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Stationary solutions in Brans-Dicke stochastic inHationary cosmology
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In Brans-Dicke theory the Universe becomes divided after infiation into many exponentially large
domains with different values of the effective gravitational constant. Such a process can be described
by diffusion equations for the probability of finding a certain value of the inBaton and dilaton fields
in a physical volume of the Universe. For a typical chaotic in8ation potential, the solutions for the
probability distribution never become stationary but grow forever toward large values of the fields.
We show here that a nonminimal conformal coupling of the inHaton to the curvature scalar, as
well as radiative corrections to the effective potential, may provide a dynamical cutoff and generate
stationary solutions. We also analyze the possibility of large nonperturbative jumps of the Huctuating
in6aton scalar field, which was recently revealed in the context of the Einstein theory. We find that
in the Brans-Dicke theory the axnplitude of such jumps is strongly suppressed.

PACS number(s): 98.80.Cq, 98.80.Bp, 98.80.Hw

I. INTRODUCTION

After fifteen years of development of inflationary cos-
mology, the basic principles of this theory seem to be
well understood. ; see, e.g. , Ref. [1]. However, there is
still a very long way &om these basic principles to the
final theory. One of the main problems is the absence of
the Gnal version of the underlying particle theory. For-
tunately, many properties of inflationary cosmology are
very stable with respect to the change of its particular re-
alization. In particular, most inflationary models predict
a flat universe (0 = 1) with a nearly scale-independent
spectrum of density perturbations. Still some important
deviations &om the standard lore may appear when one
goes &om one theory of elementary particles to another.
For example, in a certain class of theories, one can obtain
an open [2] or a closed [3, 4] universe, or even a universe
consisting of different causally disconnected regions with
all possible values of 0 ( 1 [4]. It would be important
to find out whether some other modiGcations of the in-
flationary paradigm may appear when one implements it
in different theories of fundamental interactions.

An interesting playground for testing the robustness
of various ideas about inflation is provided by the Brans-
Dicke (BD) theory [5]. It remains to be seen whether
this theory or some of its generalizations can have a suf-
Gciently good motivation, e.g. , &om the point of view of
string theory [6—8]. In any case, however, some qualita-
tively new effects which appear in the BD inflationary
cosmology may justify its investigation.
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One of these effects is the possibility to avoid the grace-
ful exit problem of the first-order infiation [9]. This pos-
sibility, however, requires the introduction of an effec-
tive potential and/or a nonminimal kinetic term for the
Brans-Dicke field [10], which makes the corresponding
theory rather complicated and may lead to certain prob-
lems [11].In some of the recent versions of these models
the end of inflation occurs in the standard way, during
the stage of slow rolling [12].

In what follows we will be interested in another speciGc
effect which may appear in the inflationary Brans-Dicke
cosmology. In this theory quantum fluctuations of the
Brans-Dicke field P during infiation driven by the infiaton
Geld o lead to the division of the universe into different
exponentially large regions where the effective gravita-
tional constant G = Mp ——

2 @, can take all possible
values from 0 to oo; see Ref. [13].

This effect becomes especially interesting if one takes
into account the process of self-reproduction of inflation-
ary universe. This process can be studied in a most ad-
equate way by using the stochastic approach to inflation
and investigating the probability distribution P~(P, cr, t),
which gives the relative fraction of the volume of the Uni-
verse containing the inflaton Geld o and the Brans-Dicke
field P at the moment t. A detailed study of the dis-
tribution P„was performed recently in Ref. [14], where
it was shown that in many inflationary models based on
the Einstein theory of gravity (i.e. , the theory with a
constant Brans-Dicke field) this probability distribution
rapidly approaches a stationary regime. This means that
if one takes a section of the universe at a given time t and
calculates the relative &action of domains of the universe
with given properties, the result will not depend on the
time t, both during inflation and after it.

However, the stationary character of the probability
distribution P„ in general relativity is closely related to
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the existence of the Planck boundary, where the poten-
tial energy density V(cr) becomes comparable with the
Planck density Mp. Typically the distribution Pz(o, t)
rapidly moves towards large o, for the reason that the
volume of domains with large V(cr) grows very fast. The
distribution Pz(cr, t) becomes stabilized as it approaches
the Planck boundary, where, as it is argued in [14—16],
the process of self-reproduction of inflationary domains is
less efIicient, or inflation becomes impossible altogether.

