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Scalar electrodynamics and primordial magnetic Belds
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A primordial magnetic Beld, may be generated during an infIationary period if conformal invari-

ance is broken. We reexamine and generalize previous results about the magnetic field produced
by couplings of the form R F„F" . We show that the amplitude of the magnetic Beld depends
strongly on n. For adequate values of n the Geld produced can serve as a seed for galactic magnetic
Belds. We also compute the efFective interaction between the electromagnetic field and the geometry
in the context of scalar +ED (with and without classical conformal invariance). In both cases, the
amplitude of the magnetic field is too small to be of astrophysical interest.

PACS number(s): 95.85.Sz, 04.50.+h, 12.20.—m, 98.80.Cq

I. INTRODUCTION

Magnetic fields play an important role in a variety of
astrophysical situations. There is enough evidence for
the existence of intragalactic magnetic fields [1,2], with
an amplitude of 10 G and uniform on a scale of 10 kpc.
It is not completely clear how these magnetic fields were
generated. A plausible explanation is that some kind of
dynamo efFect [3] could have amplified a preexistent mag-
netic field. But then the question is about the mechanism
that produced this "seed" field.

An attractive suggestion is that it has a primordial
origin and could have been produced in the early universe
during an inflationary period [4—6]. Denoting by r the
energy density of the magnetic field relative to the energy
density of the cosmic microwave background radiation,
r = ~~, a pregalactic magnetic field caracterized by r

P~
10 is needed in order to explain the present value of
r 1.

As pointed out by Turner and Widrow [4], it is not
possible to produce the required seed field with the usual
Maxwell Lagrangian. The reason is conformal invari-
ance. Ind. eed, in a conformally invariant theory B de-
creases as —,, where a is the scale factor of the Robertson-
Walker metric. During (exponential) inflation, the total
energy density in the universe is constant, and the mag-
netic field energy density is strongly suppressed, giving
() ) 10—104( 1 MPc)4

Conformal invariance can be broken in difFerent ways.
From a phenomenological point of view, one can consider
[4] couplings of the form BA„A". These types of interac-
tion terms give rise to the required seed, but, not being
gauge invariant, are theoretically unappealing. In string-
inspired models, conformal invariance is broken by the
coupling between the electromagnetic field and the dila-
ton. This coupling may produce the seed field [5]. Fi-

nally, one can consider gauge-invariant couplings of the
2

form —2RE„E"".However, the seed field produced is
extremely small [4].

In this paper we will reexamine the generation of
primordial magnetic field due to the above-mentioned
gauge-invariant couplings. These terms appear due to
quantum efFects when taking into account one loop cor-
rections for QED in curved spaces [7] (throughout the
paper we will work in the context of scalar QED). In an
expansion in powers of —,[Schwinger-DeWitt expansion
(SDWE [8])], one expects the efFective action to con-
tain couplings of the form 2„F„„F~".But as already
mentioned in Ref. [4], during the inflationary period one
typically has 'R )) m . Therefore, there is no reason to
keep the lowest order contribution n = 1, and it is of in-
terest to investigate more general couplings (these kinds
of couplings also appear in the context of string theory
[9])

In the next section we will compute the primor-
dial magnetic field produced by couplings of the form

2„E»E"". For n = 1, our results are considerably
smaller than those of Ref. [4]. The discrepancy is due to
an overestimation of the value of r at first horizon cross-
ing. However, we will show that the amplitude of the
magnetic field d.epends dramatically on n. In particular,
for adequate values of n, it is possible to generate a suf-
ficiently large seed field to explain the present values of
the galactic field through a dynamo mechanism.

In this situation, the obvious question is about the ef-
fective Lagrangian in the opposite regime X. )) m . We
address this issue in Sec. III. Using an improved version
of the SDWE [10], we will show that, in the leading-

We denote by X, any component of the Riemann tensor.
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logarithm approximation, the effective coupling is of the
form F~„F" ln —,. We will also compute the amplitude
of the magnetic field produced by this coupling. Unfor-
tunately, since the logarithm is a slowly varying function,
this amplitude will be extremely small.

In Sec. IV we discuss the case of /ED with conformally
invariant quantum fields [6]. Again, we will find that
the value of r is too small to be the seed of the galactic
dynamo.

Throughout the paper we will use units in which 5 =
c= l.

