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We present results for charmonium spectroscopy using nonrelativistic QCD (NRQCD). For the
NRQCD action the leading order spin-dependent and next to leading order spin-independent in-
teractions have been included with tadpole-improved coefficients. We use multiexponential 6ts to
multiple correlation functions to extract ground and excited S states. Splittings between the lowest

S, P, and D states are given and we have accurate values for the S state hyperfine splitting and
the y 6ne structure. Agreement with experiment is good —the remaining systematic errors are
discussed.

PACS number(s): 12.38.Gc, 12.39.Hg, 14.40.Gx, 14.65.Dw

I. INTRODUCTION

The study of heavy-heavy mesons is important for lat-
tice gauge theory not only because of the availability
of experimental data for comparison but also because
such systems allow a quantitative study of systematic
errors which arise in lattice simulations at present. To
study heavy-heavy mesons we use nonrelativistic QCD
(NRQCD) [1,2] and previously we have reported a very
successful study of the bottomoniuxn system [3]. This
allowed the extraction of two fundamental parameters in
QCD [4], the b-quark mass [5] and the strong coupling
constant n, [6]. Here we report on a similar study of the
charmonium spectrum.

The starting point of NRQCD is to expand the origi-
nal QCD Lagrangian in powers of v2, the typical quark
velocity in a bound state. For the J/ilr system v2 0.3.
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Thus we systematically include relativistic errors order
by order in v away &om a nonrelativistic limit. Our
action is the same one as used in [3] where relativistic
corrections O(Mv ) have been included. This means
that systematic errors &om relativistic corrections will
be O(M, v ) (= = 30—40 MeV) for the J/ilr systexn,
i.e. , 10% in spin-independent splittings and 30% in spin-
dependent splittings. This is considerably less accurate
than for the T case [3] because v2 is about a factor of
3 larger here. Other sources of systematic error include
discretization errors and errors &om the absence of vir-
tual quark loops because we use quenched configurations
generated with the standard plaquette action. Finite vol-
ume errors should be negligible because of the relatively
small size of the J/4' system.

Shown in Pigs. 1 and 2 is the spectrum for charmo-
nium using lattice NRQCD. The spectrum was calculated
using an ensemble of 273 gauge field configurations gen-
erated with the standard Wilson action at P = 5.7 [7].
To set the scale we fix our simulation result for the spin-
averaged 1P-1S splitting to its experimental value of 458
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FIG. 1. NRQCD simulation results for the spectrum of the
J/iver system using an inverse lattice spacing of 1.23 GeV, fixed
from the spin-averaged 1P-1S splitting. The So mass is fixed
at 3;0 GeV, from a 6t to the kinetic mass. Experimental
values are indicated by dashed lines. Error bars are shown
where visible, and only indicate statistical uncertainties.
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FIG. 2. Simulation results for the spin structure of the
J/@ family, using an inverse lattice spacing of 1.23 GeV. The
energies of the spin-averaged S and P states have been set to
zero. Error bars for points are statistical.
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MeV. This gives a i = 1.23(4) GeV, where the uncer-
tainty is purely statistical. Since we are working in the
quenched approximation this value can be and is difFerent
both from that obtained at the same value of P using light
hadron spectroscopy [8] or using upsiloxi spectroscopy [9].
We expect a value fixed from heavyonium to be more ac-
curate than that from light hadron spectroscopy because
spin-independent splittings in the heavy quark sector are
independent of quark mass to a good approximation and
systematic errors are under better control [1].

To fix the bare quark mass in the action, M, we plot
a dispersion relation correct up to O(v4) for the x) . Mo
is then tuned until the simulation value for the kinetic
mass is equal to the experimental value of the mass of
the xk (2.98 GeV). We find that using aMo=0. 8 gives
M(xk)=3.0(1) GeV with a = 1.23(4) GeV.

In Fig. 1 the whole charmonium spectrum is shown
and in Fig. 2 the spin-dependent splittings are shown
in more detail. In Fig. 2 it can be seen that although
the general pattern of split tings for the 8 and P states
is reproduced well, systematic errors are visible above
the statistical errors. It should then be possible in the
future to observe systematic improvements to the current
calculation, when higher order relativistic corrections are
included and further discretization and quenching errors
are removed.

We give details in Sec. II of our evolution equation
and the quark Greens function used to make up meson
correlation functions. Section III describes the results
from the simulation using multi-exponential fits. We il-
lustrate the need for multiple smearing functions to ob-
tain smaller statistical errors. Section IV compares sixn-
ulation results to experiment and Sec. V contains our
conclusion.

(~(2))2bH= —ci +c2, ( . — . A)

g—cs o. (&xE —E A) —c4 o.Bg
8M02 2M0
a2~(4) a(~(2) )

2

24Mo 16n(Mo) 2

U.(*) (5)

with uo the fourth root of the plaquette (at P=5.7 we use
uo ——0.861). Since the cloverleaf expression involves the
evaluation of a plaquette this renormalization will have
the efFect of redefining E and B via

The first two terms in bH are spin-independent rela-
tivistic corrections and the next two are spin-dependent
correction terms which contribute to the P and S spin
splittings, respectively. The last; two terms come from
finite latt;ice spacing corrections to the lattice Laplacian,
and the lattice time derivative. dk is the symmetric lat-
tice derivative, L~ ~ is the lattice form of the Laplacian,
and A~4~ is a lattice version of the continuum operator
P D4. We used the standard traceless cloverleaf opera-
tors for the chromoelectric and magnetic fields, E and B.
The parameter n is introduced to remove instabilities in
the heavy quark propagator caused by the highest mo-
mentuxn modes of the theory [1]. For our simulations at
P = 5.7 and with a bare mass for the c quark in lattice
units of 0.8, we set n = 4.