Meanwhile, in the Brans-Dicke theory the situation
is more complicated [17, 18]. Since the effective Planck
mass in this theory depends on P, Mp(P) = —P, the
Planck boundary instead of being a point becomes a line

4, V(o). Then the distribution P„(g,o, t) first
moves towards the Planck boundary, and after that it
slides along this boundary in the direction where the
rate of expansion of the universe becomes greater. Such
runaway solutions typically lead to the distributions P„
rapidly moving towards indefinitely large values of P and
u. As a consequence, a typical value of the Planck mass
at the end of inflation also becomes indefinitely large,
and the effective gravitational constant vanishes.

In fact, runaway solutions may appear even in the or-
dinary Einstein theory. This may happen if the inHaton
field is nonminimally coupled to curvature due to the ex-
istence of the interaction z(o B, w—ith ( ( 0 [16]. On
the other hand, in the theories with ( ) 0 one may en-
counter maliy difFerent regimes. Depending on the value
of (, one may not have inflation at all, or one may have in-
Hation without self-reproduction of inHationary domains,
or inflation and self-reproduction with a stationary dis-
tribution P„.

This suggests to us to study a more general version of
the Brans-Dicke theory, where not only the Brans-Dicke
field P, but also the inflaton field o is nonminimally cou-
pled to gravity. Some models of this type have been dis-
cussed before in [19,20]. Note that this framework seems
to be much more natural than the standard one, where
it is assumed that only one of the two scalar fields (the
Brans-Dicke field) is nonminimally coupled to gravity.

This paper is organized as follows. In Sec. II we dis-
cuss the problem of runaway solutions in the Brans-Dicke
stochastic inflation. In Sec. III we derive a set of equa-
tions for inHation in the Brans-Dicke theory with a non-
minimally coupled inflaton scalar field. We study the case
of a purely massive scalar field and find that it provides a
natural cutofF for the motion of the inflaton and dilaton
fields, resulting in the existence of stationary solutions to
the diffusion of both fields. In order to test the stability
of the results, we analyze the same model in the pres-
ence of a nonzero self-coupling of the inflaton. We find
that such a term is enough to destroy the stationarity of
the probability distribution, making such a stationarity
rather improbable. In Sec. IIIA we propose a different
solution to the runaway behavior of the scalar fields by
considering one-loop corrections to the effective poten-
tial. For certain values of the parameters of the model, it
is possible that the effective potential of the inflaton Beld
acquires a maximum at exponentially large values of o.
This provides a natural cutoff for the rate of inflation and

makes the distribution P„stationary. Furthermore, the
Planck mass in this model is exponentially larger than
the only scale in the problem, the mass of the inflaton,
thus naturally explaining a hierarchy of scales. In Sec. V
we explore the possibility of very large quantum jumps
of the scalar field [21] in the context of the Brans-Dicke
theory. In Sec. VI we draw some conclusions.

II. RUNAWAY SOLUTIONS
IN BRANS-DICER INFLATION

In this section we will introduce the problem of run-
away solutions in Brans-Dicke cosmology. For a detailed
analysis see Refs. [17, 18]. Consider the evolution of
the inflaton field o with a generic chaotic potential in
a Jordan-BD (JBD) theory of gravity with dilaton field

8 = d xg —g P R ——(0$) ——(Bo) —V(cr)4 1 2 1 2 1 2

8(d 2 2

where Planck mass is written in terms of the dilaton field
as MP2(P) = —rP. For generic inflaton potentials of the
type V(o) = 2" o, the equations of motion for the ho-
mogeneous fields in the slow-roll approximation are

H
(d

o. nHQ
o 2 (d o

(2)

37r2 4m
(4)

the last inequality corresponding to the Planck bound-
ary [13]. Thus, if the field is not very far away Rom the
Planck boundary (but still sufFiciently far away so that
our approach remains reliable), the motion of the field
occurs not due to classical rolling but due to Brownian
jumps in all possible directions. The jumps in the direc-
tion of greater Hubble constant lead to much more rapid

This implies that

d (, 2—14" + —o'
I

= 0dt( n

which means that the fields move along a circle of radius
r2 = P2 + p2, with rp2 = —cr2; see Ref. [13]. Inflation

begins at the Planck boundary P = ~ cr" and ends
2m~2n

somewhere at the line P2
2 o ~ )) o2. This implies that

if inflation begins at op )) Pp, it will end at P —op.
Thus, if we Bnd a reason why oo should be large, we will

be able to explain why Mp = —P 2g—op is also

large.
This simple picture becomes much more complicated

if one takes into account that in addition to the classical
motion, the fields P and o experience quantum jumps
with a typical amplitude 2 during each time interval
0 . One can easily verify that in certain cases these
jumps are greater than the classical rolling of the Belds.
For example, in the case P «o. it happens for
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expansion of space. As a result, very soon (in the syn-
chronous time t) the main part of the physical volume of
the Universe shifts towards the Planck boundary where
the Hubble constant takes its greatest values. After that
the field o. can take all possible values along the Planck
boundary, and therefore the value of the field P in the
domains reaching the boundary of the end of inflation
does not depend on the initial value uo.

