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Small nonvanishing cosmological constant from vacuum energy:
Physically and observationally desirable
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Increasing improvements in the independent determinations of the Hubble constant and the age
of the universe now seem to indicate that we need a small nonvanishing cosmological constant to
make the two independent observations consistent with each other. The cosmological constant can
be physically interpreted as due to the vacuum energy of quantized 6elds. To make the cosmological
observations consistent with each other we would need a vacuum energy density p„(10 eV)
today (in the cosmological units 5 = c = k = 1). It is argued in this paper that such a vacuum
energy density is natural in the context of phase transitions linked to massive neutrinos. In fact, the
neutrino masses required to provide the right vacuum energy scale to remove the age versus Hubble
constant discrepancy are consistent with those required to solve the solar neutrino problem by the
MSW mechanism.

PACS number(s): 98.80.Cq, 12.15.Ff, 14.60.Pq, 98.80.Hw

I. INTRODUCTION

Increasing accuracy in astronomical observations is
leading us to an increasing precision in the determina-
tion of cosmological parameters. This in turn is leading
us to critically reexamine our cosmological models. In
particular, the precise determination of the Hubble con-
stant and the independent determination of the age of the
universe is forcing us to critically reexamine the simplest
and most appealing cosmological model —a Bat universe
with a zero cosmological constant [1,2].

The Hubble constant enters in the relationship between
the recession velocity of an object and its distance kom
us. The recession velocity of an object can be deter-
mined by using the Doppler eKect and is relatively easy
to determine. It is the calibration of the extragalactic
distance ladder which is the difBcult part of measur-
ing the Hubble constant and in which the precision has
been increasing significantly. It is the use of the Cepheid
variables as standard candles that has allowed the im-
proved determination of the extragalactic distance scale.
Cepheids are variable stars whose pulsation period are
very strongly correlated with their luminosities. These
stars are well understood. theoretically and the period-
luminosity relationship is well documented empirically.
By observationally determining the pulsation period of
a Cepheid variable and using the period-luminosity rela-
tionship one can immediately determine the luminosity
of the object. Then by using the apparent brightness of
the object one can accurately determine the distance to
the Cepheid. Pierce et al. [1] have used this technique
with ground-based observations to determine the extra-
galactic distance scale. An excellent discussion on this
subject is contained in the article by Pierce et aL [1] and
references therein.

Pierce et al. [1] have deterxnined the Hubble constant
to be, Ho ——87+7 kms Mpc . They further point out

in their article that this value of the Hubble constant is
in fact in conQict with the independent determination of
the age of the universe [3] using galactic globular clusters
if we use the standard cosmological model with a zero
cosmological constant. The estimate of the age derived
&om an analysis of the galactic globular clusters is 16.5+
2 Gyr.

An accurate determination of the Hubble constant is
also one of the important goals of the Hubble Space Tele-
scope (HST). In fact, Freedman et aL [2] have used
the HST to calibrate the extragalactic distance scale and
hence determine the Hubble constant. They obtain the
value of the Hubble constant to be 80+17 km s Mpc
They also point out that their determination of the Hub-
ble constant is inconsistent with the age of the globular
clusters within the &amework of standard 0 = 1 cosmol-
ogy with no cosmological constant.

II. RESOLUTION OF THE AGE VERSUS
HUBBLE CONSTANT PROBLEM

THROUGH THE INTRODUCTION
OF A SMALL VACUUM ENERGY

One of the ways to avoid the apparent con8ict between
the observed age of the universe and the observed Hubble
constant is to introduce a small cosmological constant in
the Einstein equations that govern the evolution of the
universe. This idea has been extensively studied by a
number of people including Tayler [4] and Klapdor and
Grotz [5].