The coupling constants c; appearing in Eq. (4) can be
calculated by matching NRQCD to full @CD [2,10]. At
tree level all the coeKcients are one. The largest radiative
corrections are believed to be tadpole contributions [11].
We take care of these by using the method suggested in
[11] where all the U's are redefined by

II. EVOLUTION EQUATION AND QUARK
PROPAGATORS E BE —+ —,B-+ —,4 7

0
4 7

0
(6)

One of the advantages of the formulation of NRQCD is
that it involves a simple difFerence equation in the tem-
poral direction. This allows the evolution of the quark
Green function as an initial value problem which can be
solved with one sweep through the lattice. We define our
quark Green function to be initially

2~ ) '
E 2~ )

and then continue to evolve using

(&») (2)

which will strongly afFect spin-dependent split tings.
With t;he dominant tadpole contributions thus removed,
we use the tree level values for the c s. The only re-
maining free parameters are the bare quark mass M
and the bare coupling constant g which appear in the
original @CD Lagrangian. All the details of the quark
evolution up to this point are identical to those in [3]. In
the following some of the technical details dier slightly.

Given the quark propagators in Eq. (2) it is relatively
straightforward to combine them appropriately to form
meson propagat;ors with specific quantum numbers. Us-
ing the notation of [3] we take @t to create a heavy quark
and yt to create a heavy antiquark. Then the following
interpolating operat;or creates a meson centered on the
point Z1.'

On the lattice, the kinetic energy operator is ) @t(*-,)r(-, —-,) (7)

~(2)
0 2MP &

C

and the correction terms are

(3) Local meson operators are tabulated in [3]. Here we
generalize the operators to include "smearing functions. "
For 8 states the xneson operator I' becomes 0 P(xq —xq)
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where 0 is a 2 x 2 matrix in spin space giving the quantum
numbers of the meson and P is a simple approximation to
the wave function. For P states, P also becomes a p wave
function, which can be thought of as the derivative of a
spherically symmetric function [3]. In general I' is a sum
of spin matrices multiplying different smearing functions,
generalizing the operators in [3]. For the wave functions
P we use here wave functions &om a I/r potential with
their spread adjusted to match the size of the appropriate
meson.

For meson propagators at zero momentum we then
have

G .. „(p= 0, &) = ) Tr[G, (g2)I' '"
(yi —g2)

yi, y~

x Gt(gi)]

with

Gt (g)—:) Gt (g x) I'-'—(x).

I'"(x) and I""(x) refers to the meson operator I'(x) =
AP(x) with the smearing function P(x) at the source or
sink, respectively, and enumerated by the integer n„or
n, k. n = 1 corresponds to the ground state meson; n =
2 to the Grst radially excited state. Gz is obtained using
Eqs. (1) and (2) with b-0 ~ I'~"l(x). The trace is over
color and spin. The convolutions are evaluated using fast
Fourier trans forms.

We also study finite momentum propagators for the
~So meson, given by

G,. „(p, t) = ) Tr Gt(gi)OGt(gi) e '"'"' . (10)
yl

Using the notation + I Jy we have looked at meson
propagators for the following states: So, Sq, Pq, Po,
Pq, P2 for both the E and 1' representation and the D2

in the T representation. For the S states, smearing func-
tions both for the ground and first radially excited state
were used as well as a local h function (n = loc). From
this all possible combinations of smearing at the source
and sink were formed making a 3 x 3 matrix of correla-
tion functions. For the P and D states only the ground
state smearing function was used at the source. We cal-
culated the dispersion relation for the So by looking at
the meson propagator for small momentum components
using (n„,n, i,) = (loc, loc) and (1, loc). To maximize
our statistics we use all color and spin indices at the
source when calculating our meson propagators. For the
S] y Pg y Pg y P2 y

and D2 we average over polariza-
tion directions making a total of 30 S, P, and D meson
propagators to analyze.

III. SIMULATION RESULTS

In the simulation we used 273 quenched gluon Geld
configurations on a 12 x 24 lattice at P = 5.7 gener-
ously supplied by the UK@CD Collaboration [7]. They
were Gxed to Coulomb gauge using a Fourier accelerated

steepest descents algorithm [12] with a cutoff on [8 A]~
of 10 s. Due to the relatively small size of the J/@ it is
possible to use more than one starting site on a spatial
slice. We also use more than one starting point in time to
increase statistics. In this case we used 8 different spatial
origins and 2 different starting times at time slice 1 and
12. If we bin the spatial origins together we Gnd signifi-
cant correlation, whereas binning together two propaga-
tors with an initial time slice of 1 and 12 but with the
same spatial origin gives little or no correlation at all.
For most of our fits we bin together all the correlation
functions &om a given configuration, except when doing
multiple-exponential multiple-correlation Gts for the So
and Sq case. Here we only bin on spatial origin and
having the increased sample size &om the time direction
significantly improves the fit. We also checked, however,
that fitting with all data unbinned produces a worse y2
than when all data is binned, another indicator of spatial
correlations.

