brans-Dicke field can be written as
a scalar field g with a canonical kinetic term in the new
matter Lagrangian

where R is the usual Ricci curvature scalar and 16irf (P)
is the Brans-Dicke field. Thus the gravitational coupling
strength (Newton's constant G in general relativity) is
determined here by the dynamical variable f(P) In th. e
particular case of Brans-Dicke gravity, f(r/i) = P2/8u,
where u is the Brans-Dicke parameter, and we recover
general relativity in the limit w ~ oo. More general
scalar-tensor theories with difFerent choices of f(rtr) cor-
respond to the case where ttr(f) is a function of f

The potential U(P) is the generalization of the cos-
mological constant A in general relativity. Perturbation
spectra produced in models of in8ation driven by a poten-
tial for the Brans-Dicke field have recently been discussed
by Kaiser [15],while the bounds on the allowed mass have
been discussed by Darnour and Vilenkin [13] and Stein-
hardt and Will [16]. Such a potential is often introduced
to fix the value of Brans-Dicke field at late times, how-
ever we shall show that this is not necessary in order to
attain general relativity as a cosmological attractor. In
what follows we will leave f(P) as a free function but
consider only models in which U(P) is zero. They corre-
spond to Bat directions in the scalar potential of string
efFective theories [17]. In the absence of nonperturbative
eKects, the dilaton remains massless. We wiH work in
this approximation and will discuss possible extensions
in future work.

Matter is minimally coupled to the metric g b and thus
test particles follow geodesics in this frame, which we
refer to as the Jordan frame. However it is often useful
to write the action in terms of the conformally related
Einstein metric [18]

For a linear a(@) = nrem with constant n, we recover
Brans-Dicke theory.

Present-day observational tests constrain the post-
Newtonian parameters p and P [2], written in terms of ci
and n'(g)—:K (da/d@) as

4n7=1—1+ 2o;2

2n2n'(g)= 1+ 1+20,' (2.5)

which are constrained by present-day solar system tests
to be [2] Ip —1I & 0.002 and l4P —p —3I & 0.001 [22].
Therefore,

(5x 10 4a Il+ 2n'I & 10 (2.6)

There are similar constraints from primordial nucleosyn-
thesis [3]. These constrain possible variations of the
Planck mass during and after the radiation dominated
era. Our aim is to go beyond the radiation era and try
to constrain possible deviations kom general relativity
during inflation.

III. SCALAR- TENSOR INFLATION

In this section we will analyze the classical evolution
of the scalar fields during inflation. The inQaton Geld,
0, minimally coupled in the Jordan kame, with a self-
interaction potential V(cr) gives an explicit matter La-
grangian to consider in a scalar-tensor cosmology. The
total matter Lagrangian in the Einstein frame including
the Brans-Dicke Geld is then

~matter 2 g 4', a4, b 2 e g O, aCr, b
1 ab 1 2a(g) ab

—e'l"l V(~) . (3.1)

We see by inspecting the potential term in the La-
grangian that cr will evolve toward a minimum of V(cr)
while g evolves toward a minimum of a(Q) or, equiva-
lently, a zero of n(g). However, from Eq. (2.4) we see
that a zero of n(@) requires that u -+ oo. That is, gen-
eral relativity will generically be an attractor during the
cosmological evolution, if a(g) possesses a minimum.

The field equations for the fields cr and vP in a spatially
Bat Friedmann-Robertson-Walker metric are then

~matter 2g g, ai/, b + e ~matter
ab 4a(y)— (2 3)

There are now explicit interactions between this field and
the original matter fields whose energy-momentum ten-
sors are therefore not necessarily conserved with respect
to g b [18,19]. We will define a dimensionless parame-
ter [10], n(g) = r i(da/d@), which characterizes the

Our notation coincides with that of Damour-Gibbons-
Gundlach [20] and Starobinsky-Yokoyama [21] for constant
—2cr = p = P/2. Note that Damour and Nordtvedt [10] define
a dimensionless field p = Kg/~2, and thus their parameter rr

differs from ours by a factor i/2.
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o. +3Ho = —2nwgo. —e V'(o.), (3.2)