Let us quickly summarize how a cosmological constant
of the right magnitude can solve the apparent conBict be-
tween the age and the Hubble constant. This can be seen
from the following analysis [6]. To a good approximation
our universe is spatially homogeneous and isotropic on
large scales. It is therefore appropriate to describe space-
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time by Robertson-Walker metric which can be written
in the form (units c = 1)

dT
ds =dt —R (t) +r d8 +r sin Hd(P

1 —kr2

where (t, r, 8, P) are the comoving coordinates describing
a space-time point and R(t) is the cosmic scale factor.
Also, k = +1,—1, or 0 depending on when the universe
is closed, open, or Qat.

The present expansion age of a matter doxninated uni-
verse can be evaluated in a Robertson-Walker universe. ~

General 6ne-tuning arguments as well as the inQationary
picture gives us a preference for a Qat universe, Op = 1.
In this case, tp ——3Hp . For, Op 1, one can expand
the above expressions in a Taylor expansion:

=2 -1 1
tp —— H1———(Ap —1) +

3

We can also determine the present age of the universe
containing both matter and vacuum energy such that
~vac + ~matter —1

X/22 &~ ]/2 l
1 + Ov&ct p ———Hp 0, ln

This will give us much longer lifetimes as can be seen
most dramatically by examining the»mit 0, -+ 1 in
which case tp ~ oo. Indeed having an 0„, 0.8 is
one of the possible solutions of the age versus Hubble
constant discrepancy as can be seen &om the following
dlscusslon.

First, let us quickly recall the observational numbers
on the Hubble constant and the ages of globular clusters.
Here it is worthwhile pointing out that there are actually
two sets of numbers which though consistent with each
other have slightly difFerent central values and error esti-
mates. Pierce et al. [1]quote the result of their analysis as
yielding a Hubble constant, Hp of 87 + 7 kms Mpc
They then draw attention to the fact that this is in con-
Qict with the age estimate of the globular clusters in-
ferred by VandenBergh's [3] analysis which gives an age
of 16.5 + 2 Gyr.

Freedman et al. [2] have a greater amount of data
that they have analyzed very thoroughly. Thus they
found over 20 Cepheids in a Virgo cluster galaxy as op-
posed to 3 Cepheids found by Pierce et a/. They ob-
tain a slightly diferent central value of Hp with substan-
tially large and perhaps more realistic error bars than
Pierce et al. They thus quote a Hubble constant value,
Hp = 80 + 17 km s Mpc . Also based on a wider
spectrum of data for ages they quote a central value of
the age of the universe as 14 Gyr with 1 o error bars of
+2 Gyr. Freedman et al. , however, too point out that
even with their more generous errors bars there is still a
discrepancy between the Hubble constant and the age of
the universe if we restrict ourselves to a standard 0 = 1
cosmology with a zero cosmological constant.

Let us now see how a noxuero cosmological constant
can solve this discrepancy and what values of the cosmo-
logical constant are typically required to minimally solve
the discrepancy between the Hubble constant and the age
of the universe. First, let us consider the lowest possible
value of the Hubble constant as quoted by Freedman et
al. which is 63 kms x Mpc x. Let us consider this to-
gether with the age of the universe, tp ——14.5 Gyr which
though slightly higher than the central value quoted by
Freedman et a/. is at the lower limit of the age quoted
by Pierce et al. These two values of Hp and tp imply a
value of Hptp = 0.93. This corresponds to the value of0, = 0.66. Thus 0, = 0.66 would remove the contra-
diction between the Hubble constant as determined by
Freedman et al. and the age of globular clusters. How-
ever, let us consider a few more values of 0 „Hp, and tp
to see where future more precise observations and anal-
ysis might lead us. Consider 0, = 0.7 which implies
Hptp ——0.964. For Hp ——63 km s Mpc this would im-

