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Indirect CP violation in the neutral kaon system beyond leading logarithms
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We have calculated the short distance +CD coefficient gs of the effective i&Si=2 Hamiltonian
in the next-to-leading order of renormalization-group improved perturbation theory. Since now all
coefBcients gz, gz, and g3 are known beyond the leading log approximation, one can achieve a
much higher precision in the theoretical analysis of c~, the parameter of indirect CP violation in
K -Ko-mixing. The measured value for sz yields a lower bound on each of iV,&i, iV„i,/V, &i, the
top quark mass mt, and the nonperturbative parameter B~ as a function of the remaining three
quantities. For example, m~~

"= 176 Gev, iV, &i = 0.040, and Bz = 0.75 implies iV„&/Vczi ) 0.0778,
if the measured value for e~ is attributed solely to standard model physics. We further discuss the
implications on the CKM phase b, iV&zi, aud the key quantity for all CP-violating processes, Im Az ——

Im [V~;Vqgj. These quantities and the improved Wolfenstein parameters p and g are tabulated and
the shape of the unitarity triangle is discussed. We compare the range for iV&zi with the one

obtained from the analysis of Bz Bq-mixi-ng. For 0.037 & iV,&i & 0.043, 0.06 & iV„&/Vpi & 0.10,
o —o

and 0.65 ( Bz ( 0.85 we fj.nd from a combined analysis of e~ and the B&-B~-mixing paramater
xq. 49' & b & 146', 7.4 x 10 & iV~qi & 12.4 x 10, 0.85 x 10 & ImA~ & 1.60 x 10
—0.36 & p & 0.28, and 0.21 ( g & 0.44. We predict the mass difference of the B, system to lie in
the range 6.5ps ( Am&. & 28ps . Finally we have a 1995 look at the KI.-Ks -mass difFerence.

PACS number(s): 12.15.Hh, 11.30.Er, 12.15.Ff, 14.65.Ha
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Since its discovery in the year 1964 [lj the study of
CP-violation is of continuous interest to both experi-
mentalists and theoreticians. The standard model mech-
anism of CP-violation involves only a single parameter,
the phase b in the Cabibbo-Kobayashi-Maskawa (CKM)
matrix. Hence first the investigation of CP-violating pro-
cesses is a useful tool in the determination of the CKM
elements, some of which are poorly known at present.
Second it may be the key to find physics beyond the
standard model, once one will not be able to fit difFerent
observables with the single parameter b.

Yet at present CP violation is only precisely and unam-
biguously measured in iASi=2 transitions. It manifests
itself in the fact that the neutral kaon mass eigenstates
iKL, ) and iKs) are no CP eigenstates. This indirect CP
violation is characterized by the parameter

((~~), oiHl~'l='iK, )

(( )I oiHI&sl=iiKs)
'

Its relation to the low-energy
i ZSi =2 Hamiltonian

Hl+sl=z is given (in the CKM phase convention for iK ))
by

e'~/ elm (K iHlasl='iKo)
~z =

ram~
(2)

Here m~ is the neutral kaon mass, Lm~ is the Ki-
Ks-mass difFerence, and $ is a small quantity related to
CP violation in the iESi = 1 amplitudes, it contributes
roughly 3% to is~i (see [2j for details).

The theorist's challenge is the proper inclusion of the
strong interaction, which binds the quarks into hadrons
and screens or enhances the CP-violating weak ampli-
tude. Here the short distance @CD efFects can be reliably
calculated in renormalization-group (RG) improved per-
turbation theory. With our new calculation they are now
completely known in the next-to-leading order (NLO).
Its phenomenological implications are the subject of this
paper, which is organized as follows. In the following
section we present the ib, Si=2 Hamiltonian in the NLO.
The further ingredients of the phenomenological analysis
are discussed in Sec. III. In Sec. IV we analyze which
region of the standard model parameters is compatible
with the observed value for e~. In Sec. V we first deter-
mine the CKM phase h from s~. Then we obtain iVqgi,

which is a key quantity for B&-B& mixing, and discuss
the additional constraints obtained &om the measured
Bd B&~ mixing parame-ter xg. From iVqgi we then pre-
dict the mass difFerence Lm~ of the B, system and the
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II. THE ]&Si=2 HAMILTONIAN IN THE
NEXT- TO-LEADINC ORDER

The low-energy Hamiltonian inducing K -K mixing
reads

~S =2

+2A A g3S(z. , x )]b(p)Qs2(p) + H.c. (3)

Here G~ is the Fermi constant, M~ is the R' boson mass,
and x; = m2/M~',

(4)

B,-B, mixing parameter x, . Further we determine the
improved Wolfenstein parameters p and g and further
Im At, which is proportional to the Jarlskog measure of
CP violation and therefore enters all CP-violating quan-
tities in the standard model. Finally we discuss the short
distance contributions to the Kg-Ks mass difference.

eter AM& one must calculate beyond the leading order
(LO).

(ii) The quark mass dependence of the g s is not accu-
rately reproduced by the LO expressions. Especially the
mq-dependent terms in gsS(z„zq) belong to the NLO.

(iii) The LO results for qq and gs show a large depen-
dence on the renormalization scales, at which one inte-
grates out heavy particles. In the NLO these uncertain-
ties are reduced.

(iv) One must go to the NLO to judge whether pertur-
bation theory works, i.e., whether the radiative correc-
tions are small. After all the corrections can be sizable.
In the NLO one has to take care of the proper definition of
the quark masses. It is most useful to define the g s with
respect to running masses in the MS scheme normalized
as m, = m, (m;), i.e. , we use z,. = [m;(m;)] /M~~ in (3)
and mark the corresponding g s with a star. The NLO
calculation here requires the use of the one-loop relation
between the pole mass and the running mass:„(n, (m*) 4~

comprises the CKM factors and Qs2 is the local four-
quark operator

Qs2 = [s,y„(1—ys)d, ][s~y"(1 —ys)dA:]

(sd) v —A (Bd)v —A (5)

with j and k being color indices. The Inarni-Lim func-
tions [3]

The top-quark running mass m", is smaller than mt by
8 Gev.

gz and g3 depend very weakly on the charm- and top-
quark mass and on A, so that they can be treated as
constants. In contrast g& is a steep function of m and
pNLO

MS
Now the NLO values read

1 9 1
S(x,)=x, —+—

4 41 —xt
3 1

2 (1 —x, )

gz ——1.32+o.2s ~ '92 ——0.57—o.ox ~
'Ib = 7—o.o4 ( )

3 xt
2 1 —xt

ln xt)

x2 —Sxt + 4S(x„z,) = —x.lnx. + z. ', lnz,41 —xt2

3 xt+-
4xt —1

(6)

depend on the masses of the charm and top quark and
describe the ~AS~=2 transition amplitude in the absence
of strong interaction.

The short distance QCD corrections are comprised in
the coefficients gq, q2, and qs with a common factor b(p)
split off. They are functions of the charm- and top-quark
masses and of the QCD scale parameter Aq~D. Fur-
ther they depend on various renormalization scales. This
dependence, however, is artificial, as it originates from
the truncation of the perturbation series, and diminishes
order-by-order in n, . The g, 's have been calculated in the
leading-logarithmic approximation by Gilman and Wise
[4] for the case of a light top quark. The corresponding
results for a heavy top quark have been derived in [5].
We brieBy recall the motivation for the calculation in the
NLO.

(i) To make use of the fundamental QCD scale param-

where m = 1.3GeV and A = 0.310GeV have been
used. The quoted theoreticaPerrors are estimated in two
ways: First the renormalization scales have been varied
and second the calculated O(n, ) corrections have been
squared.

The calculation for q~ has been performed by us [6]
and g2 has been obtained by Buras, Jamin, and Weisz
[7]. The NLO value for qs in (7) is new. We will present
details of the calculation in [8].