@+3HQ = —eee(e 4V —e* e ),
2 + 2a '2 (3.4)

and the Hamiltonian constraint

KHe = —eI'~e' b'+e 2V)6
(3.5)

+e o &e V(0) . (3.6)

The condition for inflation to occur in the Einstein
frame ~H] & H2 is thus, see Eqs. (3.4) and (3.5),

relaxed compared to the general relativistic case, where
a(@) = 0 throughout. The last two parameters are not
present in general relativity and arise here by requiring
that both the Brans-Dicke and the inflaton field slow roll.

We have defined the slow-roll parameters e and g by
extending the usual definition of these parameters for a
single field [26) to the separable potential for the two
fields U(cr, @) = V(o) e ~~). It is intriguing to note that
the limit of vanishing slow-roll parameters for the g field
coincides with the general relativistic weak-field limit in
the post-Newtonian parametrization of the scalar-tensor
gravity theory [2], see Eq. (2.5).

In calculating the rate of change of quantities with re-
spect to different comoving scales, it is useful to write
down the relation between the number of e-foldings from
the end of inflation and the values of the scalar fields:

A. Slow-roll inQation

We will work in the slow-roll approximation in both
scalar fields. In principle this is not a necessary con-
straint: one of the fields might roll quickly to the min-
imum of its potential and then the problem reduces to
single field inflation, either the familiar chaotic inflation
in general relativity (for @ = 0) or old extended inflation
in Brans-Dicke (for o = 0). However, we would like to
consider the more general case in which both fields slow
roll [23—25]. In this case, the general field equations can
be written as first-order equations:

V(0.)
e2 V'(0.)

(3.14)

Our present horizon crossed outside the Hubble scale
about 50-60 e-foldings before the end of inflation. In
fact, the precise number depends logarithmically on the
energy scale during inflation and the efIiciency of reheat-
ing, and so is weakly model dependent.

3H r e V(0),
3H0—e V'(.0.),
3H@ —4nr e V(0) .

(3 7)

(3.8)

(3 9)

Neglecting the other terms in the equations of motion
amounts to the assumptions

max ~2 2 e2a 02 (( (3.io)

(3.11)

Having written down first-order equations for the evo-
lution of the fields we can turn the slow-roll assumptions
based on values of the fields' derivatives into consistency
equations in terms of the parameters of the theory:

1 C V'(0.) l 1 V"(o.)
2r.2 ( V(o) y

' r.2 V(0.)
(3.i2)

eg =—8n (g), gg =—4n'(@) —16n'(@) . (3.i3)

The consistency equations for slow-roll inflation are then
(e e~, e ~q~~, ey, ~g@~) && 1. The first two con-
ditions are just the expected generalization to scalar-
tensor gravity of the slow-roll conditions for an infla-
ton field in general relativity. Notice, however, that if
a = rnvP & 0 during the subsequent evolution of the
universe (i.e. , a ) 0), the conditions on e and ii are

IV. DENSITY PERTURBATIONS

Inflation is the only known mechanism that solves the
horizon and homogeneity problems. However, the main
observational constraint on inflationary models is the
spectrum of density perturbations that they produce.
Strictly speaking, observations of perturbations in the
microwave background, or of the large-scale structure in
our patch of the universe, only provides an upper limit on
the level of density perturbations, which could perhaps
be produced by some other source of inhomogeneities.
Nonetheless, the apparently Gaussian and nearly scale-
invariant nature of the perturbations are natural proper-
ties of perturbations due to quantum fluctuations of the
inflaton field during inflation.

In the case of a single slow-rolling field, only adiabatic
perturbations are possible. Any fluctuation in the field
must produce a Buctuation in the local curvature. How-
ever, in the presence of two coupled fields we must also
consider the effect of isocurvature (or entropy) perturba-
tions between the two fields. In particular this can lead
to the breakdown of the usual assumption that the curva-
ture perturbation is &ozen-in on scales greater than the
Hubble length (k~h & H). It is important to allow for
such efI'ects if we hope to constrain the possible role of a
variable gravitational coupling.