ply the age tp ——15 Gyr and for tp ——14.5 Gyr this would
imply a Hp ——65 kms Mpc . Similarly, 0, = 0.8
would imply Hptp = 1.076 which would give an Hp ——73
kms Mpc for tp ——1.45 Gyr and for a tp ——16.5 Gyr
would imply Hp ——64 kms Mpc . Finally, if we con-
sider the lower bound implied by the numbers quoted by
Pierce et a/. , viz. Hp ——80 kms Mpc and tp ——14.5
Gyr, we get Q, 0.85. Clearly, however, one would
not like to push the values of 0, much higher than
this number for a number of reasons. First, we would
»ke ~vac + ~matter = 1 and higher values of Ovac will
start to conQict with the lower bound on matter density
from galaxies and clusters. Furthermore, one can start
to place an independent constraint on the cosmological
constant from gravitational lens statistics. Thus based
on the EST snapshot survey of quasars Maoz and Rix [7]
have inferred the bound 0, & 0.7. Fukugita, Hogan,
and Peebles [8] have stated that this constraint may be
relaxed slightly if one considers the fact that at large dis-
tances typical of lensing events galaxies are observed to
have larger star formation rates than their nearby coun-
terparts and may also contain larger quantities of dust.
This may lead to some lensing events getting obscured
and hence the upper limit for 0, may rise if this is
taken into account. If is unclear how much the upper
limit will be pushed upwards but the fact remains that for
both the above reasons one would not like an extremely
large value of 0, even though a value of 0, 0.8
perhaps best meets all the observational constraints out-
lined above. Improved more accurate results and more
exhaustive analysis on all these fronts will clearly shed
further light on all these connected issues. let us now
turn out attention to a discussion of the possible physical
origin of such an 0

The value 0, 0.8 corresponds to an energy density
of the vacuum energy density of p„(10 47 GeV4). This
energy density is of course much lower than most familiar
energy scales in particle physics and the question natu-
rally arises as to the physical origin of this energy scale.
The smallness of this energy scale has been frequently
referred to as the cosmological constant problem.

However, we will argue in this paper that in fact a
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cosmological constant of the right magnitude required
to make the cosmological observations consistent with
each other may follow &om the dynamical evolution of
our universe. The basic physical picture which will allow
us to arrive at this conclusion is that the cosmological
constant might be interpreted as the vacuum energy of
the quantized fields.

This point has been made by many people and is dis-
cussed at length by Birell and Davies [9). Further, this
vacuum energy is not a static quantity but a function
of time. This idea too has been extensively explored
by a number of people including Peebles and Ratra [10],
Freese, Adams, Frieman, and Mottola [11], and Reuter
and Wetterich [12]. In fact, we know that there were a
number of phase transitions in the evolution of the uni-
verse.

Thus the history of the universe may be summarized
as periods of dramatic change characterized usually by
phase transitions with relatively quiet periods of relax-
ation between the phase transitions [6]. Indeed, since
the vacuuxn energy density changes as the (characterxs
tic energy scale)4 at a phase transition, in the absence of
fine tuning one expects that the vacuum energy density
at the end of a phase transition (characteristic energy
scale)4.

This idea has been spelt in detail in the paper by
Wilczek [13]and also by Reuter and Wetterich [12]. Thus
p„(10 GeV) at the grand unified symmetry break-
ing, p„(10 GeV) at the electroweak symmetry break-
ing, and p„(10 GeV) at the chiral symmetry break-
ing in @CD.

Huthermore, at the conclusion of a phase transition
the vacuum energy starts decaying more slowly to the en-
ergy scale characterized by next phase transition. This
point of view is implicit in the papers by Wilczek [13]
and has been explicitly stated by Reuter and Wetterich.
In fact, the physical mechanism for the decay of vacuum
energy is coupling to lighter fields. This mechanism is
briefly discussed by Freese, Adams, Frieman, and Mot-
tola [11],who do an extensive analysis of cosmology with
a decaying vacuum energy.