In NRQCD, as in @CD, there are two &ee parameters,
the bare coupling constant g and the bare quark mass
M . We Gx g implicitly when we set the scale a . To fix
Mo we tune so that the simulation result for the kinetic
mass of the So agrees with the experimental value of the
inass of the g (2.98 GeV). For this we find Ep for several
different momenta of the So and fit to the form

kin kin kin

simultaneously for momenta components, P, (I,p, p),
(1,1,0), (l, l, l), (2,0,0) in units of 2m /12a. Mi„„ is taken
to be the rest mass of the g . C~ should take the value
1.0 in a fully I orentz invariant theory. Instead we find
the value 1.7(1) —this means that the mass in the P4
term difFers &om that in the P2 term by the cube root
of 1.7, i.e. , 20%. This is compatible with our expecta-
tions of the difference that would be induced by missing
higher order relativistic corrections to the quark prop-
agators. The mass in the P term receives its leading
contribution &om the D2 term in the quark propagator.
Relativistic corrections to this term will give a contribu-
tion suppressed by v . Higher order D terms that have
not been included would give a contribution suppressed
by v4, i.e. , the systematic error &om these terms is 10%.
The systematic error in the mass of the P term is larger,
because its leading contribution comes from the D4 term
in the quark propagator. Missing relativistic corrections
are then suppressed only by v with respect to the leading
contribution and the systematic error is 30%. A differ-
ence of a factor of 1.2 is compatible with this expectation.
We expect results for Cq to be closer to 1.0 for the T be-
cause this is a more nonrelativistic system. Indeed there
[3] we find the same tendency for Ci to be larger than
1.0 but consistent with 1.0 within rather larger errors of
size 0.3. The last term in Eq. (11) is a non-rotationally-
invariant term allowed on the lattice but t 2 is found to
be —0.1(l) consistent with zero. This indicates that no
discretization errors are visible in the dispersion relation
once the O(a2) terms in the heavy quark action have
been taken care of in Eq. (4). No significant signal was
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0.8 gives Mk;„a = 2.429(7) or M1,;„=3.0(1) GeV using
a ~ = 1.23(4) GeV. All simulation results quoted here
are from using this value of the bare quark mass. The
error on the bare quark mass is then of order 10%%u() &om
both statistical errors in a and systematic errors &om
higher order relativistic corrections.

In Figs. 3 and 4 we show effective masses for the So
and Pq states, respectively. We use the naive definition
m,~(t) = —ln[G(t + 1)/G(t)] together with bootstrap er-
rors. From the S state plots it is clear that smearing
has the effect of producing an earlier plateau in the effec-
tive mass. Although the statistical errors have increased
for the smeared cases as compared to the local-local case
the earlier plateau allows fitting to take place closer to
the origin and ultimately produces better errors. For the
first excited state a plateau cannot be seen for the effec-
tive mass and the signal ultimately decays to the ground
state. A better transient plateau was seen for the excited
S state in the T spectrum at P = 6.0 [3]. This reflects
the fact that at higher P values the excited states have
smaller masses in lattice units and last for longer times.
For the P state the signalinoise ratio is much poorer than
that for the S state, as expected.

A. Fitting results for the So
and Sq and the singlet P and D states
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FIG. 3. Pz effective masses by (source, sink).

found for an extra P relativistic correction and this is
not surprising for our meson masses —the size of this
term is smaller than our error bars. Conversely a fit with
just the leading order P term in was tried but gave a
very poor Q value. This suggests that with the particular
momentum components used a fit including terms up to
P is appropriate. Using a bare quark mass of aM

We use a variety of fitting routines to extract high
precision ground state masses for the So and Sq as well
as masses for their first radially excited states. We have
used in general the same fitting procedures which are
described in more detail in [3].

Multiexponential fits allow a fit to the correlation func-
tion at much earlier times than single-exponential fits,
thus reducing the noise. A fit to n exponentials allows
confidence in the masses of the first n —1 states. Since,
as described above, excited states die very rapidly at low

P, it is much harder to get a value for an excited state
mass at P=5.7 than at P = 6.0. This is reflected in our
errors. It is also true, however, that the ground state
plateau appears earlier and the use of many exponentials
to get to early times is not as important at P = 5.7 as at
P = 6.0.

The first type of fit we do is that to a matrix of corre-
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FIG. 4. So effective masses by (source, sink).
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TABLE I. Examples of simultaneous multiexponential 6ts to the So using row and matrix 6ts,
respectively.

Fits to (l,loc)
and (2,1oc)

Fits to
(1,1), (1,2)
(2,1), (2,2)

&exp

2

tmin jtmax

2/24
3/24
4/24
5/24
6/24
7/24
2/24
3/24
4/24
5/24
6/24
7/24
3/24
4/24
5/24
6/24
7/24
3/24
4/24
5/24
6/24
7/24

aEg
0.6171(6)
0.6178(6)
0.6176(6)
0.6179(7)
0.6182(7)
0.6183(7)
0.6180(7)
0.6177(20)
0.6181(6)
0.6183(7)
0.6183(7)
0.6183(7)
0.6185(6)
0.6183(6)
0.6178(6)
0.6177(6)
0.6181(6)
0.6180(6)
0.6178(6)
0.6179(6)
0.6180(6)
0.6181(6)

aE2
1.172(6)
1.16(1)
1.16(1)
1.14(1)
1.21(5)
1.27(S)
1.15(2)
1.15(4)
1.16(2)
1.30(16)
1.19(8)
1.25(24)
1.18(2)
1.17(3)
1.16(4)
1.08(6)
0.90(6)
1.19(2)
1.14(4)
1.21(7)
1.26(11)
0.91(6)

aE3

1.8(6)
1.8 + 15
1.8(1.2)
1.7(6)
1.8(5)
l.s(s)