However, the Hubble constant H(g, cr) is difFerent in
difFerent parts of the Planck boundary. If it has a max-
imum at some point 0 = 0. „along the Planck bound-
ary, then the main part of the volume of the Universe
will be produced as a result of exponentially rapid in-
flation near this point. Therefore the main part of the
volume of the universe after inflation will be produced
with Mp —0 „[17].

Unfortunately, as we have shown in [17,18], this regime
is not realized in the model (1) with V(cr) = —"0,nor in
the models with exponentially growing potentials. The
reason is very simple: The Hubble parameter in such
theories grows along the Planck boundary. Therefore
the leading contribution to the volume of the Universe is
given by the domains expanding with ever growing speed
and containing indefinitely large values of the fields o and

The diffusion equations describing this process have
runaway solutions which describe distributions P„(P,o, t)
running towards infinitely large a. In many cases, the
center of the distribution P„reaches infinitely large val-
ues of o. within Gnite time.

This does not necessarily mean that the corresponding
theories are physically unacceptable. It may happen that
our idea that we should live in a part of the Universe cor-
responding to a maximum of P„(P, cr, t) at a given time
t is incorrect; see Ref. [17] for a discussion of this issue.
In particular, as it was shown in [14, 17], the behavior of
the distribution P„(P, cr, t) depends on the choice of time
parametrization. If one studies, e.g. , the probability dis-
tribution P„(P,0, w), where 7 = ln a(t), its behavior may
be quite difFerent, and it may not exhibit any runaway
solutions. Moreover, it is very easy to stabilize the distri-
bution P„(P,0., t) by making the efFective potential V(0.)
very curved and unsuitable for inflation at large o. Still
it would be interesting to study this phenomenon in a
more detailed way and to see whether the distribution

Pz(P, cr, t) in the Brans-Dicke theory can be stabilized in
a natural way. If this stabilization can occur only at very
large values of the field o., then the typical value of the
Brans-Dicke field P at the end of infiation will also be ex-
tremely large. This may give us a tentative explanation
of the anomalously large value of the Planck mass.

III. A MORE GENERAL THEORY

Let us now turn to a scenario in which some of the
problem discussed above could be resolved. For that
purpose we will consider the classical evolution of the
inflaton field with a generic chaotic potential, in the con-
text of the Jordan-Brans-Dicke theory of gravity and a
curvature coupled inflaton with a nonminimal coupling

d &Q—g Q B ——(cr R ——(gg)2Su

(Ocr) ——V(cr)
1 2

2 (5)

In this theory the Planck mass takes the form

M (P, o.) = 16~4 = 8z
I Q —(cr
k4" )

where 4 plays the role of the Brans-Dicke scalar. The
value of the Brans-Dicke parameter u is bounded by the
post-Newtonian experixnents [22] and primordial nucle-
osynthesis [23] to be very large, u ) 500, and therefore it
is reasonable to use the approximation w &) 1 in the fol-
lowing analysis. The parameter (, on the other hand, is
unconstrained and could take positive or negative values.
(The constraint w ) 500 is necessary to ensure that the
field P changes very slowly at the present tixne. Mean-
while, the Geld 0 at the present epoch does not change at
all since its value is fixed by its efFective potential. ) Here
we will consider the case of a small and negative (.

The equations of motion for the theory (5) can be writ-
ten as

(PB,
1

44)
V'2cr =—V'(o) —gcrB,

(7)

g~-&
I
=g~-v(~)-+ (&~&- —g~-&')

I

,) ( (1
2 &4~ )

+
I

B„QB„Q— g„„(BQ) I
+

I
B„oB„cr———g„„(t9cr)2

I

1,) (
) & 2

We can then write the exact equations for the homogeneous fields in fiat space (A,'= 0) as

(8)

1+ V'2P + (1 —6() V'2o. = 4V(o) —oV'(o),
2 24)



52 STATIONARY SOLUTIONS IN BRANS-DICKE STOCHASTIC. . . 6733

1 —6 g / =4/ g —6 gV g 1 6

—(a
~

3H =V(a) + 6( Haa + —0. — HPP + —P(4w 2 2' 2
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p2

g 2

where p = 4~~(~. Note that for small p they reduce to
the usual BD equations.