Thus the question of the magnitude of the cosmological
constant really becomes a question about energy scales.
Almost every paper on the subject of the cosmological
constant has had to struggle with the characteristic en-
ergy scale of 10 eV in the form p„(0.003 eV)4 in
various guises such as (10 GeV4) or A/MP2x 10

The fact that 0.003 eV is so much less than any charac-
teristic energy which is familiar to most of us has caused
a great deal of consternation. However, the energy scale
0.003 eV is certainly not a complete stranger to us. The
most natural low-energy scale that particle physics gives
us is the light neutrino masses that follow &om the seesaw
model of neutrino masses. In fact, the neutrino masses re-
quired to solve the solar neutrino problem by Mikheyev-
Smirnov-Wolfenstein (MSW) mechanism [14) imply neu-
trino masses 10 eV. This, of course, is a powerful
hint but is not yet a solution to the cosmological con-
stant problem.

In fact, the finite temperature behavior of the see-
saw model of neutrino masses has been studied in d.e-

tail by Holman and Singh [15]. The original motivation
for studying this model was to provide a concrete parti-
cle physics model of the late time phase transitions model
for structure formation. Our analysis showed that in fact
this model does exhibit a phase transition with a critical
temperature T, (few) m„.

III. LATE TIME PHASE TRANSITIONS
AND THE TIME EVOLUTION

OF THE HUBBLE PARAMETER

In this section we will discuss the cosmological moti-
vations and particle physics models for late time phase
transitions. Once we have a specific model we will study
the time evolution of GeMs and the scale factor in this
model. In particular, we will be interested in studying
the time evolution of the Hubble parameter and will see
that in this model the Hubble "constant" in fact has an
acceptable value at the present age of the universe.

Phase transitions that occur after the decoupling of
matter and radiation have been discussed in the litera-
ture as late time phase transitions (LTPT's). The orig-
ixial motivation for considering LTPT's [16—21,15] was
the need to reconcile the extreme isotropy of the cosmic
microwave background radiation (CMBR) [22] with the
existence of large scale structure [23] and also the exis-
tence of quasars at high redshifts [24].

Discussions of realistic particle physics models capa-
ble of generating LTPT's have been carried out by sev-
eral authors [21,20]. It has been pointed out that the
most natural class of models in which to realize the idea
of LTPT's are models of neutrino masses with pseudo
Nambu-Goldstone bosons (PNGB's). The reason for this
is that the mass scales associated with such models can
be related to the neutrino masses, while any tuning that
need. s to be done is protected &om radiative corrections
by the symmetry that gave rise to the Nambu-Goldstone
modes [25].

Holman and Singh [15] studied the finite temperature
behavior of the seesaw model of neutrino masses and
found phase transitions in this model which result in the
formation of topological defects. In fact, the critical tem-
perature in this model is naturally linked to the neutrino
masses.

The original motivation for studying the finite temper-
ature behavior of the seesaw model of neutrino masses
came &om a desire to find realistic particle physics mod-
els for late time phase transitions. It now appears that
this may also provide a physically appealing and obser-
vationally desirable magnitude for the cosmological con-
stant.

In particle physics one of the standard ways of generat-
ing neutrino masses has been the seesaw mechanism [26].
These models involve leptons and Higgs fields interacting
by a Yukawa-type interaction. We computed the finite
temperature effective potential of the Higgs fields in this
model. An examination of the manifold of degenerate
vacua at different temperatures allowed us to describe
the phase transition and the nature of the toplogical de-
fects formed.
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To investigate in detail the finite temperature behav-
ior of the seesaw model we selected a very specific and
extremely simplified version of the general seesaw model.
However, we expect some of the qualitative features dis-
played. by our specific simplified model to be at least as
rich as those present in more complicated models.