Our calculations extend those of Starobinsky and
Yokoyama [21] who considered the particular case of in-
flation in Brans-Dicke gravity. As we shall see, their re-
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suits are readily extended to more general scalar-tensor
theories.

longitudinal gauge
ds2 = —1+24(t, x') dt

+~2(t) 1 —2e(t, ~*) b;, d'h'dr~ . (4 1)

A. Perturbed Beld equations

In this section we will consider the linear perturba-
tions around the homogeneous background fields, 0 (t) +
ho (t, z'), g(t) + hg(t, x'), with a perturbed metric in the

We can study the evolution of each Fourier mode (whose
physical wave numbers we denote by k~i, ) separately,
since they decouple in the linear approximation. The
perturbed field equations then yield the following expres-
sions to Grst order:

6a+ 2666a+ 6 e6a+ e V" (c )6a = 4aC + —2ee V'(a)4 —2ae(a6e66-$6a)

2n'(Q—)r 0 @hg —2nr. e V'(0.)8g, (4.2)

bg + 3Hbi/6+ k~&bg + n'(@)K (e 4V —e 6'r ) b@+ 2n r. ite 8V —e 0 ) 8@

= 4@C6 —Snre V4 —2nr e 2V'(o ) her —e o her' (4 3)

2

+4H@+ H+ 3H2 @ = — 8 + e2a0.60 —e a V o o + e2a&2 —e4a4V
2 (4.4)

together with the energy and momentum constraints

K@+H4 = — b + e obo. (4.5)

K3H4+ H+3H C +k 4 = —— b +e o.bo. +e V' o. bo. + e o. +e 4V arb (4.6)

(C + 66-'6
) + 6, (4.7)

on scales much larger than the Hubble length. Combining
Eqs. (4.4)—(4.6), and using the equations of motion, we
find an exact expression for the time variation of (:

(b@ ho )

(e2e2g 2

+&
(e2a672 + @2)

(4 8)

where C = 2nr@e o /(e 0 + g2)2 is due to the fric-
tional damping of the 0. field by 2/6.

In the single field case (where one of the fields is held
fixed) the right-hand side of Eq. (4.8) vanishes in the limit
k~i, ~ 0, and thus ( remains constant on scales exceeding
the Hubble length [28]. This allows one to determine the
large-scale curvature perturbation at the end of inQation

A very useful quantity for the study of perturbation
spectra is the curvature perturbation on hypersurfaces of
fixed energy density [27,28,31]:

simply by equating it with the perturbation when the
mode first crossed outside the Hubble scale. However this
is true in general only for adiabatic perturbations and
need no longer hold in the presence of two fields [29,21].

This is due to the entropy perturbation [30]

~S=u —" ~' ~ +C ~"~ "~ . (4.9)dt (e2~o2 ~ @2) ( @ o )
The Grst term in the square brackets will be present
whenever two Gelds are evolving but the second term,
C, would not be present if both GeMs had standard ki-
netic terms. It is clear that for adiabatic modes bg/vP =
her/o (perturbations along the classical trajectory) g re-
mains constant on super-Hubble scales, but in general
the curvature perturbation at horizon crossing cannot be
equated with that at the end of inflation, due to the nona-
diabatic terms.

Note that all the above perturbed equations are exact
and we have not yet invoked the slow-roll approximation.
In the following we shall solve for the evolution of ( to
lowest order in the slow-roll parameters.

We will assume that the curvature perturbation will
be conserved on super-Hubble scales through reheating
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and the subsequent radiation and matter dominated eras.
Recently, it has been emphasized [31] that the curvature
perturbation ( is conserved at transitions in the equa-
tion of state across a boundary at a fixed energy density.
This is the case when perturbations are adiabatic and
the end of inflation must coincide with a particular en-
ergy density. However this is not necessarily the case in
the presence of two fields. As we can see &om Eq. (4.8),
our assumption that only adiabatic perturbations exist at
the end of inflation requires that the motion of one of the
fields dominates. This will usually be the case, especially
when inflation ends because one of the Gelds' kinetic en-
ergy becomes comparable to the potential energy. The
slow-roll parameter e for one of the Gelds becomes of or-
der unity while the other remains small. It is possible
that both slow-roll parameters become large at the same
point, but this seems to be unlikely a priori.