1.6(5)
2.1(6)
1.7(6)
2(1)
2(1)

2 x 10
0.65
0.64
0.79
0.94
0.93
0.38
0.53
0.79
0.94
0.87
0.85
0.06
0.15
0.25
0.16
0.42
0.27
0.23
0.16
0.18
0.33

lation functions:
N'exp

G „„(n„,n, i„t) = ) a(n„, k) a*(n,i„k)e
k=1

For the S states we use the combination n„= 1, 2 and
n, k ——1, 2 forming a 2 x 2 matrix. Then we perform
fits for N „~ = 2 and 3. Our fitting procedure inverts

the covariance matrix using the svd algorithm. We have
sufBciently good statistics that we are able to keep all
eigenvectors of the covariance matrix and achieve a good
fit [13].

For the second fit a row of correlation functions is
formed and fitted to

&exp

G „„(n„,loc;t) = ) b(n„, k) e
k=x

TABLE II. Examples of simultaneous multiexponential 6ts to the Si using row and matrix 6ts,
respectively.

Fits to (l,loc)
and (2,1oc)

Pits to
(1,1), (1,2)
(2,1), (2,2)

&exp

2

tmin jtmax

2/24
3/24
4/24
5/24
6/24
7/24
2/24
3/24
4/24
5/24
6/24
7/24
3/24
4/24
5/24
6/24
7/24
3/24
4/24
5/24
6/24
7/24

aE|
0.6951(8)
0.6961(8)
0.6958(9)
0.6961(9)
0.6966(9)
0.6968(10)
0.6964(9)
0.6957(9)
0.6964(10)
0.6967(10)
0.6966(7)
0.6969(10)
0.6970(8)
0.6967(8)
0.6965(8)
0.6966(8)
0.6967(9)
0.6966(8)
0.6965(8)
0.6964(8)
0.6969(8)
0.6967(9)

aE2
1.247(7)
1.23(1)
1.22(2)
1.18(2)
1.21(5)
1.25(8)
1.21(4)
1.20(4)
1.16(5)
1.22(8)
1.19(6)
1.25(16)
1.22(1)
1.21(3))
1.24(5)
1.31(9)
0.95(8)
1.23(2)
1.20(3)
1.23(4)
1.46(13)
1.00(9)

1.9(9)
1.9(1.4)
1.9(1.3)
1.9(5)
1.9(3)
1.9(2)

1.7(6)
1.8(6)
2.0(2.8)
1.8(1.3)
1.9(1.3)

4x10
0.23
0.23
0.46
0.56
0.56
0.10
0.17
0.47
0.55
0.41
0.40
0.04
0.05
0.07
0.09
0.08
0.08
0.06
0.04
0.06
0.07
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TABLE III. Examples of single exponential fits to the So . TABLE V. Examples of fit results for amplitudes b(n„, k).

Fits to (l,loc)

Fits to (1,1)

Nexp
1

tmin/tmax
5/24
6/24
7/24
4/24
5/24
6/24
7/24

aEg
0.6188(8)
0.6184(8)
0.6183(8)
0.6184(8)
0.6181(8)
0.6181(8)
0.6182(8)

0.01
0.66
Os72

0.05
0.22
0.18
0.15

Fit
Nexp = 2

for Sp
Nexp
for S~

tmin /t max

4/24

5/24

k b(n. =1 k)
1 0.1037(7)
2 0.032(3)
1 0.103(1)
2 0.036 (7)

b(n., = 2, k)
-0.0184(4)
0.064(2)

-0.0253 (4)
0.069(3)

We use the correlation functions (n„,n, i, ) with n„= 1, 2
n, I, ——loc. Again fits use N p 2 3.

In Tables I and II are results from the row and matrix
fits for the So and Si. The errors stated are those
causing a change by = 1 and we also quote the quality
of the fit, Q. For an acceptable fit Q should be in the
range 0.01 to 0.9 and ideally Q ) 0.1. To improve our
statistics we only bin correlation functions which start
&om different spatial origins but not ones which have
different starting time slices. This has little effect on the
central value but does increase the Q value giving us more
confidence in the fit.

Prom both tables it is clear that an accurate ground
state mass can be obtained at very early times. Only a
t;„of2 gives an unacceptable Q for the 2 exponential fit.
Adding a third exponential produces an acceptable fit, al-
though we don't take this value because Q increases fur-
ther as t;„is increased. This contrasts with the higher
t;„needed for T spectroscopy at P = 6.0 [3]. The masses
we obtain are independent of the type of fitting routine
within errors, although the values for Q are lower for the
matrix fits. At this point it is constructive to test how
effective the multiple exponential fits are for the ground
states at P = 5.7. In Table III are values for a single ex-
ponential fit to the (n„,n, i, ) = (1, loc) and (1, 1) for the

So state. In both cases an acceptable Q requires t;„of
6, significantly larger than for the multiple exponential
fit. We choose fitted values 0.6182(7) and 0.697(1) for
the So and Sq ground states, respectively.

For the first excited state the choice of fitted value is
far more diFicult. To have confidence in the value we
should use a 3 exponential fit although this gives larger
errors in the fitted masses. We look for both a steady
value in the fitted mass as t;„is changed and a steady
value for Q. It is also useful to look at the amplitude for
the second excited state in the 3 exponential fit to see at
what t;„values it has decayed away.