For comparison we give the old leading-order central
values [4]

——0.80, 0.62, 0.36 . (8)

in the NLO. Here p is the scale at which the perturbative
short distance calculation is matched to the nonpertur-
bative evaluation of the hadronic matrix element. The

The common factor of the short distance QCD correc-
tions split off in (3) equals
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latter must compensate the p dependence in (9) and is
parametrized by B~ as

III. MISCELLANEOUS

A. CKM matrix and unitarity triangle
(&'IQs2(p)l&') = 3fKmKBKI~(I ) ~ (10)

Here mK and fK are the mass and decay constant of the
neutral kaon.

For all numerical analyses we will use the exact stan-
dard parametrization of the CKM matrix [9]:

( V„g V„,V„b)
Vg V, Vb

( v,
„

v,. v, b )

r C12C13
ib—S12C23 C12823S138

i8'
S12823 C12C23813

—ib
S12C13 8136

ib
C12C23 —S128238136 823C13

i8—C12 S23 812C23813C C23C13

where c,~ = cos 0;~ and s,~
= sin 0,&.

The unitarity of V provides us with many relations
among its elements. The most useful one is

is exact to order A and contains the phenomenologically
important terms up to the order A [10]. Here p and rl
defined in (13) are expanded as

With

V„dV„'b+V.gV,*b+ V,gV, b
= 0. (12) f A' 4 ) ( A'

p = p i

1 ——+ O(A ) i, ry = rl
i

1 ——+ O(A ) i
.

2 )

V„gV„*b
p = —Re )

Vcd +cb

V„gV„'b
(13)

B. CKM elements from e~

812 A 0 22) S23 —AA )

sise '~ = AAs (p —iq),

and expanding the cosines in (11) to any desired order
in A = 0.22. The expansion to order A yields the con-
ventional Wolfenstein. parametrization [11].Yet it is well
known that the proper treatment of CP-violating effects
requires a higher accuracy:

( 1 A

A1 —
2—AA2 —iAA4g

AA (p —ig) )
AA2

(14)

A=(p, q)

(12) describes a unitarity triangle in the complex pq-
plane, whose edges are located at the points (0, 0), (0, 1),
and (p, il) (see Fig. 1).

To illustrate the size of the contributions &om the
different CKM elements we will also use the improved
Wolfenstein parametrization [10],which is obtained from
(ll) by defining the parameters A, A, p, and rt by

The experimental value for ~sK] [9],

~sK
~

= (2.266 6 0.023) x 10

constrains the CKM elements with (2), (3), and (10) via

1.21 x 10 = BK[—Im A, rji S(z") —Im A, rl2 S(z,")
—2Im (A, Aq) rjs S(x,",x )]. (16)

Here the number on the left-hand side (lhs) originates
&om

12+2~' amK
F KmK W

with the numerical values for these physical quantities
listed in Sec. III C. Fiirther A~ has been defined in (4) and
the sinall term ( in (2) has been estimated with the help
of [12] to contribute roughly —3% to sK. The uncertainty
in the lhs due to experimental errors is about 1% and
therefore negligible compared to the uncertainties to be
discussed in Sec. III C.

The relative importance of the three terms in the
square brackets in (16) can be demonstrated with the
help of the improved Wolfenstein parametrization (14)
turning (16) into

5.3 x 10 = BKA g[(1 —p)A A rjzS(x, )

+adjs S(x,",x,") —rli x,"] (17)
C=(0,0) B=(1,0)

FIG. 1. The unitarity triangle of (13).
after dividing both sides by 2 A . In (17) one sees that the
top-top contribution is CKM suppressed by four powers
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of A, but this suppression is overcompensated because
the top quark is so heavy:

vgS(xi) 1.3 x 10 i7sS(x,",xi) 4 x 10 pic,".

Hence g2 is the most important short distance coefBcient,
g3 is second relevant, and gz contributes least. Their con-
tributions to the right-hand side (rhs) of (17) are roughly
75%%uo, 37%%uo, and —12%%uo. Yet if we look at the changes in
the g,"'s due to the NLO calculations [cf. (7) and (8)] one
realizes that the NLO correction to g3 is the most im-
portant one, because it is eiihanced by 30%, while q2 has
decreased by only 8%%uo.

C. Ranges for the input parameters

In this section we will discuss the actual ranges of the
input parameters needed for our analysis. To determine
b from (16) one must first fix the three angles in (11)
&om the magnitudes of three CKM elements. While
~V„,

~

= 0.2205 + 0.0018 is well known [9], the determi-
nation of Vb and especially V„b&om tree-level b decays
is still plagued by sizable experimental and theoretical
uncertainties. Since these parameters are two main con-
tributors to our final error bars, we will now consider
them in more detail

The theoretical understanding of the determination of
V b &om exclusive and inclusive B decays has recently
made significant progress [13]. In [13] presumably large
perturbative corrections proportional to n, +

Po have
been summed to all orders in the decay rate resolving
both the previous discrepancy between the results of in-
clusive and exclusive analyses and the large scheme de-
pendence of the inclusive analysis found in [15]. With
w&o = (1.59+ 0.07) ps [16] the result of [13] reads

V b ——0.040 + 0.003

coinciding with the result presented in [14]. 6 ~ u decays
are harder to treat both theoretically and experimentally.
We will use [9]

V„b
V,b

= 0.08 + 0.02.

A further ingredient of our analysis is the top-quark
mass, which has been determined in the CDF experiment
[17] to equal

mi~
' = (176 + 13) GeV.

In NLO analyses one has to take into account the proper
definition of the mass: The corresponding value for the
running mass in the MS scheme is

B~ ——0.75 + 0.10. (21)

In fact we will see in Sec. IV that the inclusion of values
lower than B~ ——0.65 can only very hardly be brought
into agreement with the measured value of c~. We re-
mark that the NLO short distance calculation also af-
fects BIc because of the factor of 1/b(p) on the rhs of
(10). Nonperturbative calculations determine the ina-
trix element on the lhs of (10) and usually the quoted
results for B~ are obtained with the leading order fac-

tor bLO(p) = o.LO(p) instead of the NLO value

given in (9). Hence in a consistent NLO analysis one
should correct for this by multiplying the cited values
with b(p)/b (p). Yet numerically this amounts to a
change of about 3%%uo for p = 0 (0.7GeV) and can be ne-

glected in view of the larger uncertainty in (21). But
once the lattice results will achieve an accuracy in the
percentage region they should be quoted with the NLO
factor given in (9).

At this point it is instructive to investigate the impact
of our NLO calculation for gs. With (16) one can easily
verify that the shift from its ——0.36 in (8) to its = 0.47
in (7) has the same influence on ~ale~ as a shift f'rom

B~ ——0.82 to B~ ——0.75. In the same way one can
estimate the uncertainty caused by the error bar in the
NLO values in (7): The remaining uncertainties in the
NLO g,"-'s correspond to a change in B~ by +0.02.

Let us now look at the other input parameters. The
dominant QCD factors r12 and qs depend very weakly on
the QCD scale parameter AN~O, which therefore hardly
aQ'ects our results for c~. Yet of course the determination
of the input parameters V,i, and ~V„i,/V, ~~ depends onA; this uncertainty is included in the error bar in

(18) and (19) [13]. Conversely the KL-, Ks mass difference
discussed in Sec. VI is dominated by g~ which is a steep
function of AN . We will consider [27]

[19]. Yet the analysis in [20] extracting the top mass

by partly fitting the cross sections finds a lower value

mi~
' = (170 + 9) GeV from the combined analysis of

CDF and DO. Therefore the range given in (20) well

represents the possible values for m, and will be used in
the following sections.