The perturbation at the end of inflation can then be
equated with that at reentry if its subsequent evolution
remains adiabatic. Any variation of the Brans-Dicke Geld
after the end of inflation could invalidate this assumption.
Nucleosynthesis limits [3] suggest this does not occur at
temperatures below about an MeV and in the absence of
a potential for the Brans-Dicke field, g = 0 is a stable
solution during a radiation dominated era for arbitrary
scalar-tensor gravity theories [ll]. However this could be
altered by the presence of an explicit potential term and
the consequences would require careful investigation.

Eqs. (4.5), (4.2), and (4.3) reduce to

e = —2nr. b@ —— b'o.
,

1 V'(o')
2 V (4.12)

3Hbg '4n'(@) r e V b@, (4.i3)

V' o
3Hbo —e

~
~

Vbo + 2nme V'(cr) bing .

(4.14)

4o,
Qi (4.15)

her = — (Q2 —e Qi)
1 V'(cr)

K2 V
(4.16)

and thus

C'=8n'Qi —
~ I (Q2 —e ' Qi)
fV'( )ol'

2rc2 ( V )=.,q, —..(q, —.-'q, ), (4.i7)

Note that for constant o. we recover Starobinsky and
Yokoyama's results [21].

Using Eqs. (3.8) and (3.9), the last two equations can
be integrated to give the evolution of fluctuations in the
scalar Gelds at long wavelengths:

B. Short-wavelength limit

For large values of k&h )& H we can neglect the
potential terms in the perturbed field equations (4.3)
and (4.2) and they reduce to those for massless fields
(i.e. , e ~g@~, ~q ~

&& 1). Thus, to lowest order in
the slow-roll parameters, the expectation values of the
perturbations as they cross outside the Hubble radius
(k~i, H, ) are given by Gaussian random variables with
([bo.~') = e ' H,'/2k', (~&g. ~') = H, /2k, where k
is the comoving wave number. Note that, while the Geld
vP is minimally coupled in the Einstein frame, the cr field
is minimally coupled in the Jordan kame and therefore
it is the conformally transformed Hubble constant (to
lowest order) that determines its amplitude at Hubble
crossing [32).

We shall denote the spectrum of a quantity A. by
'P~(k) =

&z
"l, (~A~ ), as defined in [33]. Thus we have

&4a &4 g
24vr

e2~ ~4 V,
24+2 e'

(4.18)

(4.19)

From Eqs. (4.5) and (4.7) we have, during slow roll
[23,24], in the long wavelength limit,

@b@+e2 o-her

g2 + e2ao2
(4.20)

where Qi and Q2 are constants of integration, chosen
to coincide with those introduced by Starobinsky and
Yokoyama [21]. It will be convenient to define a new
constant Qs = Qie —Q2, so that Qi and Qs are
independent Gaussian random variables whose values, for
a given Fourier mode, are determined by the amplitude
of bo, and b@, at horizon crossing (when kpg = H, ).
Thus they have expectation values

2

2~) (4.10)
As shown in Eq. (4.8) this expression need not be con-
stant. Substituting in our results for the long-wavelength
modes of the scalar fields we have

(4.1i) eg+(e —e ' )e Qi+e Qs
6y + 6

(4.21)

C. Long-wavelength limit

For slowly varying (C' « HC'), long-wavelength (k~& -+
0) modes, to lowest order in the slow-roll parameters,

If either of the scalar fields is fixed (e or e@ identically
zero) then we recover the single field results where ( is
constant (equal to Qi or Qs, respectively).

The spectrum of density perturbations at the end of
inQation Pq (k) can be computed from (4.21):
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2
fe +(1—e-".)e l

+ e
Qx+ +, ' Q3.

cr j
(4.22)

In Sec. VI we study a particular model and give nu-
merical results showing how and when the diferent terms
dominate.