A. Massive curvature-coupled inflaton

where R = 12H + 6H. Note that for ( = 0 and 4 =
P2/8u we recover the usual BD equations. From now on
we will drop the last two terms of Eqs. (10) since they
are subleading for large w.

During inflation, we can write the equations of motion
of the homogeneous fields (t and a for small ~(] and large
u, in the slow-roll approximation (P « HP « H P), as

H2)is a2&V,

3(d(z' —~/2)' &
2

(z'+~/2)

which gives a slightly modified condition for the end of
inflation, z, + p/2 = 3~/2.

For very small p, the trajectory is very close to a circle
in the plane (y, P). However, for arbitrary p the scalar
fields move along a more complicated trajectory. There
are regions of parameter space for which inflation never
ends. For instance, if p & 2 and z & (p —2)/2, then
z & 0 and inflation never ends [unless the field 0 tun-
nels (diffuses) to its large values quantum mechanically].
This is a rather surprising result since there is nothing
singular in our equations (12) at y, = 2. The reason of
this unexpected behavior is that the field g in the regime
P « o for p ) 2 grows much faster than the field P, so
it never approaches the end of inflation with P )) a.

The value of the effective Planck mass at the end of
inflation is given by [see Eq. (13)]

Let us consider in some detail the theory (5) with
V(o) = zm2a2 at large a and very small ( & 0. In this
case it is useful to make a change of variables to polar co-
ordinates r = P +y, z = ~, y = 2(1+6~(~)a 20
In these coordinates, the equations of motion (11) take
the form

2 X/2z +V/
4 z2+1 )

2vr /2 —p) 2

TQ ZQ
2zo ) (16)

z— z + 1 —P 2 )

dr r p/2
) TQ=T Zo

dz z(1 + z2) (z2 + 1 —p/2)

/2 q
—/( — )

Ezo + 1 —~/2)
which gives

&( ) = ( ) (1+ ') ' '

~()= ()(1+ ')"

(13)

(14)

For ~(] && 1, the condition for existence of inflation (~H] &

rH p/2
(d 1+z

td m 2

3 z2+ p/2

One can solve these equations parametrically in the z
variable, for p g 2:

2 2
c2 &max Jt +max
P +P

2
)4

gmax =
(17)

There is no constraint on p; however, we will assume that
( and 1/u are both of the same order of magnitude. We
will see that this is a consistent approximation in this
scenario.

The amplitude of quantum fluctuations of the scalar
fields, hP and ha, whose wavelengths are stretched be-
yond the horizon and act on the quasihomogeneous back-
ground 6elds like a stochastic force, can be computed as
in [17,18] and they are given by (for u )) 1 and ]$~ && 1)

where we have used the fact that z &) 1 and zQ &( 1.
Note that the value of the Planck mass at the end of
inflation is very sensitive to initial conditions and, for the
reason explained above, it becomes exponentially large
when p -e 2: Mp = /4z~(~ qie ezp (z, ).

We should now discuss possible initial conditions and
the regime of self-reproduction of the Universe in this
model. The Planck boundary in this theory (see Fig. 1)
looks like an ellipse:
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2-

time H are more important than their classical mo-
tion enter the regime of self-reproduction. One can eas-
ily show that in our case the region where this regime is
possible is the interior of the ellipse

(20)

-2-

In our model the Hubble constant takes its maximal
values along the line P = 0 (i.e., z = 0). Along this line
there is a wide region where self-reproduction is possible.
This region begins at the Planck boundary (17) and ends
at the self-reproduction boundary (20):

I

0.5
I

2.5 3.5 Co (
87rv 2~(~ 47r~6~(~ ~

(21)

FIG. 1. The shape of the Planck boundary and the bound-
ary of the region of self-reproduction of the Universe in various
models. Continuous lines show the Planck boundary for the-
ory m gP, Eq. (17). Dashed lines show the self-reproduction
boundary in this model, Eq. (20). The region where self-
reproduction occurs is between the Planck boundary and
the self-reproduction boundary. Long-dotted line shows the
Planck boundary for m P + AP, Eq. (27), for the case
o „)o, . (In the opposite case, o „(o, this line
looks similar to an ellipse. ) Short-dotted line shows the self-
reproduction boundary for this model, Eq. (26).

