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EfBcient algorithm for numerical simulations of the fermion-scalar systems
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An efBcient algorithm is proposed for computer simulations of the lattice fermion-scalar models.
Comparisons with the results from the hybrid Monte Carlo (HMC) method for a fermion-gauge-
scalar model are made, and the HMC data are well reproduced. The advantage of our algorithm,
in addition to its accessibility to the chiral limit, is its lower computational costs for difFerent bare
parameters, therefore, it is very suitable for analyzing the phase structure.

PACS number(s): 11.15.Ha, 02.70.Lq, 12.20.Ds

I. INTRODUCTION II. THE ALGORITHM

The lattice simulations of the fermion-scalar models
have attracted interest because they can provide infor-
mation on the nonperturbative aspects of the standard
model and beyond. The main activities have focused on
the following areas.

(a) The Higgs model at finite temperature. The prop-
erties of electroweak phase transition might be relevant
for the development of the early Universe and baryoge-
nesis. Up to now, only quenched simulations have been
carried out. The fermions should finally be included since
they would play an important role at finite temperature.

(b) Upper bound for the Higgs and fermion masses
&om the Yukawa models.

(c) More recently, it has been argued that some
fermion-gauge-scalar models with a dynamical chiral bro-
ken phase at strong gauge coupling and chiral phase tran-
sition induced by the scalar field might be considered as a
possible alternative to the Higgs mechanism, as discussed
in [1].

The simulation of quantum field theory with fermions
is an extremely demanding task. Furthermore, it might
be expensive for the conventional algorithms to directly
approach the chiral limit, i.e. , the most interesting case
of the models (a) and (c). For the gauge-fermion sys-
tems, an algorithm [2—4] has been developed for tackling
this problem. The purpose of this work is to extend this
algorithm to the fermion-gauge-scalar or fermion-scalar
systems.

The rest of the paper is organized as follows. Section II
describes our new algorithm. The saddle-point analysis
is made in Sec. III. In Sec. IV, the numerical results are
described and the hybrid Monte Carlo (HMC) method
is used to test against the algorithm. Conclusions are
summarized in Sec. V with some discussions about the
possible extension to the Yukawa models.

'Mailing address.
This part was done in collaboration with W. Franzki, C.

Prick, and J. Jersak.

Let me first discuss the fermion-gauge-scalar models
described by

S = 6VpS„(—U) —8V~St(U, Q) + Sf(U, Q) (2.1)

with

S„(U) = ) Re(U„),

St(U, Q) = ) Re(P U „Q „),

Sy(U, g) = @b,(U)$,

A(U) = P" (U)+m, (2 2)

where V is the lattice volume, P is related to the bare
gauge coupling, U„ is the product of gauge link variables,
U „=e'g +"& around the elementary plaquette, ~ is the
hoping parameter, P and @ are, respectively, the scalar
and fermion fields, and b.(U) the fermionic matrix, with
m the fermion mass and P the massless Dirac opera-
tor on the lattice. Without loss of generality, the scalar
modulus is fixed.

A standard prescription is to integrate out the
fermionic degrees of &eedom, so that the partition func-
tion becomes

Z= dU d d t exp6V S„U +8VKS~ U,

x [detA(U)] (2.3)

where detA(U) is the fermionic determinant and N&~
tt

is the number of Havors taking into account the species
doubling. The eKects of dynamical fermions come &om
detA(U), which numerical evaluation requires in general
a huge CPU time due to nonlocality and dependence on
the configurations for difFerent bare parameters m, P,
K, and Nf. Nonlocality implies that small Buctuations
in U would lead to large Huctuations in detb, (U), and
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therefore prohibit local algorithms such as the Metropolis
method. The HMC method has been accepted as the
most efficient one for dynamical fermions.

Here we present a difFerent and efficient algorithm
for the fermion-gauge-scalar systems, which is applicable
to arbitrary fermion masses, possibly including the chi-
ral limit. The microcanonical fermionic average (MFA)
method proposed in [2—4], and tested in the Schwinger
model [5], has been shown to be useful for the phase
structure analysis of the gauge-fermion systems, in par-
ticular for the ground-state properties in the chiral limit.
Our algorithm to be discussed here is a delicate extension
of the MFA method to the fermion-gauge-scalar systems.
The essential idea of the algorithm is the computation of
the full efFective action as a function of the pure gauge
energy E„and other bare parameters such as m, Ny, P,
and v, using the microcanonical average process. Such a
process would lead to significant reduction of the fluctu-
ations in detA(U).