D. Gravitational wave perturbations

In addition to the scalar curvature perturbations that
give rise to density perturbations, tensor or gravitational
wave perturbations can also be generated &om quantum
fluctuations during inflation [34]. Since we have cho-
sen to work in the Einstein conformal &arne we can use
the standard results for the evolution of tensor perturba-
tions of the metric. The two independent polarizations
evolve like minimally coupled massless fields with a spec-
trum [30,33]:

2v.4e4 .V.
g (4.23)

Gravitational wave perturbations can contribute to the
microwave background anisotropies only on the largest
scales (scales larger than the Hubble scale at last-
scattering, corresponding to about ) 1' on the sky).
Their contribution relative to scalar curvature perturba-
tions is given by the ratio [33]

3 Pg"-4P. (4.24)

The rapid decay of the gravitational wave anisotropies
on smaller scales is their most distinctive signature. In
Sec. VI we will study a particular model and show how
the ratio B changes with scale.

V. OBSERVATIONAL CONSTRAINTS

~a —- 2'5&q. (5.1)

following the notation of [33].
In any model of inflation, the amplitude of the density

perturbations depends upon the magnitude of the poten-
tial energy density relative to the Planck scale, which is
essentially a &ee parameter. We will concentrate upon

Having allowed for the possible evolution of the cur-
vature perturbation ( on super-Hubble scales during in-
flation, we will now restrict our analysis to those cases
where ( has become constant on observable scales by the
end of inflation, i.e. , entropy pertubations become negli-
gible. This allows us to assume that g remains fixed on
super-Hubble scales until it reenters the Hubble length
at late times. We can then relate the curvature pertur-
bation at the end of inflation to the density perturbation
at reentry during the matter dominated. era:

the variation of the amplitude of the curvature pertur-
bations with comoving scale. At each point in the spec-
trum, the "tilt" is given by the spectral index n„where
n, —1 = dlnb~2/dink . This can be evaluated within
the slow-roll approximation, where the comoving wave
number corresponds to a given scale at horizon crossing,
dink dN—„and thus, from Eq. (3.14),

dlnb~2 (4a, 0 e2 "V,' 8
d ln k ( r BQ„K2V, Ocr, y

(5.2)

n —16o. —2e (5 3)

Unlike the approximate expressions for the scalar tilt
which will be given below, this simple expression for ng is
valid in the whole range of parameter space. Moreover,
since both terms on the right-hand side must be non-
positive, one could in principle give a direct constraint
on o.2 completely independent of the form of the infla-
ton potential. However, the measurement of this slope
will be exceedingly dificult. Tensor perturbations do not
contribute to structure formation and in many inflation-
ary models the observable e6'ect of gravitational waves is
completely negligible [33].

The main constraint coming &om gravitational waves

A well-known result in general relativity, for slow-roll in-
flation with a single Geld, is that n, —1 —6e, + 2g„
a function solely of the slow-roll parameters at Hubble
crossing [35,33]. Because ( can evolve on super-Hubble
scales during scalar-tensor inflation, (, and thus b~~ will
in general depend upon parameters both at Hubble cross-
ing and at the end of inflation. However, the latter will
not change with comoving scale.

Large-angle microwave background experiments probe
scales close to our observable horizon, which crossed out-
side the Hubble scale when N ~ 60 [33]. The Cosmic
Background Explorer (COBE) two-year data constrains
the spectral tilt to be in the range 0.7 & n ( 1.7 at
the lo level [36], but future experiments should be able
to constrain the tilt to within about 0.1 [37]. However,
from observations of galaxy clustering we might hope to
recover the primordial density perturbations on scales
down to about 1 Mpc, which leave the Hubble scale at
about N 50. This could provide a much more precise
determination of the tilt, though it is currently limited
by uncertainties in other cosmological parameters such
as the value of the Hubble constant or the type of dark
matter. While a tilt of 0.7 ( n ( 0.8 may have some
advantages over n = 1 in an otherwise standard cold
dark matter model, a tilt n & 0.6 is probably unaccept-
able [38,33].