H H
$g2' '

27r
'

Density perturbations in our model can be calculated as
in Refs. [17,18,24). For the theory V(cr) = zm2rr2, in the
large ~ limit, we find

bp 50m

P Mp

Note that the larger is the Planck mass at the end of
inflation in a given region of the Universe; the smaller
will be density perturbations in this region. This sug-
gests that the large value of Planck mass Mp in our part
of the Universe may be related to the small value of the
amplitude of density perturbations —~ 5 x 10 [17].
In other words, instead of two independent small param-
eters, M (( 1 and — 5 x 10,we have only one.bp

As we already discussed in the previous section, those
inflationary domains where quantum jumps during the

Since this lIlteI'val ls limited, Iunaway solutloIls heI'e ale
impossible. In such a situation the probability d.istribu-
tion Pz(re, o, t) should be stationary, with a maximum
somewhere at this line, in the interval (21).

Note, however, that this maximum should be relatively
smooth, since the value of the Hubble constant does not
depend on cr along the line P = 0:

m

For a complete investigation of the probability distribu-
tion P„(P,a, t) and of the value of Mp at the end of infla-
tion one should solve numerically the difFusion equations
for P„(re, o., t), as we did in Ref. [17]. To get a rough idea
of the resulting distribution of possible values of Mp at
the end. of inflation one can simply take all points at the
boundary of self-reproduction and treat them as initial
conditions for the solutions (13), (16). However, one can
get a much better picture if one takes into account that
the main contribution to the probability distribution on
this boundary is given by the part of the boundary of
the region of self-reproduction with the highest value of
II. This value is achieved for o. = cr, (20) at the line

0. The peak cannot be wider than ~2cr, in the
P direction, and in fact it is expected to be much more
narrow. Estimates of the values of the effective Planck
mass generated after inflation suggest that Mp can take
all possible values &om 0 to oo, but typical values are
much greater than ~&. If, for example, one considers
the evolution of domains with initial values of the fields
o o, and P &

2 (due to unavoidable quantum jumps
near P = 0), Eq. (16) yields

( 4~((' & '--

Note that during the last stages of in8ation, there is an
approximate equivalence of the Einstein and Jordan frames.

One can then estimate the allowed values of ~(~ from
the amplitude of density perturbations (19). For p
1 we find ~(~ & 4 x 10, which is consistent with the
constraint u ) 500 and our condition p 1. Note also
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thai ceder exp (—
~

i, ) for p, -e 2, aad it becomes

very easy to obtain a very small ratio of M even for
not too small values of 1(1. Therefore, we have a natural
realization of our model without the need for very small
numbers. In fact one could argue that u 500 is not such
a large number, if we understand it as the dimensionless
coupling P of matter to the dilaton in the Einstein frame
[25], 2P = (2m+ 3) '/' 0.03.

B. Self-coupled in8aton

z = zH 2m (1+z2)(2z2 + 2 —p) + Ar2(1 + 2z )
4m'(1+ z2) + Ar2

rH 2m2(1+ z )p —Ar z2

[4m2(1 + z ) + Ar ](1+ z )
(u 4m'(1+ z2) + Ar2

( + ')( ' + ~)

(24)

There is a bifurcation line in the plane (z, r) that sepa-
rates domains for which infIation never ends. This is the
line z =0,

2 p —2z'=
2

r2 1+2z2
4m2 1+z' (25)

For p ) 2 and r2 ( 2m (p, —2)/A, there are values
of z for which z & 0, which could suggest, just as in
the previous model with V(o) = —m2o'2, that the end
of infIation cannot be reached. However, as r increases
(24), z eventually changes sign and inHation ends.

The boundary of self-reproduction in this theory is
given by

( y2) ( ~2) /

+ vo 1+—= voa 1+—
~.') & ~.')

where v and cr, were defined in (20).
The Planck boundary for this theory is

( 2~ i/z
0'+ V~' = V~ -~ 11+—,

I

o

(26)

(27)

where o „was given in (17) and cr, = 2m/~A. For
0 „&u this boundary looks similar to an ellipse. The
greatest values of the Hubble parameter appear along the
line P = 0, o m oo. For o „)cr, the Planck at large o.

looks like a straight line. The greatest values of the Hub-
ble parameter appear along this line, in the limit o ~ oo.
Therefore in this model there always exist runaway so-
lutions describing the probability distribution P~(P, o, t)
rapidly moving towards indefinitely large values of cr and

In other words, the existence of a stationary regime
which we have found in the previous model appears to be

We must now consider possible corrections to the in-
fIaton potential, in order to see whether our results are
stable with respect to small modifications of the the-
ory. Let us add an infIaton self-coupling to the theory,
V(o ) =

2
m2cr2 + 4 o 4. The corresponding equations of

motion read

unstable with respect to a small modification of the ef-
fective potential of the inHaton field. It makes this model
less attractive.