For the iSo row fit we choose a value 1.17(5) for the
excited state mass (average of t;„=3,4,6) and from
the matrix fit 1.18(4) (average of t;„=3,4,5). There is

then agreement within errors between the two fits and we
choose 1.17(5) as the global average. For the sSi state
there is a significant deterioration in the Q values over
those for the So and the fitting errors are slightly larger.
This is presumably a reHection of the additional noise in
the Sq channel coming from the So. For the row fit a
value of 1.19(7) (average for t;„=4,5,6) is chosen and a
value of 1.22(3) (average for t;„=3,4,5) from the matrix
fit. A global average for the excited Si is chosen to be
1.20(7). All the fitted values are collected in Table X.

In Tables IV and V are the amplitudes Rom the var-
ious fits for particular values of t;„/t „. The value of
t;„/t „used was that where the fit for the first excited
state was closest to the average result quoted above. In
both row and matrix its it was found that the amplitude
for a second excited state (k = 3) is essentially zero. This
indicates that contamination &om higher states in our fits
is negligible. Prom the amplitude results we can see that
n, =1 has strongest overlap with the ground state and n„
= 2 has strongest overlap with the first excited state, as
planned. Thus our smearing functions are projecting out
the required state and suppressing the others, although
our smearing functions are clearly not optimal. It may be
better to use the output wave functions to produce input
smearing functions in an improved calculation. To illus-
trate the quality of the multiexponential fits into early
times we have plotted in Fig. 5 effective amplitude plots
with the fitted parameters quoted in Tables IV and V.

For the P and D states multiple exponential fits are
not possible because we have included only the ground
state smearing function in the simulation. Instead a sin-
gle exponential fit was performed to the (n„,n,k) = (1, 1)
meson propagators of the Pq and D2. The results are
shown in Tables VI and VII. Reasonable errors are ob-
tained at t;„values of 6 where single exponential fits
were acceptable for the S states. Ratio fits were also done
to the So in both cases but the results and errors re-
mained the same showing there is no correlation between
these states and the So. To isolate the ground state
early on and achieve better errors higher radial smearing
functions need to be added. Work has begun on this for
the 'Pi state.

TABLE IV. Examples of fit results for amplitudes a(n„,,q, k).

Fit
N, xp

——2
for So
Nexp
for Sg

tmin /tmax
4/24

5/24

a(ns ..g = 1, k)
0.681(1)
0.18(9)
0.700(3)
O.29(2)

a(nsc, sg: 2 k)
-0.1188(8)

O.52(2)
-0.164(1)
0.53(5)
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B. Fits to spin splittings

As described earlier, spin splittings are very depen-
dent on the tadpole improved coupling constants c,. This
makes the spin splittings a good test of the tadpole-
improvement scheme. It is also true that potential mod-
els find it hard to produce spin splittings in agreement
with experiment so we would hope that they are also a
good test of the di8'erences between a full calculation in
@CD, such as ours, and a potential model.

Since meson correlation functions of given l &om the
same configuration are highly correlated we produce a
bootstrap ensemble of ratios of correlation functions to

find spin splittings. From this we fit to a single exponen-
tial

R(t) = Ae (14)

We use correlation functions with (n„,n, i, ) = (1,1) and
bin on time and spatial origin. We find very high Q
values in general. Shown in Table VIII are values ob-
tained for various combinations of spin splittings using
Eq. (14). The b'E obtained for the Si to i So ratio fit is
in agreement with that obtained &om the separate row
and matrix fits of Tables I and II. To estimate bE for
higher radial excitations we have used a correlated bE
fit. This is a fit to the form

&exp

G,.„~(n...loc;t) = ) c~(n.„k)e
A:=z

N'exp

Gm«anil(n„, loc;t) = c~(n„, 1) e i+ ' + ) c~(n„, k) e
A:=2

with n, = 1, 2 for each meson. The results shown in Ta-
ble IX show that the Sq — So splitting can be obtained
at early times with smaller errors than in the ratio fit.
Presumably extra excited states have been absorbed in
the extra terms in the correlated fit. We are unable to
obtain a clear signal for a 2S hyperfine splitting although
the correlated bE fit above and the individual matrix fits
give an indication of such a splitting at early times.

IV. COMPARISON WITH EXPERIMENT

In Table X we give the dimensionless splittings ob-
tained &om our fitting procedure. To compare simula-
tion results to experiment it is necessary to fix the scale
a . We choose the spin-averaged. 1P-1S splitting to
do this. By spin-averaged splitting we mean the split-

TABLE VI. Example of a Pq fit. TABLE VII. Example of a Dq St.

Fits to (1,1)
&exp

1
tmin/tmax

3/24
4/24
5/24
6/24
7/24

aEg
1.059(4)
1.052(5)
1.049(7)
1.046(9)
1.048(14)

0.45
0.68
0.66
0.62
0.55

Fits to (1,1)
&exp

1
tmin/tmax

3/24
4/24
5/24
6/24
7/24

aEy
1.35(1)
1.32(2)
1.30(3)
1.26(5)
1.26(9)

0.62
0.77
0.78
0.78
0.72
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TABLE VIII. Examples of ratio 6ts for spin splittings. TABLE X. Fitted dimensionless energies.