What is new in our algorithm with respect to the MFA
method is the treatment of the scalar field. A central
question now is how to define the effective fermionic ac-
tion. We hope it does not depend on at least some bare
coupling parameter but depends on its corresponding en-
ergy so that it is not necessary to repeat the simulations
of the effective fermionic action at different values of this
bare parameter, fermion mass, and flavor number. In
[2—4] it has been shown how this is realized in the fermion-

dE„h [S„(U)—Ez] exp(6VPE&) = exp[6VPS„(U)]

into the partition function (2.3). The result is

(2.4)

dE„e xp(6PVE„) [dU][dP][d/t]h[S„(U) —E„]

x exp[8Vr Si(U, P)] [detA(U)] (2.5)

Can the link energy E~ and hopping parameter v be fac-
torized out of the integral J[dU][dg][dgt] in a way similar
to that for the gauge energy? The answer is no. The rea-
son is that St(U, P) can neither be simultaneously fixed
during the updates nor be expressed as a function of Ep.
We solve this problem by introducing the density of states

M(E„,r.) = [dU][dg][dgt]h[S„(U) —E„]

x exp[8VrS~(U, P)],

and defining the

S+g (E„,m, Ny, r) by
efFective fermionic action

gauge models. In the models described by (2.2), it also
seems possible to perform the microcanonical updates for
the gauge configurations U by fixing the gauge energy E„,
i.e. , by inserting the identity

iv~ tt f [dU][dg][dgt]8[S&(U) —Ez] exp[8V/cSi(U)][detA(U)]
M Ep, rj

where the fermionic determinant of configuration U is re-
lated to m and the positive eigenvalues A;(U) of g (U)
by

V/2

detA(U, m) = [A, (U) + m ]. (2.8)

dE„exp[—S ir(E„,m, Ny, P, r.)], (2.9)

Equations (2.6) and (2.7) contain some new ideas of this
paper with respect to those in MFA [2—4]. The introduc-
tion of the "efFective scalar action, " which is generally
a function of E„and K, and requires some extra com-
plicated computations [4], is completely avoided. The
effects of the scalar field are absorbed into the density
of states and efFective fermionic action. Then we can
rewrite the partition function as

I

~lat t
([det A(U)] & )~ is the fermionic determinant averaged
over the configurations with the probability distribution

8[ST(U) —E„]exp[8V r Si (U, P)]
M(E„,r.)

(2.11)

These configurations are generated as follows.
(a) Starting from a gauge-scalar configuration (U, P)

with an energy E„, generate microcanonically a gauge
configuration (U'}:

U' = BotUtBot, (2.12)

where Re ——R/~R~ is an element of the gauge group,
and B is the sum of six staples which surround the
link U. The usage of the microcanonical process is to
generate configurations with the probability distribution
b[S„(U) —E„],but it also decorrelates well the configu-
rations. This trial configuration U' is accepted if

where exp[8VrS((U', P) —8VKS((U, P)] ) r, (2.13)

S,g (E„,m, Ny, P, r.) = —ln M(Ep, r.) —6VPE„
+S ~(E„,m, Ng, r.) (2.10)

where r is a random number. This is the feedback of the
scalars to the gauge configurations.

(b) Change the scalar configuration (P') randomly. If

is the full effective action.
The main effort to be paid is to

S ~(E„,m, , Ny, r) through (2.7),
calculate

where

exp [8Vr.Si (O', P') —8V r.Si (U', Q) ] ) r', (2.14)

where r' is another random number, then (P') is ac-
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cepted. In order to decorrelate the scalar configurations,
before going back to (a) for another new configuration,
we perform several deterministic steps; i.e., for a given
site x, make the update

further simulations.
The mean plaquette energy (E„)= E0(m, Ny, P, v) is

the saddle point, i.e., the solution to the saddle-point
equation

(2.15)

and let x go over all the lattice sites. Such a process does
not change the link energy S~ = P Re(pt B )/(4V),
where B = g„U

There are several major advantages in this algorithm:
(a) The effective fermionic action S+& does not depend
on P and its dependence on Ny can be easily obtained,
which means for arbitrary P or Ny in an energy interval
where the microcanonical quantities are known, it is not
necessary to repeat the expensive part of the computa-
tion, i.e. , the determination of A, (U); (b) as seen in (2.8),
S+& as a function m (possibly including m = 0) can be
obtained without repeating the microcanonical simula-
tion; (c) the function integral over fermion, gauge, and
scalar fields becomes a one-dimensional integral over the
pure gauge energy E„.