A. A particle physics model for LTPT

—&~„p ——y;II,N&4+ yN&N& o;~ + H.c., (4)

where a, i, j = 1, 2. The SUR(2) symmetry is imple-
mented as follows:

¹~~ U~N~)

We chose to study the two-family neutrino model. Be-
cause of the mass hierarchy and small neutrino mixings
[14] we hope to capture some of the essential physics
of the v -v~ system in this way. The two-family see-
saw model we consider requires two right-handed. neutri-
nos ¹&which transform as the fundamental of a global
SUR(2) symmetry. This symmetry is implemented in the
right-handed Majorana mass term by the introduction of
a Higgs field o,z, transforming as a symmetric rank-2
tensor under SUR(2) (both N& and o;i are singlets un-
der the standard model gauge group). The spontaneous
breaking of SU~(2) via the vacuum expectation value
(VEV) of cr gives rise to the large right-handed Majo-
rana masses required for the seesaw mechanism to work.
Also, the spontaneous breaking of SU~(2) to U(1) gives
rise to two Nambu-Goldstone bosons. The SUR(2) sym-
metry is explicitly broken in the Dirac sector of the neu-
trino mass matrix, since the standard lepton doublets LL,

and the Higgs doublet C' are singlets under SUR(2). It
is this explicit breaking that gives rise to the potential
for the Nambu-Goldstone modes via radiative corrections
due to fermion loops. Thus these modes become pseudo
Nambu-Goldstone bosons (PNGB's).

The relevant Yukawa couplings in the leptonic sector
are

o(x) = U(x){o)U (x)
= fU(&)U (&) (6)

where v& are the standard neutrinos, m; = y,v/~2,
M = yf/~2

Diagonalizing the neutrino mass matrix in the stan-
dard seesaw approximation (Im; I

« M) and performing
a chiral rotation to eliminate the p5 terms, we find that
the (; dependent light neutrino masses are given by

ml, [cos' 211&1 I (mll

+ '.)'+ '211&11(4.( ' — '.)

+2miimi2(i) ],

M2 [cos 211&1 I (m21 + m22)'

+ sin 211(l1(6(m2i —m~2) + 2m2im22(l) ], (8)

2m2—

where II(Il = v'(i+(s/f and j, = (,/g(,'+(,'. We
neglect the efFects of the heavier neutrinos since they will
be suppressed by powers of m, /M in the loops that will
generate the effective potential for the ( s.

For simplicity, to begin with we shall restrict ourselves
to the case where the Dirac mass matrix m; is propor-
tional to the identity: m; = mb, . We will consider
a more general case later. Using standard results on
the computation of the efFective potential due to fermion
loops [28] {we treat the ( s as classical background fields,
i.e. , we do not allow them to propagate in loops), we can
calculate the one-loop efFective potential for the (,. 's. The
renormalized potential can be expressed as

V,.„., ((„(,) = Vo+ m„'M'+ A„(M')'

with U(x) = exp[i((i' + (sos)/f] (note that U is sym-
metric).

After the Higgs doublet acquires its VEV, we have the
following mass terms for the neutrino fields:

—Z ...=m.,v~N„'+MNRUU N„+H.c.,

cr;~ m U,"o.
I,)(U )'. ,

where U' is an SU~(2) matrix. The first (Dirac) term
above transforms as an SUR(2) doublet, thus breaking
the symmetry explicitly.

We now choose the VEV of o to take the form [27]
(cr;~) = fb,~, thus breaking SU~(2) spontaneously down
to the U(1) generated by r2 (where ~; are the Pauli ma-
trices). We take f to be much larger than the doublet
expectation value v.

We can parametrize cr;~ so as to exhibit the Nambu-
Goldstone modes as

where p, is the subtraction point. Note that we can absorb
the efFects of A„by redefining p, . We will suppose that
this has been done in what follows. Further, the quantity
M2 is given by

4

, (cos' 211&11 + &s»n' 211(ll)

The finite temperature correction due to the two light
neutrinos is given by

T4 ~ (
b, Vz ((1,(s) = —4 dxx ln 1+ exp —

I

x +
0
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The above expression can be evaluated numerically for
any given choice of parameters, however for some pur-
poses it is useful to expand the above expression to get
analytic expressions. Performing the high temperature
expansion of the complete potential and discarding terms
of order (M2) s/T2 or higher we get

where n = 2p —1 —2lnvr —2.1303, m„ is a parameter
in the model, and p is the renormalization scale. M is
naturally of the neutrino mass scale in this model.

