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Gluon fragmentation into spin-triplet 8-wave quarkonium
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The leading color-singlet contribution to the fragmentation function for a gluon to split into spin-
triplet S-wave quarkonium is presented. In the case of charmonium, we find that this color-singlet
term is always negligible compared to the leading color-octet contribution.
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The dominant mechanism for the production of heavy
quarkonium at suKciently large transverse momentum is
parton fragmentation [1]. In Ref. [1], we calculated the
fragmentation functions for gluons to split into S-wave
quarkonium states to leading order in o., and to lead-
ing order in the nonrelativistic expansion. The &agmen-
tation function for the So state was given in analytic
form. The fragmentation function for the S~ state was
reduced to a two-dimensional integral, which was evalu-
ated numerically. The integrand was given in the preprint
version of Ref. [1], but it was too lengthy to be included
in the published version. In this work, we present the
detailed formula for this term in the fragmentation func-
tion. We also discuss the relative importance of color-
singlet and color-octet terms in the fragmentation func-
tion.

A rigorous theory of the inclusive production of heavy
quarkonium has been developed recently by Bodwin,
Braaten, and Lepage [2]. This approach is based on the
use of nonrelativistic QCD (NRQCD) to factor the pro-
duction rate into short-distance coefBcients that can be
computed. in perturbation theory and long-distance fac-
tors that are expressed as NRQCD matrix elements. Us-
ing this formalism, the fragmentation function for a gluon
to split into a quarkonium state X with longitudinal mo-
mentum fraction z can be written as

Da x(z, p) = ) d„(z, p,)(O„),

where Ox are local four-fermion operators in NRQCD.
The short-distance coefficients d (z, p) are independent
of the quarkonium state X. For a &agmentation scale

p of order of the heavy quark mass mg, they can be
computed using perturbative theory in n, (2m'). The
dependence on the quarkonium state X appears in the
long-distance factors (Ox). The relative magnitude of
the various matrix elements for a given state X can be es-
timated by how they scale with mq and with the typical
relative velocity v of the heavy quark inside the quarko-
nium. Thus, the factorization formula (1) for the gluon
&agmentation function is a double expansion in 0,, and

v. To determine the relative importance of the terms in
this formula, one should take into account both the scal-
ing in v of the matrix elements and the order in o., of
their coeKcients.

We now consider the fragmentation function for a Sq
state which we denote by V. In the color-singlet model
for quarkonium production [3], only a single term in the
expansion (1) for the fragmentation function is retained.
In the notation of Ref. [2], the matrix element in this
term is (Oz ( Sq)). This matrix element is proportional
to the probability for the formation of the state V from a
pointlike QQ pair in a color-singlet sSq state. The lead-

3
ing contribution to its short-distance coefficient dz

' (z)
arises from the parton process g* -+ QQgg and is of or-
der n, . Using the velocity-scaling rules of [2], the matrix
element (O~ ( Sq)) is of order v, so the contribution to
the gluon fragmentation function is of order Q.,v . The
factorization approach reduces to the color-singlet model
in the limit v ~ 0, since all other matrix elements in the
expansion (1) are higher order in v .

The charmonium and bottomonium systems are prob-
ably not sufBciently nonrelativistic that matrix elements
that are suppressed by powers of v can be completely
neglected. In the case of a Sq state, there is one matrix
element that is suppressed by a single power of v relative
to (O~ (sSq)), but it also has a short-distance coefficient
d(z) of order n, . There are several "color-octet" matrix
elements that are suppressed by two powers of v, includ-
ing (Os ( So)), (Os ( Sq)), and (Os ( P~)). Of particular
importance in gluon fragmentation is the matrix element
(Os ( Sq)), because it has a short-distance coeKcient of
order n, due to the parton process g' -+ QQ. All other
matrix elements that are suppressed by v have short-
distance coeFicients of order n, or higher. The matrix
element (Os ( Sq)) is proportional to the probability for
the formation of the state U (plus other particles) from a
pointlike QQ pair in a color-octet Sq state. The corre-
sponding contribution to the fragmentation function is of
order 0;,v, compared to o.,v for the leading color-singlet
term. The two fewer powers of o., can compensate for the
suppression of the matrix element by v . Keeping only
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these two terms, the gluon &agmentation function for the
S~ state at the initial scale 2m' can be written as

Ds~v. (z, 2m') = d~
' (z, 2m')(O~ ( Sq))

+d,' "'(z, 2m~)(O~('S, )) . (2)

To leading order in a„ the coeIIIicient of the color-
singlet matrix element in (2) can be deduced &om the
Feynman amplitude for g' ~ QQgg, where the QQ pair
is produced in a color-singlet Sq state with vanishing
relative momentum. The square of the amplitude for
this process can be extracted from a calculation of the