IV. ONE-LOOP CORRECTIONS

V(cr) = —(o. —oo) + Po ln —,4

4 ap
(28)

where cr02 ——m2/A is the value of the inHaton field at the
minimum of the potential, and P depends on the values
of coupling constants in the theory. For example, if the
scalar field 0. interacts with the fermion field with the cou-
pling constant h, one obtains P = (9A —4h ) /32m [26].
Note, that P will be negative for h2 )) A2. In that case,
a new maximum will appear at exponentially large o".

A
o „cro exp

1 1
» era,

) (29)

followed by a very sharp falloff to negative values of the
potential, rendering the vacuum unstable [26]. In our
case this sharp falloff may act effectively as a natural
boundary for the diffusion of the infIaton field 0.. In such
a situation the probability distribution P„(P,o, t) be-
comes stationary, with the maximum concentrated near
the Planck boundary at 0 = 0

In the theory (28), the equations of motion for o )) oo
and ( = 0, become

HP
)

V'(o.)0
3H

4~V(cr)
32

(3o)

For op && 0 &( o the classical motion is circular, just
as in the theory Ao, and we can define polar coordinates
(r, z) as usual, with z = P/cr. Therefore one can obtain
the following estimate of the Planck mass after the end
of infIation:

(Al—o „—oo exp
1

&41&lr
(31)

Note that in this case the efFective Planck mass for

1P1 (( A becomes exponentially large. In the regime
when it is much greater than op the amplitude of den-
sity perturbations is given by the standard expression

10z~A. Thus one does not get anything new Rom
P

the point of view of density perturbations, but one can
obtain a natural explanation of the very large value of
the Planck mass as compared with other mass scales in
the theory.

Now let us return back to the simple Brans-Dicke the-
ory (1) with the inHaton field miniinally coupled to grav-
ity, but let us take into account quantum corrections to
the efFective potential V(cr). In the one-loop approxi-
mation one can represent the effective potential in the
following way:
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V. NONPERTURBATIVE EFFECTS

All results obtained in the present paper are related
to the probability distribution P„(P,a, t), which shows
the fraction of the volume of the universe with the Gelds

P and a at a given moment of time t in synchronous
coordinates. We should emphasize again that this is
not a unique choice of measure in quantum cosmology.
One could study, for example, the probability distribu-
tion P„(P,o., w), where w lna(t). This distribution is
considerably difFerent &om P„(g, o, t). This does not al-
low us to make unambiguous predictions until the issue
of measure in quantum cosmology is resolved; see a dis-
cussion of this issue iii Refs. [14, 17, 16]. Still we believe
that investigation of P„(rtp, o., t) gives us very interesting
information about the structure of inflationary universe.

Recently it was shown, in the context of chaotic infla-
tion based on the usual Einstein theory, that the main
fraction of volume of the universe in a state with a given
density p at any given moment of time t is concentrated
near the centers of deep exponentially wide spherically
symmetric holes in the density distribution [21]. For the
reason discussed above, interpretation of this result is not
unambiguous, and we are not sure that it implies that we
must live near the center of a spherically symmetric void.
However, we think that this result is very nontrivial and
deserves further investigation [27].

Here we would like to study whether a similar effect oc-
curs in the context of the Brans-Dicke theory. As we will
see, the effect does take place, but its amplitude is sig-
nificantly different. In order to understand it, we should
briefly remind the origin of this effect in the Einstein the-
ory, with one scalar field a (the inflation field), and then
we will make a generalization to the Brans-Dicke case.

The best way to examine this scenario is to investi-
gate the probability distribution P&(a, t). The distribu-
tion P~(a, t) obeys the following difFusion equation (see
Ref. [14] and references therein):

BP„10 Hsi'(a) 0 H'i'( )a
Bt 2 BO 27t BO 2'

P„+3H(0)P„. .V'(a)
3H 0. (32)

Here we temporarily use the system of units Mp = 1.
One may try to obtain solutions of Eq. (32) in the forin
of the series Pz(a, t) = P, i e '~z, (a). In the limit of
large time t only the term with the largest eigenvalue
Ai survives, P~(a, t) = e ' vri(a). The function 7ri in
the limit t ~ oo has a meaning of a normalized time-
independent probability distribution to find a given field
0. in a unit physical volume, whereas the function e""
shows the overall growth of the volume of all parts of the
universe, which does not depend on 0 in the limit t ~ oo.
In this limit one can write Eq. (32) in the form