A study of the manifold of degenerate vacua of the ef-
fective potential at difFerent temperatures revealed phase
transitions in this model accompanied by the formation
of topological defects at a temperature of a few times the
relevant neutrino mass. Typically at higher temperatures
the manifold of degenerate vacua consisted of a set of dis-
connected points whereas at lower temperatures the man-
ifold was a set of connected circles. Thus domain walls
would form at higher temperature which would evolve
into cosmic strings at lower temperatures.

Since the critical temperature of the phase transition
T, ~ (few) m, let us quickly summarize the observa-
tional evidence for a small m . At neutrino detectors
around the worM, fewer electron neutrinos are received
&om the sun than predicted by the standard solar model.
An explanation of the deficiency is offered by the MSW
mechanism [14] which allows the v, produced in solar
nuclear reactions to change into v„. This phenomenon
of neutrino mixing requires massive neutrinos with the
masses for the different generations different &om each
other [14].

The model we considered earlier was an extremely sim-
ple one. Although it had two families of light neutri-
nos, there was only one single light neutrino mass. As
such this model was not compatible with the MSW ef-
fect. However, it is fairly straightforward to modify our
original model to make it compatible with the MSW ef-
fect as is shown in what follows.

To ensure that it is not possible to choose the weak
interaction eigenstates to coincide with the mass eigen-
states we must require the two neutrino mass scales to be
different. We can ensure neutrino mixing in our model
by demanding that m, be such that mqq g m22 and
mq2 ——0 = m2q. In this case, the effective potential
Vto~((i, (s) = 2[V(M~) + V(M2)] with V(M2) having
the same functional form as V(~2)(i = 1, 2) and M2
given by the expression

(c»'211&1]+&'»n'2II&ll).

Anther, if mqq « ~22 then Vq t((z, (s) = V(Mz)/2,
which is exactly half the finite temperature effective po-
tential we discussed earlier except the neutrino mass scale

is the heavier neutrino mass scale. Hence the discussion
on phase transitions and formation of topological defects
we carried out earlier goes through exactly except that
the critical temperature is determined by the mass scale
of the heavier of the two neutrinos.

In the complete picture of neutrino masses [14], the
neutrinos might have a mass hierarchy analogous to those
of other fermions. I"urthermore, we expect that the mix-
ing between the first and third generation might be par-
ticularly small. In this scheme, it is a good first approxi-
mation to consider two-family mixing. We are here par-
ticularly interested in the v, -v& mixing. This is also the
mixing to which the solar neutrino experiments are most
sensitive. A complete exploration of MS%' solutions to
the solar neutrino problem has recently been reported by
Shi, Schramm, and Bahcall [29]. We shall restrict our-
selves to the two-family mixing. The data seems to imply
a central value for the mass of the muon neutrino to be
a few meV [30].

We now turn to a quick discussion of the distortions
of the cosmic microwave background radiation (CMBR)
this model produces. The most significant microwave dis-
tortion comes &om collapsing domain wall bubbles. This
has been discussed and calculated by Turner, Watkins,
and Widrow (TWW) [31]. As pointed out by TWW this
anisotropy is most significant on 1 angular scales. The
temperature shift due to a photon traversing a collapsing
domain wall bubble is

LT
T

= 2.64 x 10 6 PAo /(10 MeV ) (14)

where h, A, P are dimensionless numerical constants
of order unity and o is the surface tension of the do-
main wall. The present measurements of the CMBR
anisotropy then imply [32] that o. & 0.5 MeV .

