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Spontaneous breaking of vector symmetries and the nondecoupling light Higgs particle
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Using a four fermion interaction Lagrangian, we demonstrate that the spontaneous breaking of
vector symmetries requires the existence of a light (comparing with the heavy fermion mass) scalar
particle, and the low energy effective theory (the o model) obtained after integrating out heavy
fermion degrees of freedom is asymptotically a renormalizable one. When applying the idea to the
electroweak symmetry breaking sector of the standard model, the Higgs particle's mass is of the
order of the electroweak scale.
PACS number(s): 11.30.+c, 12.60.Nz

The spontaneous breaking of vector symmetries
(SBVS) is an interesting subject in quantum field the-
ory and also in particle physics, as long as it continues
to be a possible characteristic of nature. In a previous
paper [1] we have made an attempt in considering the
breaking of the electroweak symmetry as a consequence
of the SBVS between fermions with heavy bare masses.
The motivation of such a consideration is to break the
electroweak symmetry dynamically but with least inHu-
ence on the low energy physics [1]. We modeled SBVS
by a low energy effective Higgs-Yukawa interaction and,
after integrating out the heavy fermion fields in the mean
Geld approximation of the Higgs particle, estimated the
low energy residual effects of these heavy fermions. It
is shown that the heavy fermion GeMs are essentially
decoupling at low energies, except that -they can gener-
ate massless Goldstone excitations to be absorbed by the
weak gauge fields. The low energy effective theory (the
standard model) should therefore be weakly interacting—a picture different from the technicolor models.

Nothing can be said about the mass of the composite
Higgs particle, within the context of the effective Higgs-
Yukawa model in Ref. [1]. A question then arises: Can
it be as heavy as the heavy fermion mass? From general
physical consideration we know that this should not be
the case. Because if the Higgs particle's mass is heavy
enough, the remaining fields must be in a strongly in-
teracting system because of the well known tree-level
unitarity argument [2] —a result contrary to our mo-
tivation and the general expectation &om the decoupling
phenomena. The aim of this paper is to resolve this
Higgs mass ambiguity, using a model of four fermion in-
teractions with the dynamically generated SBVS. The
SBVS through four fermion interactions was first ana-
lyzed by Preskill and Weinberg [3] to study the possible
violation of the "persistent mass condition. " For a four
fermion interaction with a global vector symmetry, there
are primarily two scales, the cutoff scale A and the bare
fermion mass M(M ( A), and in addition, the interac-

tion strength is characterized by a dimensionless coupling
constant, G. Preskill and Weinberg have shown that, for
a given cutoff A and a suKciently large G, there exists a
critical value M . When the fermion mass is below this
critical point, M ( M„ the vector (isospin) symmetry is
spontaneously broken down. As a consequence, there ex-
ist massless particles composed of massive constituents
leading to a violation of the persistent mass condition.
When M exceeds M, the system is in a symmetry phase
and the decoupling phenomenon occurs. The symmetry
breaking is of second order and characterized by a new
scale m (the fermion mass splitting) obtained after some
Gne tuning.

For our purpose, the four fermion interaction La-
grangian can be written as

where @ = (@q,@2) and vga 2 are SU(2) isospin doublets.
The index i refers to the "color" degree of freedom and
runs over 1 to N, . We assume N, is large in the following.
r; are generators of the SU(2) isospin group, and p; are
Pauli matrices of the "parity doublet" space (i.e. , space
between gq and @2). The Lagrangian equation (1) is
invariant under the following SU(2) xSU(2) rotations:

(2)