In one word, one can get the full effective action by
only one microcanonical pure gauge simulation. From
the previous investigations [5—9], we know that such a full
effective action would give us a lot of information on the
thermodynamical properties of the system and would be
very useful for the phase structure analysis. The dynam-
ics of the system can be investigated either by canonical
simulations of the equivalent effective gauge-scalar model
or by saddle-point technique as to be discussed in the fol-
lowing section.

III. SADDLE-POINT ANALYSIS

Since all three terms in the efFective action (2.10) di-
verge linearly with V in the V ~ oo, the thermody-
namics of the system in this limit can be analyzed using
the saddle-point technique. The advantage is that once
we know S+& and M(E„,yc), we can obtain all the ther-
modynamical quantities for arbitrary (m, Ny, P) without

I

—1 OM(E„, K) OS,&(E„,m, Ny, K)

M(E~, v.) OE„OE„+

(3.1)

satisfying the minimum condition

(
1

M(E„,K)2

OM(E„, K)

BE„
1 O M(E„,r)

M(E„,K) OE2

+
O2S,~(Ep, m, Ny, v)

( )& 0, 3.2
E.(~,m, ,P,~)

where

M(E„,v) = M(E„,r) ~

S+~(E„,m, Ny, r)S,s Ep, m, Ny, r (3.3)

are the normalized quantities. M(Ez, K) can be directly
evaluated by numerically integrating (3.1) from the data
of the quenched gauge-scalar models:

lnM(E„, K—) = 6 dEP(E, Ny = 0) + const. (3.4)

Here one sees again the advantage of the definition of
the density of states (2.6): we do not have to do extra
quenched simulations of the pure gauge model nor extra
calculation of the "effective scalar action. "

By looking for the minimum of the full effective ac-
tion as a function of energy E„at given m, Ny, P, and
r, we obtain (E„(m, Ny, P, K)). Other thermodynamical
quantities can be obtained from the information of effec-
tive action at the saddle point. For example, the chiral
condensate and link energy are given by

BS~~
Bm

E (m, z&,P, )

(3.5)

1 BSg
8V Br

Ep(m, Ny, P, K)

—1 OM(E„, v) OS s(E„,m, Ng, v.)+
8M(E„, r.) Or 8Or

E, (m, x, ,p, K) Ep (m, Xy,P,~)

(3.6)

The phase structure of the system is completely de-
scribed by the behavior of the effective action as a func-
tion of the energy and of other parameters. For in-
stance, nonanalytic behavior of the normalized density of
states M(E„,r) (as in the quenched Higgs model) or the
fermionic effective action S,&(E„,m, Ny, K) could gener-
ate phase transitions.

IV. SIMULATIONS AND RESULTS

The most CPU time consuming part of the simulation
is to compute the effective fermionic action S & defined
by (2.7). In practice, the algorithm is implemented in
the following way.

(a) Choose some fixed K.
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FIG. 1. —S,& as a function of Ep.
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(b) Generate configurations (U, P) at the desired en-
ergy E„as described above, where the configurations can
be decorrelated by many microcanonical updates.

(c) Once a decorrelated configuration (U, Pj is gener-
ated, calculate all the positive eigenvalues A;(U) of the
massless fermionic matrix by the Lanczos algorithm.

(d) Averaging the fermionic determinant over the
decorrelated configurations, we get the effective fermionic
action for the given E~ and arbitrary bare parameter m
and Ny. Repeating (b)—(d) for difFerent E~, we get S,&
at the chosen K, and arbitrary rn and Ny as a function
of E„by interpolation.

Other detailed techniques, like the microcanonical up-
date for the gauge field, diagonalization of the fermionic
matrix, and systematic analysis of the effective fermionic
action, can be found in [2—4].

To see how well the algorithm works, let me concen-
trate on a prototype of the fermion-gauge-scalar models
with U(1) gauge group, a scalar of fixed modulus, and

one staggered fermion (N& ——Ny/4 = 1), where both
the scalar and fermion have charge one [1,10].