After absorbing the poles, the effective Lagrangian
contains the usual Maxwell term plus the finite correc-
tions

4 7D 2
m' m2

apm ln + ai m ln + a2ln
p p P

I'(k —2) . (4)
k&3

From the above equations we see that the first nontrivial
interactions between the gravitational and electromag-
netic fields are contained in a3 and read

II. PRIMORDIAL FIELDS AND THE
SCHWINGER-DeWITT EXPANSION BF„F",R„p F" F~, B„„F"~Fp . (5)

The Lagrangian for scalar @EDon curved backgrounds
is given by

r'm)
Z,g ————F„vF"v +- a-2; m

4 ""
2 (4m. )"~2 ( p )

(. dbxI'( j ——
~2) (2)

where the a~(x) are the SDW coeKcients, and d is the
spacetime dimension. The first three terms are divergent
in the limit d —+ 4, and the poles must be absorbed into
the bare constants of the classical Lagrangian and into a
redefinition of the electromagnetic Geld.

The first SDW coeKcients for a charged scalar field are
given by [12]

ap ——1,

6)
a2= (R„„pR""~ —R„„R")l80

F„F~— —D„QD"P* —m PP* —(RPP*, (1)4 Pv

where D& ——0„—ieA„ is the covariant derivative for the
scalar Geld. The theory is conformally invariant only for
massless and conformally coupled (( = s) fields.

One can compute an effective Lagrangian for the elec-
tromagnetic Geld by integrating out the quantum scalar
field. Using dimensional regularization, the effective La-
grangian can be expanded as [11]

l:,~= F„„F""—1—+b~
4 " gm') (6)

The classical equations of motion are given by

V" Fv 1+ b, =0.fR)"
(m') (7)

In the particular case of a spatially Hat Robertson-Walker
metric

ds = a (g)(—dq + de + dy +dz )

they read

0" F„ l+ b =0.
qm'

Obviously, if R is constant (exponential inflation), these
equations do not differ from Maxwell equations. There-
fore, nontrivial effects appear only for extended infIation.

We will work in the radiation gauge Ao ——P,. i O, A, =
0. The Fourier expansion of the field is

In the same fashion, the SDW coefIicient a +2 con-
tains interactions that can be (schematically) written as
(V')" R,"

m2A

In what follows, we will analyze the magnetic field pro-
duced by a typical term in the SDWE. For simplicity we
consider the effective Lagrangian

1( 1 e'
R + —

~ ( —— R — E„„F"", —
2i 6) 6i 5 12 +H.c. (10)
e 2

FPv)P FPv F )P
45 ' 180

2 e
(CIF „)E""+ E„FPF"—

30 Pv 30 Pv P

2 2

+—B F""F~ ——B F"PF
60 " 90

2 e+ RF „F""— (R—F „F""+—
72 "" 12

where we omitted the purely gravitational terms in a3.

(Ay+k Ag) 1+ b
(R)"
qm'

QYL —1A
(m2)"

= 0, (11)

where tu = k, a~"I(k), and at'"I(k) are the usual an-
nihilation and creation operators. The vectors s '"I(k)
satisfy s '"I(k) . k = 0. The classical equation for the
Fourier modes I eads
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where the overdots denote derivatives with respect to the
conformal time g.

During the inflationary period, B )) m and the
quantum correction dominates over the Maxwell La-
grangian. Indeed, from Einstein equations we have B
pt~t/m~p& where pt~t is the total energy density. Conse-
quently, the term b(R/m ) I"„ I"I'" dominates over the
usual I'„ I'" as long as pt t )) mp&m b /". This gives

pt t, )) b ~ (10 GeV) for m = m„ the electron mass.
In this situation, Eq. (11) reads

Al, (ii) = (—ki))"
n

,(„+.). ( mz T
(6n(2n —1))

H(') (—k77),
k~ —if

as a(t) = (&) where n = 2/3(1 + p) ) 1 and T is
chosen so that at g ~ ——1. This implies that, in conformal
time, R/R = 2/(n —1)i). For this evolution, the properly
normalized solution of Eq. (12) is given by

A~+ k2Aq+ n —Aq ——0 . (i2)

Before proceeding, we would like to stress an im-
portant point related to the normalization of the
Fourier modes Ay. As our efFective Lagrangian is now
—

4 (R/m~)" I'„„I""", the canonical commutation rela-
tions between the coordinates A, and the conjugate mo-
menta m' = A'b (—,) read

where v = —— and H„(z) is a Hankel function. In
order to select a unique solution we have also imposed
that Ag(i)) e '"" as g ~ —oo. This is the natural
choice for the vacuum state in the in region.