To match the electroweak physics one of the SU(2)
global symmetries will be gauged as SU(2)~ [of course,
the local U(1)y should also be introduced]. The other
"custodial" SU(2) symmetry remains as a global one and
can be broken explicitly but slightly. The latter con-
straint comes from the experimental value of the p pa-
rameter. Since these are already discussed in Ref. [1]
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One can add more terms and couplings; see for example
Ref. [1]. The present Lagrangian is the minimal one suitable
for the discussion in the present paper.
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and are not very relevant to the topic in the present pa-
per we will no longer discuss them but just work with the
effective Lagrangian equation (1). To study the sponta-
neous symmetry breaking we look at the gap equation
and search for a solution of the fermion mass matrix of
the type m = m, +p3m3. In the large N limit we obtain

m, =M,
ia a4&

ms —— tr(ps S~),2~ 4 (4)

where

we have

A 2d2zzz qE dq@
A2 q@2+ m2 ' (6)

G
my —m2 = — my — m2

where mq 2 ——M + m3. For small but nonvanishing mq-
m2 the above equation can be further approximated as

SF)
The above equation (4) can be written in a simple form.
To define

7r2—= f'(M) + sms f'"(M) . (8)

For small values of M (or M, ), f'(M) is a decreas-
ing function of M and f"'(M) is negative. Therefore
we observe &om the above formula that when zr2/G is
smaller than unity there exists the critical value M,
zr /G = f'(M, ). When M is less than M, there exists a
nonvanishing solution of m3,

ms ——/6M, (M, —M),
which holds in the ms ((M (or M -+ M ) limit. Once
M exceeds the critical value M there is only the trivial
solution ms ——0 in the above equation (8).

Up to now we have said little more than the result
obtained in Ref. [3] except that in our case the vector
group is SU(2) x SU(2) which spontaneously breaks down
to SU(2) and therefore there are 3 Goldstone bosons.
The appearance of these massless Goldstone excitations
implies that the decoupling of the heavy fermions exists
in a nontrivial manner because of the existence of the
phase transition.

To understand more about the dynamics of SBVS it
is necessary to solve the Lagrangian equation (1) in the
large N limit. For our purpose it is appropriate to dis-
cuss the following two point functions:

rr(q')—:z jv'xe '(iT(e'(x*)p, e'(x)e'(o)p, e'(o))l), (10)

rr, (o') —= j&'*~*'*(i T(e(*) pa (*) (o)~3 (o))l),

rr" (,') =*fe"*."(~T(e*(*)r.*o"e'(*)e'(o)o,e*(o))l)
—= zq"IIM(q ) . (12)

In above equations i, j denote isospin indices and we
dropped out the color indices for simplicity. These two
point functions are obtainable by summing up fermion
bubble chains. We use the functions with overbars to/de-
note the one-loop contribution to the two point functions.
Direct calculation leads to

ll~(q')" ''=1 G/An. (, )

(14)

and

IIM (q
1 —G/A II (q')

' (»)

where II~ and IIS are quadratically divergent and II~
only contains logarithmic divergence (the latter one is
linearly divergent in the NJL model). One must be care-
ful in dealing with the quadratic divergence in order to
avoid the dependence on the choice of the internal mo-
mentum Bow. The standard method to overcome this

1 —G/A'II~(0) = 0 . (16)

In the present case, the gap equation is more sensitive than
in the Nambu —Jona-Lasinio (NJL) model to the higher order
terms in the 1/A expansion. Unambiguous results can only
be obtained when keeping M/A small, since these subleading
terms are regularization scheme dependent.

I

difhculty is to calculate firstly the imaginary part of the
two point functions using the Cutkosky rule and then
use dispersion relations to evaluate the full amplitudes.
The dispersion integrals are usually divergent and need
subtractions. To deal with II~ it is useful to rewrite it
as II~(q2) = II~(0) + q III, (q ). The function III, (q )
[which coincides with (d/dq )II~(q2) at the origin] now
only contains logarithmic divergence, the quadratic cutoQ'
dependent term is already absorbed into II~(0). In order
to have a Goldstone pole in the function IIJ (q ) we read
o8' the self-consistency condition for SBVS which should
be equivalent to the gap equation,
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The mixed function IIM can then be written as

IIM (q')
—G/AzqzII~(q2)

while

3/2 1/2
1 mi —m2 f (mi + m2) l & (mi —mz)—ImIIM(t) = 1— 1
7r

1= (m, —m, ) —ImlI~(t) (18)