Next we have to discuss the nonperturbative parameter
Bic defined in (10): The size of B~ has been the sub-

ject of a controversial discussion during the last decade.
The 1/N, result B~ = 0.7 + 0.1 [21] was in contradic-
tion with lower values estimated with chiral symmetry
[22] or the QCD hadron duality approach [23]. Yet a
recent analysis [24] has vindicated the result of [21] and
seems to have explained the di8'erence to the estimates
in [22,23]. Further recent quenched QCD lattice calcula-
tions have yielded values around B~ = 0.78 (see [25] and
references therein). The effect of dynamical fermions has
been found to be small in [26]. We will therefore use the
following range in our calculation:

m~ = mi(mi) = (168+ 13) GeV. (20)

The fit of the top mass from the LEP data yields the same
central value with an error bar of roughly the double
size [18]. The DO group finds m~~

' = (199 + 30) GeV

A~~ ——(310 + 100) MeV

corresponding to

(22)
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cr (Mz) = 0.117 6 0 006

The situation is the same with respect to the depen-
dence on m,": The rhs of (16) depends only weakly on
m,". Varying [13]

m" = (1.29 + 0.07) GeV (24)

within the quoted range afFects the rhs of (16) by 3%,
i.e., it is negligible compared to the uncertainty in B~.
Yet the KL;Kp mass difFerence depends on m sizably.

For completeness we list the remaining parameters en-
tering the analysis of EK [9]:

1.17 x 10 GeV ) E~ ——161MeV,

m~ ——498 MeV, 6 mK ——3.52 x 10 GeV,

M~ ——80.22 GeV, m& ——4.2 GeV

Am~„=zd/T~z ——(0.496 6 0.032) ps (25)

which is the world average presented in [16]. Yet the
largest uncertainty is due to the hadronic parameters F~„
and B~„appearing in the form

and the measured value for ]s~l has been given in (15).
The uncertainties of these quantities are irrelevant for the
analysis.

Finally we list the additional input parameters needed
for the B -B mixing: The B&B& mixing parameter
2:g ——0.78+0.05 enters the calculation in the combination

e.g. , [10,30]). Now in the top era it is more useful to
determine the allowed region for the other two funda-
mental standard model parameters in the game, V,g and
lV„b/V,bl. This is shown in Fig. 2. The ranges (18) and
(19) correspond to a rectangle in Fig. 2. For each pair
(mt, B~) the constraint from s~ defines a curve in Fig. 2
such that only the region above this curve is allowed.

We emphasize that the central values for the input
parameters given in (18) to (21) are close to the border-
line curve depicted in Fig. 2. With the old I 0 value for
7/3 the central values would even seem to contradict the
measured value for s~. The minimal value for lV„b/V,bl

equals 0.0778, if the central values in (18), (20), and (21)
are chosen for the other parameters. Conversely the mini-
mal values for the other parameters read V g;„——0.397,
m~;„=164 GeV, and B~;„——0.729, if the remaining
three ones equal the central values chosen in Sec. IIIC.
Of course varying these parameters to higher values re-
laxes the lower bound on the fourth one. Altogether the
constraint from e~ rules out almost one half of the pa-
rameter space of Sec. III C.

From these remarks it is clear that e~ strongly con-
strains those extensions of the standard model, in which
extra CP-violating interactions diminish laic], because
then the standard model contribution lslssM] must be
larger to accommodate for the measured value of ]e~l.
The lower bound can be summarized in the following ap-
proximate formula:

F~~ gB~, = (195 + 45) MeV. (26)
& IV-b/V. bl & & ~," i & Bz i

0.0397 i 0.080 ) (168GeV) E0.75)
This result has been obtained with lattice methods [28]
and @CD sum rules [29]. The ratio F~ /F~, has been
well determined from the lattice [28]

(2.27 x 10

= 1.22 + 0.04.
p~

(27)

Further we will need the meson masses m~„——5.28 GeV
and mg ——5.38 GeV and the B, lifetime w~. ——(1.53 +
0.10) ps [16].

IV. BOUNDS ON STANDARD MODEL
PARAMETERS

0.13

0.12

0.11

0.10

0.09

0.08

0.07

L

1

B,=0.75, m, (m, )=155 GeV-
B„=0.75, m,(m,)=168 GeV =

B„=0.75, m, (m,)=181 GeV =

B„=0.65, m, (m,)=168 GeV-
B„=0.85, m, (m,)=168 GeV—

As explained in the previous section the 6nal error bar
of the CKM phase b determined from s~ is due to the
uncertainties in Vcb, lV b/Vcbl, Brc, and mt . Yet it is well

known that the unitarity of the CKM matrix constrains
the allowed range for these four quantities: If one 6xes
three of them, a lower bound for the fourth one can be
obtained, because otherwise (16) yields no real solutions
for cos 6'. In terms of the improved Wolfenstein parame-
ters (14) these solutions appear as the intersection points
of a hyperbola with a circle. The lower bound solution
corresponds to a set of parameters for which the hyper-
bola touches the circle in one point (see [10] for details).
Prior to the discovery of the top quark this method was
used to find a lower bound on the top-quark mass (see,

0.06

0.05 J

0.035 0.037 0.038 0.039 0.040 0.041 0.042 0.043 0.044
IV„l

FIG. 2. New physics borderlines for various values of m, t
and Ba. Each pair (m~, BR) defines a curve. If the stan-
dard model is the only source of indirect CP violation in the
neutral kaon system, the points below the curve are excluded.
The solid line in the middle corresponds to the central values
for m, & and H~ given in Sec. III C. The rectangle limits the
allowed range for V b and lV b/V bl obtained from tree-level b

decays according to (18) and (19). The point in the middle
of the rectangle corresponds to the central values in (18) and
(19).
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~V„b/V,b~;„determined &om (28) concides with the ex-
act solution to 4%%uo accuracy in the parameter range of
Sec. IIIC. For 0.039 & Vg & 0.041 the agreement is
better than 2%%uo.

(28) displays the sensitivity of our analysis on V,b. Al-
though Vg is known to a much higher accuracy than
~V„s/V,b~, its uncertainty contributes roughly as much to
the final error as the one of ~V„b/V,q~. The situation is
similar in the analysis of Sec. V.

Finally we remark that in the vicinity of the lower
bound values the determination of the CKM elements
is very sensitive to the input parameters. Because of the
required precision one should use the exact parametriza-
tion (11) of the CKM matrix here.

V. CKM MATRIX PHENOMENOLOGY

In this section we determine various CKM parameters
using ~s~~ and the unitarity of the CKM matrix and dis-
cuss the constraints following &om B -B mixing.

A. The CKM phase 8

By solving Eq. (16) for cos 8 we calculate the two solu-
tions for the phase b of the CKM matrix. For the input
parameters defined in Sec. IIIC the resulting b's have
been compiled into Table I, where the dependence on the
key parameters mt, B~, V,b, and ~V„b/V,b~ is made ex-
plicit. A dash means that there exists no solution for
these parameters, lines which do not contain a solution
at all have been omitted &om the table. This happens
for small values of the above-mentioned input parameters
and served to derive the bounds on these parameters in
Sec. IV.

For our central values we observe the two solutions be-
ing very close to the limits derived in Sec. IV. This leads
to very asymmetric error bars. Therefore we first give
the central values and the variation of it for all relevant
parameters separately:

o +13' +l3 +13' +l3
—28' —23 —14 —17

high o +24 +24 +12 +15
—13 —13 —13 —13' . (29)

The variations in (29) are meant as follows: The first
number in the lower line for b and the first number in
the upper line for b"'g" are the two solutions obtained by
pushing Vg to its maximal value Vg ——0.043 while keep-
ing the other three parameters fixed to their central val-
ues given in Sec. III C. Conversely the other three num-
bers in these lines represent the variation when the same
is done for ~V~~/V, b~, m~, and B~. In contrast moving the
key parameters to lower values makes the two solutions
for b approach until they merge, when the varied pa-
rameter reaches its "lower bound value" discussed in the
preceding section. The variations on the upper line for

and the lower line for b"'g" correspond to these val-

ues, which are V g;„=0.0397, IV„b/V,gI, ;„=0.0778,
mz, .„——164 GeV, and B~;„——0.729.