1 0 Hs~'(a) 8 /Hs~'(a)
vri (0-)28a 27r Oa ( 2~

mi(a)
~

+ 3H(a)~i(a) = &i ~i(a) .0 ( V'(a)
Da (3H(a)

(33)

In the simplest theory with V(o) = 4a and H
s"0, Eq. (33) reads [14]

+7tg +

6~ ~i2- =0. 34

This equation can be solved both analytically and nu-
merically [14]. The result is that the eigenvalue Ai is
given by d(A) H „. Here d(A) is the fractal dimension,
which approaches 3 in the limit A —+ 0, while H „ is
the maximum possible value of the Hubble constant dur-
ing inflation, which in our case corresponds to its value
at the Planck boundary V(0) = MP = 1. This gives

H = 2 3 . Thus, in the small A limit, one has

Ai ——3H „=2/6vr = 8.68.
The distribution mq depends on 0. very sharply. One

can easily check that at small o. the leading terms in
Eq. (34) are the second and the last ones. [This means,
in particular, that the diffusion terms in Eqs. (32),(33)
can be neglected. ] Therefore the solution of Eq. (34) for
small o. corresponding to the last stages of inflation is
given by

This is an extremely strong dependence. For example,
10vri a for the realistic value A 10 [21].

Consider all inflationary domains which contain a
given Geld o at a given moment of time t. Let us try
to Gnd a typical value of this Geld in those domains at
the earlier moment t —H . In order to do it, one should
add to 0 the value of its classical drift o H . One should
also add the amplitude of quantum jumps Le. The usual
estimate of the magnitude of a typical jump is + 2 . This
is a correct estimate if we are interested in a typical am-
plitude of jumps at any given point. However, if we are
considering all domains with a given 0 and trying to Gnd
all those domains &om which the field 0 could originate,
the answer may be quite different. The total volume of
all domains with a given Geld o at any moment of time
t strongly depends on o". P„(a) 7ri(a) a~&"'; see
Eq. (35). This means that the total volume of all do-
mains which could jump towards the given field 0 &om
the value o + 40 will be enhanced by a large additional

factor "&
~ ~

1 + . On the other hand,
the probability of large jumps 40 is suppressed by the

2 2
Gaussian factor exp — ~, . The product of these

two factors has a sharp maximum at Lo = Aqo 2 . In
other words, most of the domains of a given field o. are
formed due to the jumps which have definite sign (they
are decreasing the value of the scalar field), and which
are greater than the "typical" ones by the amplification
factor N = Aqcr. In the usual notation, this amplification
factor is given by
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Ago.

M2P
(36)

(37)

which gives N 4.5+6w~A, for o 4.5Mp. Note that
for A 10 and ~ 10 the factor N becomes very
small, and therefore all the nonperturbative effects dis-
cussed above will be negligible, contrary to the case in
general relativity [21].

Note that in this investigation we have assumed the ex-
istence of the upper boundary o . The situation will
be quite different if there were no stationary solutions
for P&. In such a case the nonperturbative efFects will
be extremely strong. However, then we will meet the
problem of runaway solutions which would suggest that
Mp —+ oo in the main part of the physical volume of the
universe. In this paper we have shown that in principle it
is possible to avoid runaway solutions in the Brans-Dicke
theory. But then &om our results it follows that the same
trick which makes the distribution stationary simultane-
ously kills the nonperturbative effects in the infIationary
Brans-Dicke cosmology.

where Ai ——3K „= 2/6vrMp --8.68Mp. For o
4.5Mp (the scale at which the large scale structure of our
part of the Universe has been formed), the amplification
factor in our theory is about 40. However, the value of
this factor is very sensitive to our assumptions concerning
the Planck boundary, it can be much bigger or much
smaller than 40. As explained in [21], this effect does
not alter the standard theory of density perturbations
in inflationary universe, but it puts these perturbations
on the top (or, more precisely, to the bottom) of the
distribution of the scalar Beld cr which appears as a result
of its large jumps.