I

matrix element for e+e + @gg [4]. There are several
typographical errors that must be corrected in Eq. (5) of
Ref .[4]. In the sixth term on the right side, the factor
(1 —p —xz) should be (1 —p, —xz) . In the last term,
(1—p —xq) should be (1—p, —xj ), (1—p —xz) should
be (1 —p —xz), (K L ) should be (K L ), and
the overall sign of this last term should be changed from
minus to plus. Having made these corrections, one can
reproduce previous results for the energy distribution for
p* m egg [5]. The fragmentation function for the sSq
state can be calculated by the same method used for the
~So state in Ref. [1]. The calculation is rather involved
and we present only the final result:

d~
' (z, 2m') = 5 3 1

s n, (2m') dr dy5184vr m~3 („ (1 —y) '(y —r)'(y' —r) '

2(y —r) Qy' —r y —r —Qy —r )
(3)

The integration variables are r = 4m&/s and y = p q/s, where p and q are the four-momenta of the quarkonium and
the fragmenting gluon and s = qz. The functions f; and g, are

fo(r, y) =

fi(r, y) =

f~(r, y) =

go(r, y) =

, (r, y) =

gz(r, y) =

(5)

(1+r)(3+ 12r + 13r ) —16r (1+r)(1+ 3r)y —2r(3 —9r —21r + 7r )y + 8r(4+ 3r + 3r )y
4r(9 —3r——4r )y —16(1+3r + 3r )y + 8(6+ 7r)y —32y (4)—2r(1 + 5r + 19r + 7r )y + 96r (1 + r)y + 8(1 —5r —22r —2r )y

+16r(7+ 3r)y —8(5 + 7r)y + 32y
r(1 + 5r + 19r + 7r ) —48r (1+ r)y —4(1 —5r —22r —2r )y

8r(7 + 3r)y—' + 4(5 + 7r)y' —16y',
(1 —r)(3 + 24r + 13r ) —4r (7 —3r —12r )y —2r (17 + 22r —7r )y

+4r (13+5r —6r )y —8r(1+ 2r + 5r + 2r )y —8r(3 —llr —6r )y + 8(1 —2r —5r )y—2r (1+ r)(1 —r)(1+ 7r)y + 8r (1+3r)(1 —4r)y + 4r(1+ 10r + 57r + 4r )y
—8r(1+ 29r + 6r )y —8(1 —8r —5r )y, (8)
r (1 + r) (1 —r) (1 + 7r) —4r (1 + 3r) (1 —4r) y —2r(1 + 10r + 57r + 4r )y
+4r(1+ 29r + 6r )y + 4(1 —8r —5r )y . (9)

The integrals over r and y in (3) must be evaluated nu-
merically to obtain the &agmentation function at the
energy scale p = 2m'. The fragmentation function at
higher energy scales p is then obtained by Altarelli-Parisi
evolution.

The short-distance coeKcient of the color-octet matrix
element in (2) can be calculated to leading order in n,
from the Feynman amplitude for g* ~ QQ. The result
is [6]

(10)

The radiative correction of order o., has also been calcu-
lated recently by Ma [7).

The relative importance of the color-singlet and color-
octet contributions to the fragmentation functions can
be determined by integrating the initial fragmentation
function (2) over z to get the fragmentation probability
at the scale 2m'..

dz Ds (vz, 2m')

=(828 x10 )
' ~ (O ('S ))

mQ

+(1.31 x 10 ') '
s (Os ( Sg)) .

mQ

The value of the color-singlet matrix element (O~+(sSq))
can be determined &om the electronic width of the vec-
tor meson state. In the case of the charmonium states
J/@ and g', the matrix elements (Oz ( Sq)) are approxi-
mately 0.73 GeV and 0.11 GeV, respectively. The most
reliable determinations of the color-octet matrix elements
come kom recent data on prompt charmonium produc-
tion Rom the Collider Detector at Fermilab (CDF) at the
Tevatron. The color-octet contributions are necessary to
explain the magnitude of the cross section for prompt
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J/@ and g' production at large transverse momentum,
and they also explain the shape of the transverse mo-
mentum distribution [8]. The values of the matrix el-
ements (Os ( Si)) that are obtained by fitting the ob-
served cross sections are approximately 1.5 x 10 GeV
for J/@ and 4.3 x 10 GeV for vP' [9]. Using the value
o., (2m ) = 0.26, we find that the two terms in the frag-
mentation probability (11) are approximately 3.2 x 10
and 1.5 x 10 4 in the case of J/g and 4.7 x 10 7 and
4.3 x 10 in the case of @'. The color-octet term is
larger by about a factor of 50 for the J/vj and larger by
about a factor of 100 for the @'. We conclude that the
color-singlet term is always negligible compared to the
color-octet term for charmonium.

In the case of bottomonium, the color-singlet term in

the gluon &agmentation function is probably also negli-
gible. Because of the running of the coupling constant
between the scales 2m and 2m, b, the suppression of the
color-singlet term by o., decreases its relative importance
by about a factor of 2. On the other hand, the suppres-
sion of the color-octet term by v decreases its relative
importance by about a factor of 10. The net eR'ect is that
the color-singlet term is still likely to be more than an
order of magnitude smaller than the color-octet term.
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