We combine the individual variations in (29) to

glow 89o—43'

thigh 116o+ (30)

The error in the lines stemming f'rom the lower bounds is
motivated by the observation that the value b = 103 for
which the two solutions merge is essentially independent
of the input parameters. The error in the lines emerg-
ing &om pushing the input parameters to their maxi-
mally allowed values is obtained by adding the four in-
dividual variations of (29) in quadrature. This seems
questionable, because the theoretical errors of the input
parameters may be correlated. Hence we have also de-
termined the error by finding simply the maximal value
for b"'s" and the minimal value for b when all input
quantities are varied within the ranges given in Sec. III C.
These extremal values correspond to the point (V,b =
0.043, ~V„b/V,b~

= 0.10, m~ = 181 GeV, B~ = 0.85), be-
cause b"'g" and b are monotonous functions of all four
arguments. This results in an error which is only slightly
larger than the one cited in (30), —48' instead of —43' in

low and +42 instead of +39 in bhxgh This is caused by
the fact that b varies only very slowly in the parameter
region far away &om the central values. ~Vqg~ discussed
in the following section shows the same behavior, which
is evident from the plots in Fig. 3 and Fig. 4. Hence the
error bars in (30) are clearly not too small.

Let us now remark that in Table I the error resulting
&om the variation of the other parameters entering the
calculation is not shown. It amounts to roughly 3—4'.

The discussion of b is especially instructive in conjunc-
tion with the unitarity triangle. We will therefore return
to b in Sec. VE, where we will also see that the ad-

0.014

0.013

0.012

0.011

0.010

o.oos

0.008

0.007

I

IV„JV,bi=0.07
———IV„JV,I=0.08——IV JV I=0.09
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0.005 —————
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IV, I

0.042

FIG. 3. The dependence of ~Vqg~ on V,b for &Jr = 0.75,
mt" = 168 GeV, and four values of ~V„g/V,b~I. The thin lines
correspond to b = 0, i.e., no CP violation. The shaded area
is consistent with 2:g from (34).
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FIG. 4. The dependence of
~Vqq~ on m~ for three values of
(a) B~ (b) V.~ (c) IV-~IV-~l
and (d) o'. (Mz). All other pa-
rameters equal their central val-
ues of Sec. IIIC. The shaded
area gives the band (34) of

~
V&&

~

's allowed by the Bz Bz-
mixing parameter xg. For
large values of the discussed pa-
rameters xq favors the smaller
branch of the solution.

TABLE I. The two solutions for the phase b of the CKM matrix in degrees as a function of
m~, Ba, ~V„t,/V, q~, and ~V, q~. A dash means no solution. Lines with no solutions at all have been
omitted. Values for other input parameters may be calculated by linear interpolation.

Vb
m~ Bz
155 0.65
155 0.65
155 0.65
155 0.75
155 0.75
155 0.75
155 0.75
155 0.85
155 0.85
155 0.85
155 0.85
155 0.85
168 0.65
168 0.65
168 0.65
168 0.65
168 0.75
168 0.75
168 0.75
168 0.75
168 0.85
168 0.85
168 0.85
168 0.85
168 0.85
181 0.65
181 0.65
181 0.65
181 0.65
181 0.75
181 0.75
181 0.75
181 0.75
181 0.75
181 0.85
181 0.85
181 0.85
181 0.85
181 0.85

&ub
Vcb
0.08
0.09
0.10
0.07
0.08
0.09
0.10
0.06
0.07
0.08
0.09
0.10
0.07
0.08
0.09
0.10
0.07
0.08
0.09
0.10
0.06
0.07
0.08
0.09
0.10
0.07
0.08
0.09
0.10
0.06
0.07
0.08
0.09
0.10
0.06
0.07
0.08
0.09
0.10

92 117

97 ill
79 129

84 125

81 126
71 136

96 ill
79 129

83 126

80 127
70 136

93 118

86 122
74 134

84 121
71 134
64 142

92 118
98 110
79 129

83 126
85 122
74 134

90 115
75 131
67 140

80 126
70 136

83 121
71 134
64 142

93 110
73 130
64 140
58 146

91 119
96 113 80 127
79 130 71 137

85 123
73 134

89 116 76 128
74 132 67 138
66 140 61 144

83 122
71 134
64 142

91 112 76 125
72 131 65 l37
64 140 58 144
58 146 53 150

97 112 81 127
80 130 71 137

84 122
72 135
65 142

90 116 77 128
75 132 67 138
67 140 61 145

92 111 77 126
73 131 65 137
64 140 58 145
58 146 53 150

82 121
68 135
61 143
56 148
86 115
68 133
59 142
53 148
49 153

86 120
81 126 72 133
71 136 65 141

83 119
77 127 69 134
67 137 61 142
61 144 56 148

89 111
77 124 68 132
65 137 59 141
58 144 53 148
53 149 49 152

95 109
84 121 74 130
72 134 65 140
65 142 59 146
82 121 72 130
68 135 62 140
61 143 56 147
56 148 51 151
86 114 74 126
68 133 61 138
59 142 54 146
53 148 49 151
49 153 45 155
94 111 78 125
74 131 66 137
65 140 59 144
59 146 54 150

78 122
71 130 64 136
62 140 56 145
55 147 51 150
51 151 47 154
73 126 65 133
61 139 55 143
54 146 49 150
49 151 45 154
45 155 42 158

0.037 0.038 0.039 0.040 0.041 0.042 0.043
b
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ditional incorporation of B&-B& mixing yields a tighter
upper bound on h than the one in (30).

Once we have in this way obtained the phase b &om
the three angles s12, 823, and s13 or equivalently V„„
Vs, and iV„b/V,si, we are by use of (ll) able to derive
combinations of CKM elements, which are of special phe-
nomenological interest.

B. iVsi

iVtgi plays an important role for the parameter xq of
B&-B& mixing. Especially once the B,-B, mixing mixing
parameter x, is measured a theoretically clean determi-
nation of iVqgi from the ratio x, /xq will be possible. The
comparison of the result with the determination of iVtgi
&om e~ presented in the following will be a viable ex-
perimental test of the quark mixing sector.

Table II shows the value of iVqgi as derived from b in
Table I. As usual we give both solutions, the smaller
one always corresponds to the smaller value of b and vice
versa. As in the case of h a dash means that there exists
no solution for the specific set of parameters. We find for
the central values and the individual variations

103 +0.6 +0.6 +0.6 +0.6
—0.9 —1.3 —0.7 —0.9,

i~ash j 03 +1.7 +1.5 +0.5 +0.6
VgQ

i
x 10 10 6

0 6 0 6 0 5 0 (31)

iVqi x 10 = 93+

iVtgi x 10 = 10.6 o's . (32)

Again the scanning for the extremal values yields an error
which is not much larger than the addition in quadrature:
—2.4 instead of —1.9 and +2.9 instead of +2.4 in (32).
The extremal values again correspond to the largest val-
ues for all input parameters. We remark here that we
have also used a third way to estimate the error of ~Vq&i:
We have scanned the extremal values for iVqgi for those
parameters which lie in a lo ellipsoid (38) around the

The upper line of iVqgi and the lower line of iVqq~
's

corresponds to V,s ~;» iV„s/V,pi~;» m~;„,and B~~;„
[see the values in the paragraph below (29)j, the lower
line of iVqgi and the upper line of iVqgi

' result from
putting the input parameters to their highest allowed
value.