Split ting
3Sg — Sp1

'P2z —'Po

P2~ — Pg

&exp

1
dmin /tmax

4/24
6/24
8/24
10/24
12/24
3/13
4/13
5/13
6/13
3/13
4/13
5/13
6/13

abE
0.0794(3)
0.0784(4)
0.0784(4)
0.0783(5)
0.0778(6)
0.090(2)
0.089(4)
0.090(6)
0.086(9)
0.045(1)
0.046(3)
0.045(4)
0.044(6)

4.0 x 10
0.35
0.32
0.21
0.25

0.94
0.91
0.85
0.81
0.99
0.99
0.99
0.97

1 Sp
1 S1
2 Sp

1'P~
1'D2

3 1Sg — So
P2 — Po

3 3P2 — Py
3 3Px — Po
PC M P1

Simulation results
0.6182(7)
0.697(1)
1.17(5)
1.20(7)
1.05(1)
1.30(4)

0.0782(4)
0.088(8)
0.044(5)
0.044(3)
0.010(1)

ting between spin-averaged states. The spin-averaged S
state has mass 0.25 x [3m( Si) + m( Sp)]. The spin-
averaged P state has either the mass of the Pq or mass
1/9x [5m( Pq)+3m( Pi)+m( Pp)]. These two P masses
are the same in potential models and experimentally they
do seem to be very close although the mass of the Pz
needs confirmation [14]. In our simulation the two masses
are slightly different (see Table X). We will use m( Pi)
because of the previously noted disagreement with exper-
iment in the P fine structure. The difference in value of
the a 's obtained is within the statistical error.

The spin-averaged 1P-1S splitting has the advantage
of being independent of any errors in spin-dependent
terms and of being experimentally known to be indepen-
dent of the heavy quark mass in the c, b, region. This
gives much less systematic uncertainty than, for example,
in light hadron spectrum determinations of a . In the
T spectrum calculation [3] it was possible to see a difFer-
ence in a between that fixed &om the 2S-1S splitting
and that fixed &om the 1P-1S splitting. Here both our
statistical error on the 2S state and our expected sys-
tematic error from relativistic corrections are too large
for this to be possible.

Using the values in Table X we find a i = 1.23(4) GeV
from the 1P(iPi)-1S splitting. In Table XI we compare
the splittings obtained &om this simulation with exper-
imental results. The results are plotted in Figs. 1 and
2. It is important to remember that there is a poten-
tial 30—40 MeV systematic error in all splittings coming
&om relativistic corrections not included in the heavy
quark action. Table XI and the figures do not include
the statistical error in a in their quoted errors since
all the splittings are correlated. Table XI does, however,

include this error for the hyperfine splitting since this is
very sensitive to shifts in the bare quark mass allowed
by uncertainties in a [the hyperfine splitting behaves
as 1/Mg in perturbation theory; see Eq. (16) below].
Using the y~ average for 1P would give a = 1.20, at
the lower end of the range for a from the Pi.

As discussed earlier, the statistical error on the 2S
state is too large to see any significance in the fact that
it is slightly higher than experiment. The direction of
the slight disagreement is the same as that for the T
spectrum [3]. There it seems clear that the correction
of O(a ) errors in the gluon action and unquenching will
produce agreement with experiznent [6,16]. To test this
for the 4 we will need to reduce the statistical errors and
systematic errors &om the heavy quark action in the 2S
state.

The expected shift in the lS state from gluonic O(a~)
effects is 0.006 in lattice units for this simulation. This is
calculated either perturbatively &om the wave function
at the origin [6] or nonperturbatively using a lattice po-
tential model [15]. It is less than the shift for the T at
the same value of P since the J/4 is larger. The 1P state
does not shift, since it is not sensitive to perturbations
at the origin. The change in the 1P-1S splitting would
then cause the derived a i to change upwards to 1.25(4)
GeV if gluonic O(a~) effects were corrected. This is still
within 10 of the original value. The expected shift in
the g' state is 0.005 so the change in the 2S-1S splitting
would be completely negligible compared to its statistical
error.

The value for a i is about 20% difFerent from that
from T spectroscopy [16] at the same value of P. Within
the quenched approximation we expect that the value of
a extracted will depend upon the momentum scale, q*,
which dominates the quantity being used. This is because

dmin/tmax
3/24
4/24
5/24
6/24
7/24
8/24

TABLE IX. Example of correlated bE fit

1 Sp 2 Sp
0.6179(6) 1.17(1)
0.6178(6) 1.17(1)
0.6180(6) 1.16(2)
0.6183(6) 1.20(4)
0.6183(7) 1.20(6)
0.6184(7) 1.16(11)

1 Sg —1 Sp
0.0779(3)
0.0778(3)
O.O777(3)
0.0780 (4)
0.0781(4)
0.0781(4)

1.23(1)
1.24(2)
1.19(2)
1.20(4)
1.2O(6)
1.25(13)

for the Sq and So states.

0.29
0.33
0.72
0.88
0.82
0.76
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TABLE XI. NRQCD spectrum results and comparison
with experiment for a = 1.23 GeV and aM, = 0.8.(s) re-
quires confirmation.