First horizon crossing takes place when —kg
2mn/(n —1). Inserting this value of g in Eqs. (17) and
(18) one finds the value of p~ at that time. The value of
pt t(i)) can be obtained from Einstein equations at first
horizon crossing. It is given by

A; (i), x), A, (i), x' ) b
f R 5"
pm~ p

2 2 cx 2

(4~1 --' (3QI a —1 f A l a —1

T 2.

=i, ~[b; — * ~
~

b (z —x') . (l3)
. ( Bc),1

Ag A~ —AI, A~ ——
2 (8 'L

(i4)

This will be important in what follows.
Consider the quantity

The usual commutation relations between the creation
and annihilation operators are compatible with the above
commutator only if

AI, + AI, ——0,
rl

(20)

where s = —6(1+p)/(1+ 3p).
From here, the analysis follows closely that of Ref. [4].

Equation (20) admits a constant solution, which gives an
uninteresting p~ a . It also has the solution

The value of r at first horizon crossing, denoted by r„ is
therefore given by ro ——(p~/pt t) ~s„q „„;„s.After first
horizon crossing the quantum fluctuations are assumed
to become classical perturbations. For kg )) 1 the term
k Aq in Eq. (12) can be neglected. The tiine evolution
of the Fourier modes is approximately given by

where angular brackets denote the vacuum expectation
value. Although this is not the magnetic Geld energy
density associated with the effective Lagrangian (6), it
becomes the energy density when (—,) «1. As a con-
sequence, we can analyze the time evolution of P~ in or-

ptot
der to obtain the value of r at a time when the Maxwell
Lagrangian dominates. For simplicity, we will refer to p~
as the magnetic energy density.

In terms of the Fourier modes we have

2 (16)

The energy density in the kth mode of the magnetic Geld,
defined as p&(k) = kdp&/dk, is given by

p~(k) = k iAI, (g) i
.

During extended inflation we can think of the Universe
as filled with a perfect fluid having an equation of state
p = pp, with —1 & p & —1/3. The scale factor evolves

[(6n+1)+(6n+3)p]
&+3& ( )

~~ [(6m+1)+(sn+s)p] (21)

The solution grows with time for p ) — + . In
this situation, and as long as B )) m, r evolves like

When B m, or when con-
ductivity effects during reheating [4] become dominant,

1—39 3 1+9
p~ a and r oc pt ~ . Assuming a very
rapid reheating, the Universe enters the radiation domi-
nated period, pt t equals p~, and r becomes a constant.
In order to calculate this Gnal value of r we have to dis-
tinguish between two possibilities. The Grst one corre-
sponds to the case in which the growing solution disap-
pears before the plasma eKects become dominant. This
means that M ( b mp] m2, where M is the total
energy density at the end of the inflationary period, and

1
b mp& m is the total energy density at the instant in
which the B F term ceases to dominate over the usual
Maxwell term. In this case, and using the relations be-
twen r and pq q stated above, we get that the value of
r at the beginning of the radiation dominated period is
given by
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2n+2(n+1) ~

pt 4(k)

(6 ~ maim )
1 —sp

l S(1+~)M4
x

i

I 6 ~ mpim2)
(22)

The other possibility is that the conductivity becomes
important before the growing solution disappears, i.e. ,

during all the period that goes from first horizon crossing
to the end of in8ation, and therefore the final value of r
reads now

—0.5
—0.6
—0.7
—0.8
—0.9

n= 1

1p
—84

10

10—116

(1p
—141)

(1p
—184)

n=2
10—67

1p
—63

1p
—96

10
—146

(1p
—222)

r1 Mpc
n=3
10-"
1p 37

1p 77

10—147

1p
—253

n=4
10-"
10-"
1P

—56

1p
—148

1p
—269

n=5
1p—19

1p17

1p
—36

10—149

10—285

TABLE I. r~ i M~, as a function of p and n. The numbers in
parentheses correspond to situations where there is no grow-
ing solution. The value of r for n = 5 and p = —0.6 cannot
be trusted because it does not satisfy the condition r (( 1.