In the same way as in the case of b in the last section,
we obtained as combined errors

TABLE II. The values of ~Vtqi corresponding to the two values of b in Table I.
Vb

m~ Bz
155 0.65
155 0.65
155 0.65
155 0.75
155 0.75
155 0.75
155 0.75
155 0.85
155 0.85
155 0.85
155 0.85
155 0.85
168 0.65
168 0.65
168 0.65
168 0.65
168 0.75
168 0.75
168 0.75
168 0.75
168 0.85
168 0.85
168 0.85
168 0.85
168 0.85
181 0.65
181 0.65
181 0.65
181 0.65
181 0.75
181 0.75
181 0.75
181 G.75
181 0.75
181 0.85
181 0.85
181 0.85
181 0.85
181 0.85

Vub
Vc.b
0.08
0.09
0.10
0.07
0.08
0.09
0.10
0.06
0.07
0.08
0.09
0.10
0.07
0.08
0.09
0.10
G.G7
0.08
0.09
0.10
0.06
0.07
0.08
0.09
0.10
0.07
0.08
0.09
0.10
0.06
0.07
0.08
0.09
0.10
0.06
0.07
0.GS
0.09
0.10

0.040
iv,„lx'

9.8 11.2

9.0 11.3
9.2 11.1
8.6 11.9

9.0 10.3
9.4 10.1
8.5 11.1

8.7 11.0
8.2 11.7

9.0 10.8
8.4 11.6
7.9 12.1

9.5 11.0
9.8 10.7
9.0 11.7

8.8 11.0
9.0 10.9
8.4 11.6

9.3 10.6
8.6 11.5
8.1 12.1

9.2 9.8
8.3 10.8

8.5 10.7
8.0 11.4

8.8 10.6
8.1 11.3
7.7 11.8

9.3 10.2
8.4 11.1
7.9 11.7
7.5 12.3

9.3 10.7
9.6 10.4 9.0 11.3
8.8 11.4 8.4 12.0

8.6 10.7
8.8 10.6
8.2 11.3

9.1 10.3
8.4 11.2
7.9 11.8

8.7 11.0
8.1 11.7
7.7 12.2

8.3 10.4
7.8 11.1

8.6 10.3
8.0 11.0
7.6 11.5

9.1 9.9 8.6 10.7
8.2 10.9 8.0 11.3
7.8 11.5 7.6 11.9
7.4 12.0 7.2 12.4

0.037 0.038 0.039 0.041 0.042 0.043

10.2 10.9
9.2 12.0

9.5 11.8
8.9 12.6

9.6 10.4 9.1 11.2
8.7 11.4 8.5 11.9
8.1 12.0 8.0 12.5
7.7 12.6 7.6 13.0

9.2 11.6
8.6 12.3

8.9 11.3
8.3 12.0
7.9 12.5

8.8 10.9
8.2 11.6
7.8 12.2
7.4 12.7

9.3 11.1
8.6 11.9
8.2 12.5

9.5 11.3
8.8 12.1
8.4 12.8
9.3 11.0
8.6 11.8
8.1 12.4
7.7 12.9
9.4 10.5
8.6 11.4
8.1 12.0
7.7 12.6
7.3 13.1
9.9 10.6
8.9 11.7
8.4 12.3
8.0 12.9

9.1 10.8
8.4 11.5
7.9 12.1
7.6 12.6
9.2 10.3
8.4 11.2
7.9 11.8
7.5 12.3
7.1 12.7

8.8 11.3
8.2 12.0
7.8 12.5
7.4 13.0
8.9 10.9
8.3 11.6
7.8 12.1
7.4 12.6
7.G 13.1

9.8 11.5
9.1 12.4
8.6 13.0
9.6 11.2
8.9 12.1
8.4 12.7
8.0 13.2
9.8 10.7
8.9 11.7
8.3 12.3
7.9 12.8
7.5 13.4

10.2 10.8
9.2 12.0
8.6 12.6
8.2 13.2
9.0 11.6
8.5 12.3
8.0 12.8
7.6 13.3
9.1 11.2
8.5 11.9
8.0 12.4
7.6 12.9
7.2 13.4
9.3 11.4
8.7 12.2
8.2 12.8
7.8 13.3
9.3 11.0
8.6 11.8
8.1 12.4
7.7 12.9
7.3 13.4
8.7 11.4
8.2 12.0
7.7 12.5
7.3 13.0
7.0 13.5

9.6 10.8 9.1 11.5
8.8 11.7 8.6 12.2
8.3 12.4 8.1 12.8
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central values. This has yielded the same error bar as in
(32). Yet for the determination of the quantities to be
discussed in the following sections this method is most
useful.

Let us discuss the dependence of lVqdl on the most
important input parameters in more detail. In Fig. 3
we plot the dependence of lVqdl on Vb for lV„b/Vbl
0.07, 0.08, 0.09, 0.10 and the other parameters being fixed
at their central values. For lV„b/V,bl = 0.06 we cannot
find a solution. The curves drawn with thick lines rep-
resent the actual solution for lVqdl, the thin lines display
the value of lVqdl, if the phase b would be equal to zero.

Let us further compare this to the bound on lVqd l
which

we get &om B&-B& mixing. The experimentally mea-
sured quantities Lm~„and xp are given by

+mB xd/+B l&~dl l&~bl, qQCDmBBB Fg,2 G~~ 2

6+2

(33)

Using m~ = 168 GeV and gg~D ——0.55 one obtains with
the values of Sec. IIIC

where the branches meet is quite large, it amounts to
about 6 GeV. This fact was already discussed at the
end of Sec. IV.

C. Prediction for Lm~, and z,

It is well known (see, e.g. , [31]) that an analysis using
both xg and the B,-B, mixing parameter x, allows for
a much more precise determination of lVqdl than the in-
vestigation of xg alone. The main reason for this is the
fact that the hadronic uncertainties in the ratio xd/x, are
reduced to SU(3) breaking effects and are thereby much
smaller than in xd or x, alone. Further le, l

is known
very well, because it is related to Vb via the unitarity of
the CKM matrix. The present experimental bound on x,
does not constrain the ranges (32) and (34) for lVqdl fur-
ther. Therefore we will instead predict a range for Lm~
and x, from our result (32).

We will use the mass difference Am~ = x~/w~ with
q = d, s in our formulas. From (33) and the analogous
formula for x, one finds

0.0069 & lVdl & 0.0124. (34)

This is represented by the shaded band in Fig. 3. One
immediately notices, that higher values of lV„b/V,bl and
V g favor the lower branch of the solution, i.e., the smaller
solution for b. While for the central values of our analysis
Bdo Bdo mix-ing implies no additional constraint on lVqdl,
we still get a tighter upper bound for lVqdl compared
to the range (32) implying only lVqdl & 0.0130. From
Fig. 4 one can easily verify that varying mz does not yield
a bound on ]Vqdl different from (34) for the combined

analysis of e~ and B&-B& mixing. F'urther note that
the band derived &om xp clearly shows b being difFerent
from zero in the whole range of values for lV,bl. This is
remarkable, because in the standard model the phase b

is responsible for the CP violation and xp is a quantity
having nothing to do with the breakdown of this discrete
symmetry.

Let us now explore the m~ dependence of lVqdl, which
is plotted in Fig. 4. The solid curve is identical for (a)—(c)
and corresponds to the central values of Sec. III C, we ad-
ditionally varied in (a) B~ = 0.65, 0.75, 0.85, in (b) V,b =
0.038, 0.040, 0.043, and in (c) lV„b/V,bl = 0 07, 0.08,.0.10.
No solution was obtained for (b) V,b = 0.037 and (c)
]V„b/V,bl = 0.06. The band displayed in gray again shows
the values allowed for lVqdl from xd. Clearly, for larger
values of m~, V,b, and lV„b/V,bl the constraint from xd
favors the lower branch of the solution for lVqdl.

Figure 4(d) shows the variation of l Vqd] vs m~ with the
value of the strong coupling normalized at Mz, n (Mz).
One notices, that the in8uence of n, (Mz) far off the
point where the two solutions merge is quite small. As
one expects, the variation of the value mq at the point

with

m g„F~„Ba
ma. F~ Ba (36)

Bd, equals 1 in the SU(3) limit. The SU(3) breaking in
the decay constants is encoded in (27). Setting

Rg, = 0.66 6 0.08

one gets from (35)

Amgy ——(0.76 + 0.11)ps
td

(37)

Now for ]Vqdl = 9.3 x 10 one finds Am~. ——(13.4+
1.9) ps i corresponding to x, = (20.5 6 3.2) for w~.
1.53 + 0.10 [16]. Equivalently lVqd l

= 10.6 x 10 s yields
Am~, = (10.2 + 1.5) ps i and x, = (15.6 6 2.4). These
values are well above the present lower bound Lm~. &
6.0 ps i &om the ALEPH collaboration [32]. In order
to find the range for Lm~. consistent with e~ and xg
in the parameter range of Sec. III C we use two different
methods. First we scan the full range yielding

63ps & Lm~ & 33ps

where the error in (37) has been included. Second we
restrict the input parameters to the 10 ellipsoid

6 lV„b/V,bl
—0.081 (V,b

—0.0401 (m, —168 GeV ) f'B~ —0.75)
0.02 ) g 0.003 j ( 13GeV ) ( 0.10+ (1, (38)
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which would be the natural range, if all errors were sta-
tistical. Here we find

2J~y = V„gV„,1mAg ——A A t)+ 0 (A ), (41)

68 Ps & 6mB & 24Ps

showing that only the upper bound is sensitive to the
border region of the parameter space. For our final pre-
diction we use the arithmetic mean of both estimates:

and encodes the same experimental information, because
the value of V„pV, is precisely known. For example
e~/c'~ is proportional to ImAq. We tabulate ImAq in
Table III. Here the lower solution for b corresponds to
the higher value of Im At and vice versa. For our standard
choice of parameters from Sec. III C we find

6.5 ps & 6mB & 28 ps

This corresponds to

9.3&x, & 46.