An estimate of cr in terms of the quantities m„and f
introduced in our model can be obtained [33]. [To make
contact with the work of Widrow cited above please note
that his Am4 = m(v„) and m = f in our notation. ] Thus
the constraint on o then implies that f & 10 GeV. Our
model is clearly an effective theory with f being some
higher symmetry breaking scale on which it is tough to
get an experimental handle. However, the constraint de-
rived above is in fact natural in the context of the seesaw
model of neutrino masses embedded in grand unified the-
ories as discussed by Mohapatra and Parida (MP) [34]
and also by Deshpande, Keith, and Pal (DKP) [35].

B. Time evolution in the LTPT model

Now that we know the potential in which the fields

(q and (s evolve, we can write down the coupled set of
evolution equations which describe the time evolution of
the fields and the scale factor of the universe. Once again
we will follow the general techniques described in Kolb
and Turner [6]. The time evolution of the scale factor is
given by equations like (2), (3), and (4). It is perhaps
worth noting that the expression for the pressure and
energy density of the fields is given by
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(2 + (2
Cg = '

2
' + V(6 &s) (15)

(2 + (2
pg = —V((i, (s).

2

The time evolution of the fields (i and (s in a Friedman-
Robertson-Walker universe is given by

=0,

R(t) BV'+'R()'+ ag
='

These coupled equations describing the time evolution
can be solved numerically. Here we are interested in the
time evolution at very recent epochs. Clearly, for ex-
tremely recent epochs the high temperature expansion is
inappropriate. However, the zero temperature potential
which we have computed and described is a good approx-
imation for studying the time evolution at recent epochs.
Thus we will use the zero temperature potential to do the
time evolution in what follows. In fact as it turns out the
time evolution of the scale factor is fairly insensitive to
the initial conditions on the fields but is determined pri-
marily by the order of magnitude of the energy density
in the fields. In fact we evolved the system with a variety
of initial conditions on the fields and observed an almost
identical time evolution for the scale factor.

We have investigated the behavior of the system for a
variety of choice of parameters entering into the potential
with the typical order of magnitude for the parameters
m„m and Vo m . Since it is the fact that the
vacuum energy density in our model is m that plays
a crucial role in the time evolution in our model, let us
reemphasize why this is natural in the context of our
model.

Recall that the original —Z~„k contained two distinct
couplings, y; and y. In particular, if we set y; = 0 in the
Lagrangian then the symmetry of the Lagrangian was en-
hanced, the light neutrino masses would have been iden-
tically zero, and the potential for the (; fields would have
also been identically zero. If y, g 0 then the SUR(2)
symmetry is explicitly broken, the light neutrino fields
pick up their masses as outlined earlier and also the ( s
develop a nontrivial potential. Furthermore, since setting

y, = 0 enhances the symmetry of the Lagrangian, there
is a symmetry which protects the small parameters in
this model. In the model we are studying the coupling of
the light neutrino fields to the ( fields is identically zero
if y; = 0 and arises at the second order in perturbation
theory in the seesaw diagonalization if y; g 0. It is the
coupling of the neutrino fields to the f fields that is re-
sponsible for a nonzero efFective potential for the ( fields,
hence there is a prefactor to the entire effective potential
(including the vacuum energy part) which is proportional
to the appropriate power of y, . The observable quan-
tity that y; corresponds to is m„as given in Sec. III A.
Since the effective potential has four mass dimensions,
the dimensional prefactor multiplying the potential ends
up being m„. Thus it is natural that the contribution
to the vacuum energy density due to the fields appearing
in the seesaw model of neutrino masses presented here
ends up being m„. One, of course, has to worry about
the contribution of other heavier fields to the vacuum
energy density in the cosmological context. The under-
lying picture being used is that discussed by Wilczek [13],
Reuter and Wetterich [12], and Freese, Adams, Frieman,
and Mottola [11].They argue that the cosmological con-
stant will decay during the evolution of the universe as
the vacuum energy of heavier fields dissipates due to their
coupling to lighter fields. One would then expect the vac-
uum energy density at late times to be dominated by the
contribution of the lightest most weakly coupled fields
such as those appearing in the seesaw model of neutrino
masses discussed in this paper. An in-depth analysis of
the details of this mechanism will be the subject of a later
work.