The general expression for the tilt from Eq. (5.2) is
rather complicated. We will only attempt to evaluate it
in two general regions of parameter space and then spe-
cialize it to the case of an inflaton with a generic chaotic
inflationary potential, for which we give numerical re-
sults.

Note that the tilt of the gravitational wave spectrum
is just given by
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will be their relative amplitude, given by Eq. (4.24). If B
becomes of order unity then, since independent Gaussian
random variables add in quadrature, the amplitude of the
scalar perturbations inferred &om anisotropies of the mi-
crowave background on large scales is reduced by about
70'Fp. As B increases, the allowed amplitude of scalar
perturbations decreases, eventually becoming incompat-
ible with structure formation. It is the combined efFect
of a tilted spectrum and the gravitational wave contri-
bution that proves such a strong constraint on models of
extended inflation [35].

Finally, note that if n, ( 1 then, on very large scales,
the potential energy density relative to the Planck mass
at Hubble crossing becomes so large that the amplitude
of density perturbations is of order unity and the uni-
verse enters a self-reproducing regime, where the classical
motion is dominated by quantum fiuctuations [24,32,14].
Such inhomogeneities, even on superhorizon scales to-
day, could be detected through the Grishchuk-Zel'dovich
effect [39] unless they are on scales at least 500 times
greater than our horizon [40]. This represents another
constraint on any model. SufIicient inflation in the clas-
sical regime thus requires N „)66.

An upper limit on this ratio then constrains o, indepen-
dently of o.'.

B. Scalar-tensor chaotic inHation

In the opposite limit, e » e&, in which the evolution
of the inflaton dominates that of the Brans-Dicke Geld
at the end of infiation, we find g, Qs and thus b~
(4/25) Pg,'. This result will hold for the last scales to
leave the Hubble length during inflation. It remains valid
on larger scales as long as

~2a (5.6)

is satisfied, see Eq. (4.22). In these limits, the curvature
perturbation is always due to fluctuations in the inflaton
field 0, but there may still be evolution on super-Hubble
scales due to the frictional damping by g. We find Rom
Eq. (4.21) that g e Qs, which coincides with the so-
lution of ( C(, given by Eq. (4.8) in this limit.

Given the above result for bH we thus find that on
sufficiently small scales the tilt will be given by

A. Scalar-tensor extended inQation n, —1 e *(—6e*+2g') —8n, . (5.7)

Let us first consider the case where the Brans-Dicke
field evolution dominates that of the inflaton at the end of
inflation, e@ » e . Then, for scales crossing outside the
Hubble scale near the end of infiation, we have (, Qi
and thus 802 (4/25)Pg, . This remains valid at scales
for which (e@/e') )) e e&/e*. It includes models of
extended inflation [41] where the field 0 is trapped in a
metastable false vacuum so that e = 0 (for any g ) 0)
and where ( remains fixed on super-Hubble scales. But
this result for b~ also includes perturbations for which
e* ) e&, where there will be significant evolution of the
curvature perturbation ( when A, ~h ( H during infiation.

We then have

n, —1 —16o., + So.', —2e (5 4)

B 10 a (5.5)

When e' = 0 this expression generalizes the well-known
result for extended inflation in Brans-Dicke models [33]
to more general scalar-tensor theories. We see that,
just as in general relativity, n, need not always be less
than unity. For instance, we can produce a Harrison-
Zel'dovich spectrum (n, = 1) by choosing a scalar-
tensor theory where o.' = 2a2 corresponding to a(@) =
—(1/2) 1n(@/g, ). This is a particular realization of "in-
termediate infiation" [42].

More generally, as e is always non-negative, a lower
bound on the tilt of the power spectrum then constrains
the slow-roll parameters of the gravity theory, irrespec-
tive of the form of the inflaton potential.