(39)

(4o)

4 Avow +0 07 +0.06 +0.09 +0 09
—0.20 —0.12 —0.15 —0.19 )

10 x I A
' = I 28+0.03 +0.19 +0.00 +0.00

10 x ImAt 1-28 —005 —007 003 003 (42)

Future stronger bounds on LmB may be used to rule out
the higher solution for ~Vtq~ in a part of the parameter
space: Since to 1% accuracy ~Vq,

~

= 0.98V,s, the relation
(37) defines a straight line in Fig. 3 excluding the values
for iV,&~ abov«his line.

D. ImAt

In the discussion of CP violation Im At is of utmost
importance. It is proportional to the Jarlskog parameter,

The upper line of Im At and the lower line of Im At'g

corresponds to V,s;„,~V„q/V,b~~;„,mt";„,and &z,
[see the values in the paragraph below (29)j, the lower

line of ImA, and the upper line of ImAt' " result from
putting the input parameters to their highest allowed
value. Note that Im At' is not a monotonous function
of the input parameters, for our central values of m~ and
B~ we are already close to the maximum.

From the analysis of e~ alone we find for a scan of the
whole parameter range the result

TABLE III. The values for Im A~ corresponding to the two values of b in Table I.
v.g

mt Bz
155 0.65
155 0.65
155 0.65
155 0.75
155 0.75
155 0.75
155 0.75
155 0.85
155 0.85
155 0.85
155 0.85
155 0.85
168 0.65
168 0.65
168 0.65
168 0.65
168 0.75
168 0.75
168 0.75
168 0.75
168 0.85
168 0.85
168 0.85
168 0.85
168 0.85
181 0.65
181 0.65
181 0.65
181 0.65
181 0.75
181 0.75
181 0.75
181 0.75
181 0.75
181 0.85
181 0.85
181 0.85
181 0.85
181 0.85

Vti 5

0.08
0.09
0.10
0.07
0.08
0.09
0.10
0.06
0.07
0.08
0.09
0.10
0.07
0.08
0.09
0.10
0.07
0.08
0.09
0.10
0.06
0.07
0.08
0.09
0.10
0.07
0.08
0.09
0.10
0.06
0.07
0.08
0.09
0.10
0.06
0.07
0.08
0.09
0.10

0.037

1.37 1.22

1.22 1.15
1.34 1.06

1.36 1.12

1.22 1.00
1.30 0.95

0.038

1.29 1.21
1.41 1.12

1.43 1.17

1.28 1.04
1.36 0.99

1.44 1.27

1.29 1.10
1.39 1.04

1.15 0.99
1.23 0.93
1.30 0.90

0.039 0.040
ImA 10

1.60 1.41

1.51 1.23
1.43 1.22
1.53 1.15

1.35 1.10
1.43 1.05

1.27 1.09
1.36 1.03
1.43 0.99

1.52 1.33
1.43 1.32
1.57 1.22

1.36 1.15
1.46 1.09

1.28 1.15
1.38 1.07
1.46 1.03

1.21 1.03
1.29 0.98
1.36 0.94

1 ~ 12 1.04
1.22 0.96
1.29 0.92
1.36 0.89

1.22 1.09
1.32 1.02
1.40 0.98

1.24 1.01
1.32 0.96
1.39 0.93

1.06 0.99
1.16 0.92
1.23 0.88
1.29 0.85

1.09 0.91
1.16 0.87
1.22 0.83
1.28 0.81

1.36 1.27 1.42 1.15
1.49 1.17 1.51 1.09

0.041 0.042

1.50 1.42 1.57 1.29
1.65 1.30 1.67 1.22

1.34 1.22
1.46 1.14
1.54 1.09

1.38 1.13
1.46 1.08
1.54 1.04

1.49 1.21
1.59 1.15

1.31 1.06
1.39 1.01
1.46 0.98

1.14 0.96
1.22 0.91
1.28 0.88
1.35 0.85

1.34 1.14
1.43 1.08
1.52 1.03

1.40 1.20
1.51 1.14
1.59 1.09
1.22 1.06
1.31 1.00
1.38 0.96
1.45 0.93
1.06 0.97
1.14 0.90
1.21 0.87
1.27 0.84
1.33 0.81
1.23 1.16
1.35 1.07
1.44 1.02
1.51 0.98

1.16 1.00
1.25 0.95
1.32 0.91
1.39 0.88
1.01 0.92
1.09 0.86
1.15 0.82
1.21 0.79
1.27 0.77

1.17 0.94
1.24 0.90
1.31 0.87
1.37 0.84
1.01 0.85
1.08 0.81
1.14 0.78
1.19 0.76
1.25 0.74

1.17 1.10 1.20 1.02
1.28 1.02 1.28 0.97
1.36 0.98 1.35 0.93
1.43 0.95 1.42 0.90

0.043

1.47 1.28
1.59 1.21
1.68 1.16
1.28 1.13
1.38 1.07
1.46 1.02
1.53 0.99
1.11 1.03
1.20 0.96
1.27 0.92
1.34 0.89
1.40 0.86
1.29 1.22
1.42 1.13
1.51 1.08
1.59 1.04
1.23 0.99
1.30 0.95
1.37 0.92
1.44 0.89
1.06 0.90
1.13 0.86
1.19 0.83
1.25 0.80
1.31 0.78
1.26 1.06
1.35 1.01
1.43 0.97
1.50 0.94
1.09 0.94
1.16 0.89
1 ~ 23 0.86
1.29 0.83
1.36 0.80
1.00 0.81
1.06 0.77
1.12 0.75
1.17 0.73
1.23 0.71



52 INDIRECT CP VIOLATION IN THE NEUTRAL KAON SYSTEM. . . 6515

0.71 x 10 ( Im Aq ( 1.68 x 10 (43)
1.5

I I
i

I I I I
f

I I $ I
i

I

(b)

0.89 x 10 ( ImA& ( 1.51 x 10

We combine the two estimates to our Anal result

0.85 x 10 & ImAq ( 1.60 x 10

(44)

The m~ dependence of Im Aq may be looked at in Fig. 5.
Plot (a) shows this dependence for three values of iV,bi,
plot (b) uses four values for iV„b/V,bl. Note that the
result for Im Az on the upper branch is essentially inde-
pendent of Vp, whereas the lower branch varies quite
strongly with Vp.

E. p, g and the unitarity triangle

Next we include the constraint &om xg.. We now And the
lower bound in the full parameter range in (43) shifted
from 0.71 to 0.81. For the parameter range (38) we find

1 a3
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I V,bi=0.038
I V, 1=0.040
IV, I=0.043

Our knowledge about the CKM parameters related to
P violation is usually expressed by the unitarity trian-

gle introduced in Sec. III A.
Using b &om Table I, one obtains the allowed pairs of

(p, g) listed in the Tables IV and V. Note that this table
is constructed solely &om the unitarity of the CKM ma-

50 160 170 180 190 200
m,

'
[GeV]

FIG. 5. The dependence of Im Aq on m," for (a) three values
of ~V, q~ and (b) four values of ~V q/V, b~. In plot (a) one ob-
serves that the higher solution for Im A~ is stable with respect
to the variation of ~V, q~, whereas the lower branch depends
quite strongly on this parameter.