The time evolution of the system can be summarized
as follows. The fields evolved to the minimum of their
potential on a time scale which is short compared to the
typical Hubble time scale in the problem. The evolution
of the scale factor follows the normal matter dominated
behavior for a while until the vacuum energy starts play-
ing an important role. After this time the vacuum energy
starts driving the time evolution of the scale factor. Thus
it is the value of the vacuum energy density that deter-
mines the asymptotic time evolution of the system. For
our model with the choice of parameters stated and ra-
tionalized above we have the final vacuum energy density
= m'. .

The observationally important plot is the plot of the
Hubble parameter as function of time. This is displayed
in Fig. 1. As you can see the Hubble parameter assumes

R' [t) /R [t] (in units of 75 km/ (sec Hpc) )

10.

FIG. 1. Time evolution of the Hubble pa-
raineter in the LTPT model: R(t)iR(t) vs
time.

0.5 1.5
Time (in units 13 Gyr)

2
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a constant value after the vacuum energy starts playing
the dominant role in the evolution of the scale factor.

In fact, in retrospect one can understand the time evo-
lution of the coupled difFerential equations simply by not-
ing the order of magnitude of the quantities involved in
the evolution equations.

I et us introduce the following dimensionless physical
quantities, w = Ht, )7; = (;/f, and V = V/m„W. e' ll
use the following physical quantities to make the dimen-
sionless quantities of order 1: H = 75h km sec Mpc
f = 10 fi2 GeV, and m„= 2.5m' x 10 eV.

Here are some of the quantities of interest and their
magnitudes. First, the expressions for the pressure den-
sity and energy density of the 6elds is given below:

„~2f,', &dg, ) '
&dg. 'I'

m& )
d'r j ) dT )

Note that it is the fact that the mass of the neutrinos
is the correct order of magnitude which allowed the age
of the universe to become compatible with the Hubble
constant observed today.

The picture presented in this article is of a vacuum
energy that changes as a function of time due to the
coupling of the 6elds responsible for the vacuum energy
to the other fields. One may worry therefore that the
vacuum energy may disappear because of the coupling of
the $ fields to other fields. However, because ( can only
decay into the lighter neutrinos it is coupled to, the time
scale on which this vacuum energy will decay is much
larger than the present age of the universe. This can be
seen by calculating the decay width of the (, I') .

This decay width of the ( particles arises because of the
coupling of the $ to the lighter ferniions with coupling y
is given by [6]

—&(ni, ns)

2g mg
8~ ' (24)

where

+v(ni, ns) I

i4h, 'f,', &dg, &)

'
(dg, l

'

&" ).
(20)

Therefore,

02V
m$

4
2 m

m(

(25)

(26)
Since we have scaled quantities so that mg, 6, g, , w,

and V are all of order 1 it follows that

sg —- V(6 6) (21)

pt' —V((i, (s) .

Thus, in fact, for all practical purposes, we have

(22)

Pg = —Pg (23)

1 dR(~) k

R(7.) d7. R2 (7 )H2

= 0 (~o) + B„(~o)
(R(~,) )

+ —40x10 4 i
+ i(

,y'f2, (dq, l (d~. l
3 mg ) d7 ) ) d'r

4
+0.85 v(g„gs)).

which is the equation of state for vacuum energy and
hence demonstrates that this solution is very close in
spirit to the cosmological constant solution for the age
vs Hubble constant problem. What we have achieved is
to provide a physical basis for the correct order of mag-
nitude for this effective cosmological constant. This can
be seen clearly by making the evolution equation for the
scale factor dimensionless too:

Thus the time scale on which the energy in the ( fields is
converted into the energy of v's is given by

8'
I'~

g mvmv
(27)
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