2 So —1 So
2 Sg —1 Sg

1D2 — Sp1

3Di — So1

3 Sg — So1

3P~ — Po3

Pg — Pg
3PCM P11

Simulation results [GeV]
0.68(6)
0.62(8)
0.84(5)

0.096(2)
0.11(1)
0.054(6)
0.012(1)

Experiment [GeV]

0.589(1)

0.791(3)
0.118(2)
0.141(1)
0.0456(1)
0.0008(3)*

6xing a is equivalent to fixing the effective coupling at
that momentum scale to be correct. The effective cou-
pling in the quenched approximation runs faster than in
the real world, so quantities sensitive to larger momen-
tum scales will give larger values for a . The expected
size of the discrepancy in a can be estimated pertur-
batively, provided that perturbation theory still works
at the scale q*. For T the scale is about 1 GeV, for @
it is around 500 MeV. a &om 4 spectroscopy should
then be around 10% smaller than &om T spectroscopy
on quenched configurations at these values of P in order
to obtain the same values for quantities such as o., in the
real world [17]. Preliminary results from 4 spectroscopy
on unquenched configurations confirm that an extrapola-
tion in ny will match T results [18]. It thus seems likely
that the a difference between T and 4 quenched spec-
troscopy is simply an effect of quenching. Missing higher
order relativistic corrections give a — a systematic error
at the 10% level, so it is not excluded that most of the
discrepancy could be removed on adding these higher or-
der terms to the quark propagator.

Our a &om @ spectroscopy is also different &om
that for light hadron spectroscopy at the same values of
P [8]. In the quenched approximation we would expect
a — ) a — )a, reHecting the ordering of the momen-

P
turn scales appropriate to the different quantities. We
have argued that the erst inequality holds. Currently the
second one does not. We believe that this reflects O(a)
errors in present light hadron spectroscopy [16]. Fur-
ther calculations for 4' at different values of a and light
hadron spectroscopy with improved actions will resolve
this problem.

The D2 state whose mass we have calculated is rather
higher than that found for the @(3770), thought to be a
Di state. Prom the spin splittings alone you would ex-

pect this difference. The g(3770) is also above threshold
for decay to DD so quenching might have a significant
effect on masses in this region, although the ratio of the
width of the @(3770) to its mass is still less than 1%.
The Di has the same J quantum numbers as the Sz
and will appear as a third excited state in that channel.
In order to observe such a state the cross correlation be-
tween the meson correlators Sq and the Dq would have
to be calculated and we have not attempted to do this
here.

Values for the wave function at the origin can be ob-
tained as discussed in Ref. [3]. If we include the (loc, loc)

correlation function in a multiexponential row 6t we ob-
tain a value of as~2vj(0) for the J/@ of 0.1535. This
method does not yield a stable value for the excited states
since the (loc, loc) correlation function does not distin-
guish different states very readily. A better method is
take a ratio of amplitudes from row and matrix fits [3].
We use b(n„, m)/a(n„, m) and concentrate on the diag-
onal entries, i.e. , n„= m =1 for J/@ and n„= 2 for @'.
This gives a ~2@(0) = 0.148(2) for J/@ and 0.13(1) for
@I

The leptonic width can be calculated from @(0) using
the Van-Royen Weisskopf formula [19] at leading order.
We obtain 5.4(5) keV for the J/4' in good agreement
with the experimental value of 5.3(3) keV. The error we
quote is dominated by the error in a since this ap-
pears cubed. In principle we expect large corrections
( 30%) to our value when a current correctly matched
to the continuum current is included, instead of the naive
lowest order current that we have used. We should apply
small-components corrections to the current [20] as well
as a lattice-to-continuum renormalization. The agree-
ment with experiment should thus not be taken to be
very significant at this stage. For the g' the agreement
with experiment is not so good. The experimental value
is less than half of that for the 1S and yet we obtain a
ratio of 0.7 to the 1S. This trend for excited states to
have too large a value for g(0) is again similar to that
found in the T case. On improving the systematic error
in our currents we would hope to notice an improvement
here unless it is a feature of the quenched approximation.

Spin splittings have been calculated for the ground S
and P states. These are shown in detail in Fig. 2. The
agreement with experiment is good within expected sys-
tematic errors of 30—40 MeV. This would not be possi-
ble without tadpole-improvement of the spin-dependent
terms. It was clear &om the T spectrum [3] that split-
tings without tadpole improvement were about half the
size of those with tadpole improvement. This would be
an even bigger effect here where P and uo are smaller.
There is nevertheless some disagreement with experiment
in Fig. 2, and it is useful to find the source of this. There
are sufBcient experimental results for charmonium that
the system provides a good test of the systematic removal
of sources of error.

Prom Table XI we can see that the hyperfine splitting
M(sSi) —M(i Ss) has a very small statistical error. The
difference from experiment then shows up clearly and is
presumably a result of our systematic errors. There is
again a 30—40 MeV systematic error &om higher order
relativistic, discretization, and radiative corrections to
the heavy quark action. This would be quite sufBcient to
explain the difference. Relativistic corrections are docu-
mented in [1]. The radiative corrections are O(g2) cor-
rections to the coefFicient of the 0. - B term beyond tad-
pole improvement. The discretization errors are O(a )
errors in the B 6eld and the hyperfine splitting is rather
sensitive to these, as discussed below. We also expect
quenching to have a significant effect, however. A com-
parison of T results on quenched and unquenched con-
figurations shows an increase in the hyper6ne splitting
when unquenched (to 3 flavors) of between 30% and 50%
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[6,16]. This can be explained largely on the basis of the
difFerence between quenched and unquenched coupling
constants and wave functions appearing in the perturba-
tive formula for the hyperfine splitting,

AMhr, = ', ~g(0) ~'.
9M2 (16)

For the J/4 case we might expect a similar shift of the
hyperfine splitting on going to the full theory and this
again would be suFicient to explain fully the deviation
from experiment. One problem here is that the pertur-
bative formulae are not quite as reliable as in the T case
[61

A calculation of the cc hyperfine splitting by the Fer-
milab group [21] gives a somewhat smaller value than
ours. They use an improved Wilson fermion action for
the heavy quarks and this approach has different system-
atic errors than ours.