We can now return to the Brans-Dicke theory with
u )) 1. In this case both fields P and rr move and fiuc-
tuate, and therefore one should write a two-dimensional
difFusion equation for these fields [17]. However, at the
last stages of inflation the classical motion of the scalar
field P is very slow, and, as we argued above, difFusion
in the first approximation can be neglected. Then the
problem reduces to the one we have already solved, and
the amplification coefficient will be given by Eq. (36).
The only difFerence is that now the value of the coefri-
cient Aq ——3H „will be determined not by the Planck
mass at the end of inflation, but by the much smaller
Planck mass at the place near the Planck boundary cor-
responding to the peak of the distribution P„(g,o). If
the distribution is stationary due to the existence of some
kind of boundary at o = o, then the peak is concen-
trated at the Planck boundary near o . In this case
one can show that Ai ——3K(o „) = 2o „+3vr~A, for
V(o) =

4
o4. Meanwhile, the typical Planck mass after

infiation is given by Mp —o „[17].This leads to
the following realization of Eq. (36) for the Brans-Dicke
theory:

VI. CONCLUSIONS

Investigation of the probability distribution P„gives
us a lot of interesting information about the properties of
the inflationary universe. Some of these properties (such
as the very existence of the regime of self-reproduction
and the f'ractal structure of the Universe) do not de-
pend on the choice of time parametrization, and therefore
their interpretation is relatively straightforward. Some
other properties of P„do depend on the choice of time
parametrization. Sometimes it is not enough to know
P&, we need to know also whether all parts of the Uni-
verse which are described by this distribution are equally
well suited for existence of life. In such situations inter-
pretation of the results becomes increasingly speculative.
Nevertheless we believe that even in these cases investiga-
tion of Pz and attempts of its interpretation can be very
useful. We are learning how to formulate questions in
the context of quantum cosmology. In some cases we are
obtaining results which look obviously incorrect or con-
tradict observational data; then we may conclude that we
are using quantum cosmology in a wrong way. In some
other cases quantum cosmology allows us to obtain im-
portant results which cannot be obtained by other meth-
ods. This may be considered as an indication that we are
on the right track. Thus, by this trial and error method,
we may finally learn how to use quantum cosmology.

To give a particular example one may consider the
old issue of the wave function of the universe. The two
most popular candidates are the Hartle-Hawking wave
function, which in the context of inflationary cosmology

4

reads exp(is&&~@l ) [28], and the tunneling wave function

exp( —
is&~~&l) [29]. Neither of these two functions was

rigorously derived. For some reason which is not related
to its derivation, the square of the Hartle-Hawking wave
function correctly describes tunneling between two differ-
ent de Sitter universes with different values of V(P) [30].
However, if one makes an attempt to apply it to the prob-
ability of creation of the inflationary universe, one comes
to a physically incorrect conclusion that it is much eas-
ier to create an infinitely large inflationary universe with
V(P) -+ 0 than a Planck-size universe with V(P) Mp.
The tunneling wave function leads to a qualitatively
correct description of quantum creation of the universe
"&om nothing, " but one should not uncritically apply it
to, e.g. , the formation of black holes [31]. The reasons for
the limited applicability of each of these functions are ex-
plained in Ref. [1], whereas in Ref. [14] it is shown that

4 4

expressions of the type of exp(is&~p&l) or exp( —
is&~p&l)

appear in many problems of quantum cosmology which
are not related in any obvious way to the original "deriva-
tions" of the Hartle-Hawking and tunneling wave func-
tions.

Something similar may occur with our investigation of
the probability distribution P„. This distribution is cer-
tainly very useful, but sometimes it becomes tempting to
use it in the situations where its interpretation is ambigu-
ous and the Bnal success is not guaranteed. However, the
possibility to obtain very strong results and to look at the
interplay between particle physics and cosmology &om
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an entirely new point of view suggests to us to continue
this trial-and-error investigation. Here we may mention
our attempt to address the cosmological constant prob-
lem in the context of the Starobinsky model [16] and the
possibility to explain why in the main part of the uni-
verse the scalar-tensor theories of gravity are reduced to
the Einstein theory [32]. In this paper (see also our pre-
vious publications [13, 17, 18]) we demonstrated that in
the context of inflationary Brans-Dicke theory it may be
possible to explain the anomalously large value of the
Planck mass Mp. We have shown also that the structure
of our part of the universe which could appear as a re-
sult of nonperturbative effects in quantum cosmology [21]
may be extremely sensitive to the properties of the the-
ory at nearly Planckian densities and to the presence or

absence of stationary solutions for the distribution P„.
At the very least, what we have found can be considered
as a description of rather nontrivial properties of hyper-
surfaces of a given synchronous time in the inflationary
universe. However, we hope that some of our results may
have deeper physical significance.
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