TABLE IV. The values for p corresponding to the two values of b in Table I.
Vb

m~ Bg
155 0.65
155 0.65
155 0.65
155 0.75
155 0.75
155 0.75
155 0.75
155 0.85
155 0.85
155 0.85
155 0.85
155 0.85
168 0.65
168 0.65
168 0.65
168 0.65
168 0.75
168 0.75
168 0.75
168 0.75
168 0.85
168 0.85
168 0.85
168 0.85
168 0.85
181 0.65
181 0.65
181 0.65
181 0.65
181 0.75
181 0.75
181 0.75
181 0.75
181 0.75
181 0.85
181 0.85
181 0.85
181 0.85
181 0.85

Vii b
Vcb
0.08
0.09
0.10
0.07
0.08
0.09
O. 10
0.06
0.07
O.G8
0.09
0.10
0.07
0.08
0.09
O. 10
0.07
0.08
0.09
0.10
0.06
0.07
0.08
0.09
0.10
0.07
0.08
0.09
0.10
0.06
0.07
0.08
0.09
O. 10
0.06
0.07
0.08
0.09
O. 10

0.037

-0.014 -0.202

-0.049 -0.141
0.085 -0.279

0.043 -0.255

0.062 -0.233
0.142 -0.318

0.038

-0.041 -0.145
0.088 -0.279

0.054 -0.260

0.071 -0.237
0.149 -0.320

-0.021 -0.208

0.031 -0.212
0.120 -0.306

0.038 -0.184
0.128 -0.277
0.193 -0.346

0.039

0.055 -0.258

0.072 -0.236
0.151 -0.319

-0.011 -0.214

0.038 -0.215
0.126 -0.308

0.045 -0.187
0.132 -0.278
0.197 -0.347

-0.047 -0.150
O.O81 -0.283

0.000 -0.155
0.106 -0.264
0.174 -0.338

-0.011 -0.113
0.105 -0.232
0.174 -0.3G4
0.232 -0.366

0.040

-0.015 -0.2GS

0.036 -0.211
0.125 -0.306

0.043 -0.184
0.132 -0.276
0.197 -0.346

-0.039 -0.155
0.084 -0.284

0.005 -0.157
0.109 -0.265
0.177 -0.338

-0.005 -0.116
0.10S -0.232
0.177 -0.305
0.234 -0.367

0.065 -0.239
0.143 -0.322

0.082 -0.217
0.156 -0.296
0.216 -0.360

0.072 -0.180
0.149 -0.260
0.210 -0.324
0.263 -0.381

0.041

-0.055 -0.139
0.081 -0.279

-0.014 -0.107
0.105 -0.229
0.175 -0.303
0.233 -0.365

0.067 -0.239
0.145 -0.322

0.083 -0.217
0.158 -0.295
0.217 -0.360

0.073 -0.179
0.151 -0.260
0.211 -0.324
0.265 -0.381

0.038 -0.187
O. 126 -0.279
0.190 -0.348

0.045
0.131
0.195
0.249
O.019
O. 118
O. 183
O.239
O.289

-0.161
-0.250
-0.317
-0.376
-O.110
-0.212
-0.279
-0.338
-0.393

-0.002 -0.149
0.106 -0.262
0.176 -0.336

0.042

0.060 -0.232
0.141 -0.318

0.078 -0.212
0.155 -0.292
0.215 -0.357

0.068 -0.175
0.148 -0.257
0.209 -0.322
0.263 -0.379

0.036 -0.184
0.125 -0.278
0.190 -0.347
0.044 -0.159
0.131 -0.249
0.195 -0.316
0.250 -0.375
0.018 -0.108
0.118 -0.211
0.183 -0.279
0.239 -0.338
0.290 -0.392

-0.019 -0.109
0.100 -0.231
0.169 -0.305
0.227 -0.367

0.099 -0.200
0.168 -0.272
0.225 -0.333
0.277 -0.388
0.077 -0.156
0.151 -0.232
0.210 -0.294
0.262 -0.349
0.311 -0.402

0.043

0.026 -0.175
0.120 -0.273
0.186 -0.344
0.035 -0.151
0.127 -0.245
0.192 -0.313
0.247 -0.373
0.006 -0.097
0.113 -0.207
0.180 -0.276
0.237 -0.336
0.288 -0.391

-0.028 -0.099
0.098 -0.229
0.168 -0.303
0.226 -0.366
0.097 -0.198
0.167 -0.271
0.225 -0.332
0.277 -0.388
0.075 -0.154
0.150 -0.231
0.209 -0.293
0.262 -0.349
0.311 -0.401
0.064 -0.177
0.143 -0.259
0.204 -0.323
0.257 -0.381
0.053 -0.139
0.136 -0.224
0.197 -0.288
0.250 -0.345
0.300 -0.398
0.112 -0.181
0.176 -0.248
0.231 -0.305
0.282 -0.358
0.329 -0.409
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TABLE V. The values for g corresponding to the two values of b in Table I.
v.s

m~ Bz
155 0.65
155 0.65
155 0.65
155 0.75
155 0.75
155 0.75
155 0.75
155 0.85
155 0.85
155 0.85
155 0.85
155 0.85
168 0.65
168 0.65
168 0.65
168 0.65
168 0.75
168 0.75
168 0.75
168 0.75
168 0.85
168 0.85
168 0.85
168 0.85
168 0.85
181 0.65
181 0.65
181 0.65
181 0.65
181 0.75
181 0.75
181 0.75
181 0.75
181 0.75
181 0.85
181 0.85
181 0.85
181 0.85
181 0.85

Vtt b
Vca
0.08
0.09
0.10
0.07
0.08
0.09
0.10
0.06
0.07
0.08
0.09
0.10
0.07
0.08
0.09
0.10
0.07
0.08
0.09
0.10
0.06
0.07
0.08
0.09
0.10
0.07
O.G8
0.09
0.10
0.06
0.07
0.08
0.09
0.10
0.06
0.07
0.08
0.09
0.10

0.037 0.038 0.039 0.040 0.041 0.042

0.441 0.390
0.394 0.373 0.393 0.323
0.434 0.342 0.419 0.307

0.438 0.358
0.396 0.337
0.423 0.319

0.441 0.393
0.395 0.370 0.391 0.320
0.433 0.342 0.415 0.305

0.309 0.290
0.351 G.302 0.337 0.269
0.375 0.286 0.357 0.258
0.395 0.275 0.375 0.249

0.301 0.255
0.321 0.243
0.338 0.234
0.354 0.227

0.438 0.357

0.394 0.372 0.391 0.319
0.433 0.343 0.416 0.304

0.441 0.390

0.442 0.386
0.396 0.366
0.433 0.339

0.392 0.318
0.417 0.303

0.396 0.334
0.423 0.317

0.353 0.317 0.343 0.279
0.382 0.296 0.365 0.266
0.404 0.284 0.384 0.257

0.350 0.300
0.375 0.284
0.395 0.273

0.309 0.287 0.300 0.252
0.336 0.266 0.320 0.240
0.356 0.255 0.337 0.231
0.374 0.247 0.353 0.224

0.395 0.368 0.392 0.318
0.434 0.339 0.418 0.302

0.351 0.300
0.377 0.283
0.399 0.272

0.351 0.301
0.377 0.285
0.399 0.274
0.306 0.265
0.328 0.251
0.346 0.241
0.364 0.233
0.264 0.242
0.286 0.227
0.302 0.217
0.317 0.210
0.333 0.204
0.309 0.290
0.339 0.267
0.359 0.256
0.379 0.247