The case of the P state Gne splittings is much more
complicated, with an expected interplay of short and long
range effects. In a potential model approach [22] two

terms contribute one proportional to (L . S) and the
other proportional to (Si2) where Si2 ——4[3(si . n)(s2 .
n —si . s2)]. Here si and s2 are the spins of the heavy
quarks and n is an arbitrary unit vector. Evaluating
these expectation values for Po, Pq, and P2 states of
equal mass quarks allows us to compare ratios of the
splittings, since the expectation values of potentials that
accompany these terms are the same for all P states. A
useful ratio [22] is

M(y2) —M(yi)
M(yi) —M(yo)

'

Experimental values are 0.48(l) for cc, 0.66(2) for bb

(1P), and 0.58(3) for bb (2P). From a comparison of
possible potentials to experiment the conventional pic-
ture emerges in which the spin-orbit potential appearing
with L S has both short and long range pieces, whereas
the tensor potential appearing with Sq2 has only a short
range piece. The short-range pieces can be related to 1-
gluon exchange in perturbation theory and behave like
1jR . The long-range piece comes from the scalar con-
fining potential. Spin-dependent potentials can be ex-
tracted on the lattice &om expectation values of Wilson
loops with E and B field insertions along the time lines on
either side. There it becomes clear that the "same-side"
spin-orbit potential is long range, whereas the "opposite-
side" is short range, as is the tensor potential [23].

We can extract values for the above ratio r of P spin
splittings from our simulation and we find 1.2(2) for cc,
clearly too large. The bb (1P) result at P = 6.0 [3] is
0.7(3), which is consistent with experiment, but at P =
5.7 we obtain 1.4(4) [9]. It seems likely then that the
disagreement with experiment arises &om discretization
errors. At low P the predominant spin-dependent poten-
tial is the long-range spin-orbit piece, the shorter range
pieces are not well resolved (compare [24] and [25], for

example). A pure L S potential would give a value for
r of 2 [22] (the pure tensor would give —0.4). In poten-

tiara. model language the long-range L - S term has undue
dominance in our simulation. We also find that the over-
all size of the P spin splittings, set by M(y2) —M(yo),
is too small. For bb at P = 6.0 this splitting was on the
low side but in agreement with experiment within the
error [3]. For bb at P = 5.7 we obtain a result which is
much too small [9]. Future calculations will concentrate
on correcting discretization errors to see if the results for
charmonium at low P improve.

Another possible discretization error shows up in the
fact that the center of mass of the P states comes out
above the Pi. This happens both for this calculation
and that of the T spectrum [3], but in both cases at a
level within the expected systematic errors. One might
expect, for example, that the hyperfine S S interaction
would contribute such a term to P states even in the
absence of a wave function at the origin [see Eq. (16)] if
the B field was smeared out over a plaquette as it is here.
Experimental evidence so far indicates that there is no
such splitting [14], although it awaits confirmation.

It seems likely that errors &om the quenched approxi-
mation (and from discretization) are not so large for the
P fine structure as for the S hyperfine splitting because
the latter is determined by very short range phenom-
ena. The hyperfine splitting can be thought of as re-
sulting &om delta-function Si S2 potential at the ori-
gin [see Eq. (16)], where S states have significant wave
function. The quenched approximation causes larger ef-
fects at short distance scales because it appears, pertur-
batively, as an incorrect running of the coupling constant
n(R) down to the origin from some R which is the im-
portant separation for quark and antiquark in the 1P-1S
splitting which is used to set the scale. P states have no
wave function at the origin and in addition the short-
range pieces of the relevant spin-dependent potentials
have longer range than the delta function hyperfine po-
tential. This should mean that the P fine structure can
be determined accurately in a quenched calculation by
a systematic improvement on this calculation, without
having to unquench.

V. CONCLUSIONS

This represents a first calculation of the cc spectrum
using NRQCD with spin-dependent terms. We include
the leading relativistic and discretization errors with
tadpole-improved coefIicients. We Gnd a value of the lat-
tice spacing &om the 1P-1S splitting which is different
from that of the T on the same configurations [9]. This
is consistent with an effect from the quenched approxi-
mation. Another efFect seen in the T spectrum itself, the
difference in a &om the 2S-1S and 1P-1S splittings,
is not visible here above the statistical noise in the 2S
state.

With tadpole-improvement, the spin splittings agree
with experiment at the level of the systematic error that
we expect. The trend of these systematic errors is the
same as that for the T spectruxn and we would expect
that, on including higher order terms, we could obtain
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better agreement. It seems likely that the major errors at
present are discretization effects and future calculations
will correct for these. One very good feature of the cc
spectrum is that all the radial ground state S and P
masses are known experimentally and so they can be used
to gauge the eÃect of systematic improvement. Further
calculations of the cc spectrum on lattices of diferent
lattice spacing and on unquenched con6gurations would
also provide useful checks of the systematic errors. A
value for o., could be extracted &om the 1P-1S splitting
in the same way that it was done using the T calculation
[6] and a comparison with results from Wilson fermions
17,26] made.

Calculations of the B spectrum combining b and
c propagators on these cordigurations will be reported
shortly [9].
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