The use of unsubtracted dispersion relations (with a trun-
cated integrand at 4A ) as proposed in Ref. [4] immedi-

ately leads to IIM/II& = const. This is not an accident,
as can be proven using the equal time anticommutation
relation of the quark fields and the current conservation
condit ion,

2iq"
IIM =, ([@ps% ]) .M

Therefore from Eq. (17) we obtain

mass of the scalar particle composed of heavy fermion
fields is a consequence of the symmetry and be model in-
dependent, at least in a system with second order phase
transition. This property is not shared by other possible
composite particles. For example one could add another
four fermion interaction term in the Lagrangian equa-
tion (1) with vector-vector couplings and the mass of the
vector resonance, if it exists, is A and can be large.

To discuss the electroweak physics, comparing with the
expression of the decay constant of the Goldstone field
[1], f2 =;m32ln(A2/Mz), we obtain.

([e„e[)= — A'(m, —m, ) .
2G

(20) 2&V

QN, ln(A/M)
(23)

For the two point function II~ (q ), one can write
II~(q ) = II~(q ) + bIIg(q ). Again the quadratic di-
vergence is absorbed into IIy (0) and hllg(q ) only con-
tains logarithmic divergence. The fine tuning is isolated
in Eq. (16) or in the gap equation. The Higgs particle s
mass is obtained by looking for the pole position of the
scalar two point function. We read ofF from Eq. (14) that

mH = —Slip(mH)/Ilp(mH) . (21)

mH —2m3 (22)

This result indicates that the scalar particle's mass is
small, i.e. , at the symmetry breaking scale (comparing
with the fermion mass scale and the cutoff parameter).
Especially it has nothing to do with the whole fermion
mass, rather it is only related to the dynamically gen-
erated part of the fermion mass. In the N JL model for
chiral symmetry breaking it happens to be that the two
masses coincide. It is worth pointing out that the light

In the symmetry phase (i.e., mi ——m, 2) II& is identical to
II~ as a result of the global symmetry. Since these Green
functions are continuous in ms, hlls (mi —m2) and
therefore m& is a small quantity. Approximately we have

mH ———bll~(0)/II&(0). Simple calculation yields

Taking for example A/M 10 we may obtain the upper
bound of the Higgs particle's mass and taking A 10
GeV and M 10 GeV the lower bound may be esti-
mated. We have

260/ gN, GeV & m~ & 1000/ gN, GeV, (24)

This result is compatible with the present experimental
lower bound and also lies within the range detectable
by future hadron colliders. Since the Higgs particle's
mass is lighter than 1 TeV, i.e. , the scale signaling the
strong interaction in the electroweak symmetry breaking
sector, SBVS induced electroweak symmetry breaking is
"weak, " and the symmetry can be realized linearly in
the Higgs sector. Moreover the low energy effective the-
ory is renormalizable: all the nonrenormalizable terms
are screened by the heavy fermion mass [1] (m /M sup-
pressed). This is difFerent from the technicolor interac-
tion (in which the spontaneously broken symmetry is the
chiral symmetry) induced electroweak symmetry break-
ing.

The correct low energy theory, after integrating out
the heavy fermion fields, should therefore be the effective
O(p4) Lagrangian for Goldstone Acids obtained in Ref. [1]
plus the standard electroweak interaction Lagrangian of

' —' Imllp(t) = ', [t —(mi + mz)'] (1 — '+, ' )(1 — ', ' ), —' Imllp(t) = -', (,', (t —4mi) 1 — ' + (mi —+ m )).
At the critical point of the phase transition (m, i ——mz) these two functions are equal. This is of course the consequence of the
symmetry.