The relative contribution of tensor and scalar per-
turbations to the microwave background anisotropies is
given by Eq. (4.24), which in this limit yields

( n ) 2n'

&2n —1) (5.8)

This guarantees that —6e + 2g is negative and thus the
slope of the density perturbation spectrum in Eq. (5.7)
is always n, ( l. In arbitrary scalar-tensor theories, a
lower limit on the slope then places an upper bound on

The ratio between the scalar and tensor contributions
to the microwave background anisotropies reduces to the
usual general relativistic case [33],

B~ 12P E (5.9)

When the condition given in Eq. (5.6) no longer holds
and instead (1 —e ") )) e&/e', we find that (, Qi.
In this regime the results of Eqs. (5.4) and (5.5) apply.
It is interesting to note that the naive calculation based
on taking ( g, does in fact give the correct result and,
even in our careful analysis, ( remains constant on super-
Hubble scales. This is clearly seen in the Fig. 1, where
we show the evolution of ( after Hubble crossing in the

Note that g can be positive or negative and thus could
lead to a positive spectral tilt [33,43].

The larger effective gravitational constant at early
times (a, ) 0) amplifies the tilt due to the changing
shape of the inflaton potential, and its variation leads to
an additional negative tilt. Any chance of constraining
o., &om observations of the tilt is clearly limited by un-
certainty in the form of the inflaton potential. In the
simplest case of chaotic inflation driven by a polynomial
potential, V(cr) = A02"/2n, there is a simple relation
between ~, g and the value of 0".
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-2-

e = 2v. f(P)
a2

exp ——[exp(8a2 K) —1]
a2

(6.5)

log P(k*) -3-

-6
—I40 -120 -100 -80 -40 -20

Note that at the end of inflation (1V = 0) we have the
present value of the gravitational coupling, and our pa-
rameters aq and a2 correspond to o. and o,', respectively,
at the end of inflation.

For a simple inflaton potential V(o') = Ao /4, the slow-
roll solution for o., satisfying e' = 1, is

K rr 8 + Ei(n /a2) —Ei(ai/a2)
exp(a', /a2) 2

FIG. 1. The evolution of the amplitude of density pertur-
bations after Hubble crossing for a range of comoving scales,
A:, as a function of the number N of e-folds from end of in-
Qation, for the model described in Sec. VI. The logarithm is
to base 10.

(6.6)

where Ei(z) is the exponential integral function [44].
It will be convenient to de6ne some new variables

specific model of chaotic inflation discussed in the next
section.

This occurs despite the fact that at Hubble crossing the
curvature perturbation is due to the g field, ( Hbg/g,
while by the end of inflation it appears as a perturbation
in the rr field, ( Hbo jo. This is a consequence of the
coupling between the two fields and the dependence of
her upon the evolution of bg seen in Eq. (4.14). We do
not expect this result to hold in general for two fields
in general relativity. Moreover, for intermediate scales (
does evolve on super-Hubble scales.

VI. NUMERICAL RESULTS

In this section we wil1 try to show the main features
discussed above with a particular example that includes
both regimes. We will choose the arbitrary origin of the
field g so that @, = 0 at the end of inflation (when
a, = 0) and assume that n(@) can be approximated as a
linear function during the latter stages of inBation (when
observable scales cross outside the horizon); i.e. , we take
a Taylor expansion for a(@) up to second order, as was
done in [3]:

x = va, y = exp[ —2 a(@)], (6.7)

0.8-

whose classical evolution in the slow-roll approximation
is shown in Fig. 2 for a2 ——10 and aq ——10 and
aq ——10 . Note that in both cases y, and thus the
Planck mass, becomes essentially constant by the end of
inflation.

If we also introduce m = 1 —y + 8az, then in the
limit ~, (& y, x,n„where all starred quantities are to
be evaluated at N = N„we satisfy the condition given
in Eq. (5.6) and we find (, Qs. This must hold for
the last modes to leave the Hubble scale at the end of
in8ation, as y -+ 1 and x ~ 2~2, for 8a2i && 1. For larger
scales, when iii, )) y, x2n2„we find (, Qi. This is
clearly demonstrated. in Figs. 3(a) and 3(b).