0.439 0.361
0.396 0.337
0.425 0.318

0.351 0.302
0.393 0.322 0.376 0.285
0.418 0.3G7 0.397 0.274

0.353 0.318 0.344 0.279
0.383 0.297 0.365 0.266
0.406 0.285 0.385 0.256

0.309 0.288 0.301 0.252
0.337 0.267 0.320 0.240
0.357 0.256 0.337 0.231
0.376 0.247 0.354 0.223

0.306 0.264
0.328 0.250
0.346 0.240
0.364 0.232
0.264 0.241
0.286 0.226
0.302 0.216
0.318 0.209
0.334 0.203

0.293 0.236
0.311 0.226
0.327 0.218
0.344 0.211
0.254 0.214
0.270 0.204
0.284 0.197
0.299 0.190
0.314 0.185

0.353 0.320 0.345 0.283
0.383 0.299 0.366 0.270
0.405 0.287 0.385 0.260

0.043

0.352
0.379
0.400
0.307
0.330
0.348
0.366
0.265
0.288
0.304
0.319
0.335
0.308
0.339
0.360
0.379
0.293
0.311
0.328
0.344
0.254
0.270
0.285
0.299
0.314
0.302
0.323
0.341
0.359
0.260
0.278
0.293
0.308
0.324
0.240
0.254
0.267
0.280
0.294

0.307
0.290
0.278
0.270
0.255
0.245
0.237
0.247
0.230
0.221
0.213
0.207
0.293
0.269
0.258
0.249
0.238
0.227
0.219
0.213
0.216
0.205
0.198
0.192
0.186
0.254
0.241
0.232
0.224
0.225
0.213
0.205
0.198
0.193
0.].93
0.185
O. 179
0.174
0.169

trix and the constraint &om ~b~~. The additional con-
straint &om x& can be included by recalling from (13)
that

(1 —p)'+ n' =
2

Vga Vg

V,gV g
(46)

Since to 0.2% accuracy ~V,g~
= V„,= 0.22 and ~Vib~ = 1

the determination of ~Vt~~ from (33) yields a circle in the
p-rl plane around (1,0) for each pair (mt", V,b).

In Fig. 6 we display the allowed region for the pair
(p, q) including the constraint &om 2:~ (33) described in
Sec. V B. Applying this constraint results in cutting the
allowed region of (p, g) on the left side of the figure. To
obtain a reasonable estimate of the error present in the
analysis, we have again used two methods. The area dis-
played in dark gray results from varying the input param-
eters B~, mi, V,b, ~V„b/V,b~ in the full parameter range
described in Sec. III C, the area displayed in light gray is
obtained by requiring the used parameters to lie within
the four-dimensional lo ellipsoid described in (38).

From Fig. 6 we read off the following allowed. regions
for (p, rI) and the angles a, P, p in Fig. 1:

50.

0.4

0.3

0.2

0.1

, i'I I hI~~i' I
I g / bs

(2b)

(1b)

(2a) (1a)

0.
-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

P

The ranges quoted in the first column correspond to the
error estimate by the box scan, the second column to the
1'-ellipsoid method. Again we quote as our final range
the arithmetic mean of both estimates:

—0.37& p &0.33,
0.19 & 9 &0.44,

22.3 & o. & 114.3
9.1' & P & 26.2',

42.0 & p & 148.2

—0.34& p &0.23,
0.22 & g & 0.43,

26.2 & a & 102.1
14.9 (P ( 26.2',
55.5 & p & 143.3

(47)

FIG. Q. The allowed region for the pair (p, q) consistent
with za- and xs. Area (la) is obtained from a scan over the
full parameter range of Sec. III C. Region (2a) corresponds to
the parameters in the lo ellipsoid (38). Areas (1b) and (2b)
are consistent with e~, but not with xg.
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—0.36& p &0.28,
0.21 & g & 0.44,
24 &o. &108
12' & P (26',
49 &p &146

(48)

range (30) by the inclusion of the constraint from xg.

49 & b & 146 .

CP asymmetries in the B system are proportional to the
sines of 2o. , 2P, or 2p. We can only reliably predict sin 2P:

VI. A 1995 LOOK AT THE Kg-Kg MASS
DIFFERENCE

0.41 & sin 2P & 0.79,

where the upper bound stems solely froin ~V„s/V,b~

0.10 (see [10]).
Since to O. 1%% accuracy h = p we can now improve the

In this section we will have a look at the status of the
KL,-Ks mass difference Lm~. The short distance part
of b,mlc, denoted by (Am~)sD, reads

G
2 f~B~M~ (Re A, ) z, gi + 2 (Re A, ) (Re Aq) 8 (2:,",z,")gs + (Re Ag) 8 (z,")g2m~ 6m2

(49)

where the small imaginary parts of A and Aq have been
neglected. The three terms in the brackets contribute
roughly in the ratio 100:10:1,therefore the term contain-
ing g1 is most important, the one with g2 is least.

Because g1 strongly depends on its input parameters,
especially on m", and A, it does not make sense to
use the constant defined in (7). We therefore calculate
g1 for each set of parameters in our numerical evaluation.
Inserting our standard set of values de6ned in Sec. III C,
we obtain

long distance eKects should be suppressed by a power
of A&cD/m,

" with respect to the short distance part be-
cause the coefBcient of the leading dimension six operator
contributing to the gz part of the efFective Hamiltonian
in (3) is proportional to m," (see, e.g. , [33]).

A short look at (50) clearly exhibits a short distance
dominance. Let us discuss the steps which have guided

I i I I i I I I I I i I I i I I I I i I

0.52
(+m&)sD
(Amx ),„

0.67

0.91

+0.17
—0.11
+0.25
—0.14
+0.39
—0.20

for A = 0.210 GeV

7
for A = 0.3].0 GeVMS

) for P = 0.410 GeV .MS

1.30—

1.20—

f.10—

The errors are estimated by a scan through the allowed
parameter space and includes the error stemming &om
scale variations in the g,"'s.

The strong A dependence of (Amlc)sD / (6m~),
„

has been visualized in Fig. 7. The central line is obtained
by using the central values de6ned in Sec. III C, the band
shaded in gray displays the error.

For large values of A the uncertainties in g1 due to
scale variations become targe indicating the breakdown
of perturbation theory. Therefore the error bar on Lm~
which is then dominated by this scale uncertainty grows
very large prohibiting a precise prediction for the mass
difference. One will have to see, whether in the future
A L will continue growing in the future and thereby
bringing the next-to-leading order result for gz into trou-
bles.

Let us now discuss the differences between our new
result and previous analyses: In most textbooks Lm~
is termed to be dominated by poorly calculable long
distance physics. Yet by power counting arguments,

5 1.00—

E 0.90—

R 0.80
E

0.70

0.60

0 50

0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40~""toev]

FIG. 7. The dependence of the ratio of the short distance
part of the KI.-K& mass difference to the experimentally mea-
sured value on A:—A . The curve in the middle is
obtained by choosing the central values of the parameters as
given in Sec. III C. All values lying in the shaded area are
compatible within the error bands quoted in this section. The
increasing height of the band displaying the error is due to the
growing scale uncertainties present in the coeKcient gj .
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us to this result.
Already our 1993 analysis [6], in which we have cal-

culated the coeKcient gz in the next-to-leading order
approximation, has resulted in a large enhancement of
the theoretical prediction for the KL;Ks mass difference.
This fact is true, because

(i) the next-to-leading order correction has largely in-
creased the value of g& and

(ii) the experimental value for ANLo has risen in the
last decade.

Both findings lead to the drastic increase of g& by ap-
proximately 65%, which we get by coinparing (8) and
(7).

Finally, our new analysis compared to [6] for the first
time uses the coeKcient g3 calculated in the next-to-
leading approximation. This quantity again enlarges the
result for Lm~. Because A has grown again in the
meantime thereby enlarging the theoretical prediction
once more, we are now able to reproduce the experi-

mentally measured value to 50—100% by short distance
physics.

Some authors attributed the deficit in Am~ to new
physics. The large-scale uncertainties present in the co-
efBcient gz, which obscure a clean determination of the
standard model contribution, make the KL;Kg mass dif-
ference a poor laboratory to search for the impact of new
physics.
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