Similar results were obtained in the NJL model in Ref. [5] where diferent regularization schemes are used.
This expression receives O[1/ ln(A/M)] corrections which cannot be determined unambiguously [6], although it is practically

unimportant in the present case. In particular, adding more four fermion interaction terms with higher derivatives in the
effective Lagrangian as pointed out in the first paper of Ref. [6] will not lead m~ to be proportional to M rather than m3.
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the Higgs fieM. It is also helpful to not integrate out
fermion fields completely but first down to an arbitrary
scale p to study the heavy fermion contributions to the
running coupling constants of the composite Higgs field.
We have

N. f A'+ M')
App = 'ln

8vrz (~ +M )
(25)

4z 2 (pz + Mz )
(26)

The light Higgs particle brings new nondecoupling effects.
For example if we further integrate it out (if it is allowed,
i.e., not to be as light as 2Miv), at tree level, there is an
additional contribution to Li, bLi ——v /8mH, which is the
same as the standard model one. The claim made in [1] on the
difference between the two Ll terms obtained in the present
model and in the standard model (SM) is therefore incorrect.

There is no difficulty to reproduce the CKM matrix, and
even multi-Higgs models in an extended version of four
fermion interactions.

(27)

We see &om the above expressions that only the high
frequency modes (p ) M) contribute to the wave func-
tion renormalization constant (Z~) and the bare coupling
constant of P self interactions (Ap). The low frequency
modes only contribute to the 6ne tuning of the Higgs
mass.

Once we have introduced the matter field (quarks and
leptons) couplings in the same way as in the SM we can
set up the complete equivalence between the SM and our
model of SBVS, Eq. (1), in the m/M &( 1 limit, even
at the energy scale E much larger than the electroweak
scale as long as E &( M, within the constraints on the
Higgs particle's mass. It is interesting to note that our
model shares many low energy properties of the top-color
model [7), although we have a very different physical mo-
tivation &om the very beginning. Our result implies that
the Higgs particle's mass is naturally of the order of the
electroweak scale which, if confirmed by future experi-

ments, may therefore not necessarily be considered as a
support to the top-color model.

Before concluding, we would like to stress that it is also
appealing to study the property of heavy vector fermions
in the phenomenology aspects. As has been pointed out
in Ref. [8], the inclusion of the heavy chiral fermions
may violate the stability of the SM vacuum. Accord-
ing to the analysis on the one-loop efFective potential,
the Higgs mass is therefore forced to become heavy by
the appearance of heavy chiral fermions. If this is re-
garded as unnatural in the sense of perturbative vacuum
stability, heavy vector fermions may be the only reason-
able candidates in searching for new matter constituents
of nature.

To conclude, we start from a nonperturbative four
fermion interaction with spontaneously broken symme-
try between heavy fermions in vector representations of
the symmetry group and derive an asymptotically renor-
malizable low energy efFective theory, with a light scalar
particle. This remarkable property of the decoupling-
nondecoupling phase transition phenomena of SBVS, we
believe, is model independent. To what extent our model
will be of realistic importance when applying to, for ex-
ample, electroweak physics may depend on whether or
how can it be read ofF from a more fundamental theory
since there are restrictions on SBVS [9], if one respects
to the gauge interactions as the first principle. However,
it is very interesting to point out that our model is close
in spirit to the "composite Higgs model" proposed by
Georgi and Kaplan [10] in which the SU(2) iv gauge group
is vectorlike and is spontaneously broken by a confining
gauge interaction due to vacuum misalignment. Since
the present model, as a low energy efFective theory, only
deals with the low energy symmetries, we expect that
it is helpful to us in understanding the general issue of
SBVS, in a model independent way.

Finally, it is worth emphasizing that there may exist
the possibility that it is vague to say the Higgs particle
is "composite" or "elementary, " since the two cases may
practically be indistinguishable, as shown by the above
example.

Tote added. After this paper was completed, the au-
thor became aware of the recent work by Maekawa [11]
in which ideas similar to Ref. [1) and the present paper
were discussed.

It is my pleasure to thank F. Jegerlehner, M. Locher,
R. Rosenfelder, and especially H. Schlereth for valuable
discussions.
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