2n+2(n+1) p

(pt.t(k) lr=r,
E M

For b 1 and m = m, we found that there is a value of
p between —0.7 and —0.6 that separates the two cases.
The results for difI'erent values of p, A = 1 Mpc, and
m = m are summarized. in Table I.

These results depend strongly on n. In particular,
there are values of p and n such that, after first horizon
crossing, a large amplification takes place, and produces
final values of r large enough to serve as the seed mag-
netic field. This is the main result of this section: there
is no need to break gauge invariance in order to produce
an astrophysically interesting seed field.

Finally, we would like to compare our results for n = 1
with those of Ref. [4]. Our values for r are smaller by
several orders of magnitude [coinpare our r(p = —0.6)
10 with the corresponding result r ~ 10 in Ref.
[4]]. It is easy to find the origin of the discrepancy. The
calculation in Ref. [4] begins after first horizon crossing
and assumes that the initial value of p~ is H . This is
the value of the energy density for a massless minimally
coupled scalar field. Using this value the resulting r,
varies between 10 ss and 10 (for —0.9 & p ( —0.5).
Here we computed p~~fip8t c,~88i s from first principles,
and found much smaller values (r, varies between 10
and 10 for the same values of p). The physical origin
of the discrepancy is the normalization condition Eq. 14.

new SDW coefficients (denoted here by bz) do not con-
tain powers of the scalar curvature R. The first b~ are
given by

bp ——1,
bi ——0,
b2 = (R„„PR""~ —R„„R"")+ -(( ——) R1 1 1

2

12

—
—:0( F~-) F""+::F~-F"'+~—"

(24)

1 e

4 (967r2) " E@2)
(25)

where we did not include the purely gravitational terms
in b3. Note that bq and b2 do not contain the terms
proportional to R and R that are present in aq and a2
[see Eq. (3)]. The same thing happens for all bz.

The improved expansion can be obtained from the
usual SDWE [Eq. (2)] substituting m2 by m2 and the
coefficients a2 by the b~. In the limit (( —s)R )) m, the
coefBcient b2 ind. uces a coupling of the form

III. IMPROVING THE SDWE —KILLING THE
MAGNETIC FIELI3

Under the assumption ln —, )) 1, this term dominates
and the effective Lagrangian reduces to

From a phenomenological point of view, the couplings
discussed in the previous section may help to solve the
problem of the generation of a primordial field without
breaking gauge invariance. Do they have a theoretical
motivation? In order to answer this question, we need
to compute the efFective action for the electromagnetic
field in the limit R )& m2. To do this, we will use the
improved version of the SDWE developed by Parker and
Toins in Ref. [10].

A partial resummation of the SDWE can be achieved
by doing the expansion in inverse powers of m = m, +
(( —s)R instead of inverse powers of m2. In this case,
as conjectured in Ref. [10] and proved in Ref. [13], the

1 „„( e Rl
Z,ir = F„F""

/

1 ——— ln —
/

+
4 " ( 96~2 pzp

(26)

where p is an arbitrary scale. It is worth noting that
this result is also valid beyond one loop, in the leading-
logarithm approximation. A similar efI'ective Lagrangian
has been proposed for non-Abelian gauge theories in Ref.
[14].

There is a simple physical interpretation of the efI'ective
Lagrangian given by Eq. (26). If we couple Z,g to an
external current, Z,~ —+ 8 g + eJ~A~, after a rescaling
of A~ we obtain the usual Maxwell Lagrangian with a
running (curvature-dependent) electric charge
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e'(R) = e2 (p2)
(27)

This is the scale dependence dictated by the renormal-
ization group. This interpretation also makes explicit
the fact that 8 g is valid only under the assumption

96, ln —,&( 1. Otherwise, an analysis of strongly cou-

pled QED is needed [strictly speaking, for such large val-
ues of the curvature one should replace QED by a grand
unified theory (GUT)].

We will perform the same calculation we did in the
previous section, that is, calculate the value of r for a
scale of 1 Mpc. Typically, this scale crosses outside the
horizon not long after curvature falls below the GUT
scale (10 GeV ). Thus, we cannot use the effective La-
grangian (26) to calculate the initial condition, so we will
consider rp as given and study its evolution after Grst
horizon crossing.