The spectral tilt (5.2) at a scale which crosses outside
the Hubble length when N = N„ is given, at lowest order
in the slow-roll parameters, by

a(@) = ai r@+—' (ic@)',
2

ci(i/i) = ai+ a2 Kg,

(6.1)

(6.2)
3 06-

0.4-
where a2 and ai are constants and @ is then given in
terms of the number of e-foldings, using Eq. (3.14), as 0.2-

az
Kg —[exp (4a2 %) —1]

a2
(6.3) IO 15 20 25

Therefore we have

and

n = a, exp (4a2 K), (6 4)
FIG. 2. Classical trajectory in the space of fields (z, y) de-

fined in Eq. (6.7). The solid line corresponds to parameters
(ai ——10,aq ——10 ), while the dashed line corresponds to
(ai = 10,aq = 10 ).
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2n, —a2+ (2/y, x, ) to, + 2n, y, to, + n, (3+ y, x2n2)
n —1 —8

tO~ + ggX~A~
(6 8)

96n, (8a~ + 1)2

QP~ + ggX~Q, '~
(6.9)

We thus recover the results of Eqs. (5.7) and (5.9) for
n, —1 and R, respectively, on small scales, and on larger
scales by Eqs. (5.4) and (5.5). The variation of both the
tilt and the ratio R with Hubble crossing epoch, N„ is
shown in Figs. 4 and 5.

Observational constraints on R and the tilt of the per-
turbation spectrum can bound the values of the parame-
ters a~ and a2, thus constraining deviations &om general
relativity as far back as N, e-folds before the end of in-
flation. Figure 6 is a contour plot showing n, for scales
that left the horizon at N, = 60, corresponding roughly
to 6000 Mpc today, and thus the sort of scale constrained

0

-2-

log P(k)

-4-

-6-

see Fig. 4. In Fig. 5 we have also computed the ratio of
gravitational to scalar components:

by observations of large-scale structure. We see that both
a~ and a2 must be very small in order for the tilt of the
spectrum to remain close to the general relativistic value
of n, 0.95. This reflects the need to keep the Planck
mass essentially constant to avoid large departures &om
the Harrison-Zel'dovich (n, = 1) spectrum. Figure 7
shows similar results for the contribution of gravitational
wave perturbations at the same scale, N, = 60.

VII. CONCLUSIONS

In this paper we have considered the constraints that
may be placed upon the effective theory of gravity during
a period of inflation in the early universe. We do this in

the context of scalar-tensor theories, taking the coupling
of the Brans-Dicke field to matter as an arbitrary func-

tion n(@), and neglecting any explicit potential for the
dilaton field.

Present-day observational limits on the variation of the
Brans-Dicke field are expressed as bounds on the post-
Newtonian parameters of the theory. We have shown that
the general relativistic limit of these parameters coincides
with the vanishing of the corresponding slow-roll param-
eters for the Brans-Dicke field during inflation. Slow-roll
inflation already requires the scalar-tensor theory to be
close to the general relativistic limit. The observed spec-

-10
-140 -120 -100 -60 -20

-2- 0.8-

tog P(k)
0.6-

0.4-

-8-

-10
-60 -20

0.2-

-70 -60 -50
I

-40 -20 -10

FIG. 3. (a) The solid line shows the spectrum of den-
sity perturbations at the end of inflation, 'Pq, (k), as a func-
tion of the number

¹
of e-folds before the end of inBation,

when the corresponding scale left the horizon, for parame-
ters (aq ——10,a2 ——10 ). The dashed line corresponds
to Po, (k) and 'the dotted line to 'Poa(k). The logarithm is
to base 10. (b) Same as in Fig. 2(a), but for parameters
(aq ——10,a2 = 10 ).

FIG. 4. The tilt n(k) of the spectrum of density per-
turbations, as a function of the number

¹
of e-folds be-

fore the end of in8ation, when the corresponding scale
left the horizon. The solid line corresponds to parameters
(aq = 10,aq ——10 ), while the dashed line corresponds to
(aq = 10,a2 = 10 ).
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