The equation for Fourier modes is

AI,
AI, +A: AI, — — ——0.

96m2 p2

(28)

~ ~ e 82

AL- —AI, =O.
96Vr2 B (29)

This equation has the same form of Eq. (20), if we make
2

the identification n ~ —96, = x. The solutions are the
same as those of Eq. (20), that is, A~ = const, which
gives p~ oc a, and

-'[(6 +~)+(6 +3)~1
I - ka) (3o)

Using that x 10 we can write Eq. (30) as

)
-' [i+a&l (31)

Since 1+ 3p & 0, this means that, for this solution, p~
decreases more rapidly than a . So we can consider only
the contribution of the constant solution and conclude
that for the effective Lagrangian given by Eq. (26), p~

(~—») /3(~+~)decreases as a, and then r oc pt t
The Gnal value of r will be

(1-»)
( M4 ) 3(1+g)

F Pp
k)o3-t (&) )

(32)

We will take p = BRH, the value of the scalar curvature
at the end of reheating, and we will consider that e, the
electric charge when B = BRH, is of the same order of
magnitude of its value today. Then we can assure that,

2
during most of inQation, ln & &) 1 and 96, ln ~ Q(

1, the conditions needed for the validity of the leading-
logarithm approximation. In this situation, for modes
outside the horizon, we can approximate Eq. (28) by

SDWE 'R"F generate large amplitudes for the magnetic
Geld, once these terms are resummed they generate only
a logarithmic interaction ln R F . This interaction pro-
duces a discouragingly small seed field.

IV. TRACE ANOMALY AND PRIMORDIAL
FIELDS

We end the paper with a comment about the confor-
mally invariant case m2 = 0, ( = 1/6. Of course in this
situation neither the SDWE nor its improved version are
useful to compute the effective Lagrangian. However, it
is easy to Gnd a closed expression for it.

It is well known that conformal invariance is broken by
quantum effects. The (anomalous) trace of the energy-
momentum tensor is given by the second SDW coefFicient

p, 2

16~2

2

F„„F"
192vr2

(33)

where the ellipsis denotes purely gravitational terms pro-
portional to 'R and 'V'V"R.

In a Robertson-Walker space-time, the above trace
anomaly can be derived &om the effective Lagrangian

1 „„( a)I'„„F""—
[

—1+ r 1 —n
f
+ (34)

where K = 48, and ao is a reference value for the scale
factor (for example the value of a after inilation). Here
the ellipsis denotes nonlocal terms independent of the
scale factor.

As before, Eq. (34) can be interpreted as the usual
Maxwell Lagrangian with a scale-dependent electric
charge:

e ao' ( ) = (1+.I. -
)

(35)

1 „ fa)
4 "" (ao) (36)

The effective Lagrangian is valid as long as Kln —(( 1.
Under this assumption, one can estimate the magnetic

field generated by the conformal anomaly. The resulting
value for r is again extremely small, of order 10 for

1 Mpc.
It has been argued [6] that this could be an efficient

mechanism if a large number of massless (m (( 0) fields
are present during infiation, so that K ~ NK O(1).
Using the approximation

For p ( —0.5, the amplification factor that accompanies
r p is smaller than 10 . Since the initial condition is
typically much less than 1, the value of r is in all cases
very far from the required value 10

To conclude, although the higher order terms in the

There is a sign difFerence between the logarithmic term of
the efFective Lagrangian in Ref. [15] and that of Ref. [6]. We
agree with the result of Ref. [15].
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it is possible to show [6j that the previous result for r is

multiplied by a huge amplification factor A = ( & )
10 ~" for ~ = 10 2 CeV and A = 1 Mpc.

However, during that period ln —varies between —60
and 0 and the approximation (36) breaks down for Nv ~
1. In this situation, even the effective Lagrangian (34) is
inadequate, since at some point 1+Ne ln —vanishes and
one reaches the Landau singularity. Therefore, the con-
clusion is that, if Ne is sufficiently small in order to as-
sure that Nr ln —« 1 during the period of interest, the

ampliGcation factor is very small, A 1+NK ln
&

. The
amplitude of the magnetic Geld generated is too small

to be of astrophysical interest. On the other hand, if
Nv. 1, the Gnal result for r would depend on the physics
of @ED at strong coupling.
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