We have done detailed simulations using the algorithm
described in Sec. II on 6, 8, and 6 16 lattices for
~ = 0.4, 0.6, 0.8, 1.15, where the 6 lattice has the best
statistics. On each lattice, 300 decorrelated configura-
tions (U, P) are generated in the pure gauge energy range
Ez C [0, 1) and their massless fermionic matrix is diago-
nalized, from which we construct the effective fermionic
action S & as a function of the bare parameters m, %y.
(For some interesting points, 600 decorrelated configura-
tions are generated. )

Here we would discuss only the results at r = 0.4 on
the 6 lattice. Figure 1 shows —S+z ——ln(detA)~ /V as
a function of E„ for several fermion masses. From the
quenched simulation, we obtain the first term in (2.10),
that is —lnM(E&, v), as plotted in Fig. 2. Then we use
the saddle-point technique described in Sec. III to calcu-

640

v=0.4, N, =4, in=0. 05, P=0.57

—.645

—.650

1.5
= —.655

0.5

0.0
0.2 0.4 0.8

.50
E

FIG. 2. InM(E~, e) as a —function of E~.
FIG. 3. The normalized full effective action as a function

of E„.
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late the expectation value for the plaquette energy (E„)
by locating the minimum of the full effective action as
a function of E„: Ep(m, &f, P, z). An example is plot-
ted in Fig. 3. According to the saddle-point arguments,
the mean plaquette energy (E„) is just Ep(m, Nf, P, e),
with dependence on P shown in Fig. 4. Other ther-
modynamical quantities like the link energy and chiral
condensate as a function of P, shown in Figs. 5 and
6, are the corresponding microcanonical quantities at
E& = Ep (m, 1',P, r) . For finite m, we also compare
(E„), (Ei), and (@@)with those from the HMC sirnula-
tions and find that they are in perfect agreement, which
means our algorithm is supported by the exact algorithm.
The HMC data for various m and K are satisfactorily re-
produced as well.

Now let me discuss the chiral limit, which could also
be accessible by this algorithm. The results for (E„)
and (Ei) at m = 0 are also shown in Figs. 4 and 5.
Of course, the accessibility to the chiral limit should be
further checked by comparing results for more quantities
&om different algorithms. Whereas (g@) vanishes iden-
tically and mass extrapolation has to be done, the chiral

susceptibility [10,11] at m = 0 is calculable and serves as
a more useful order parameter for the chiral transition.
Again, the critical points are consistent with those ob-
tained from HMC on the same lattice. Detailed analysis
of the chiral susceptibility and comparison with the HMC
data have been reported elsewhere [10].

V. DISCUSSIONS

The algorithm [2—4] and some techniques have been
generalized to the fermion-gauge-scalar models, which
allow us to search the parameter space (m, &~, P) with
much lower computer cost than the conventional algo-
rithms; therefore, it is very suitable for the phase struc-
ture analysis. The essential ingredients are the new and
appropriate definitions of the density of states and the ef-
fective fermionic action when the scalar field is included.
Our algorithm and HMC give consistent results at finite
bare mass m g 0. Some results from this algorithm in the
chiral limit m = 0 have also been presented. An inter-
esting application of this algorithm is to determine chiral
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FIG. 5. Link energy as a function of P.
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S = 8V+S(($) —+ Sy(P, Q) (5.1)

with

transition line in a strongly coupled fermion-gauge-scalar
model [10,11].

While having demonstrated the advantages of the al-
gorithm on the 6 lattice, we would like to mention some
open questions. For large lattice volumes, it is time and
memory consuming to diagonalize the fermionic matrix.
For example, on the 8 lattice, the amount of data re-
quired grow so fast that the results have not been well
tested. Although the Lanczos algorithm is parallelizable
[4] and may be vectorizable, we had not vectorized it
when the algorithm was implemented. It is not easy
to evaluate observables other than the thermodynamical
quantities. These problems are under further investiga-
tion.

Concerning the possible extension to the Yukawa mod-
els, here we would like to give some brief discussions.
These models are described by

Z = dEI,M E~ exp 8V~E~ exp —S ~ Ei, m, &f, y

(5.4)

where

M(E&) = f I& I'lI IW I~(t~r t@r) (5.5)

exp[ —S,~(E), m, Kf, y)]

f [dP] [dPt] b(S) —E))[detA (P)]
M(E))

(5.6)

The absence of the gauge field U = 1 in S~ makes it pos-
sible to microcanonically update the configurations by
(2.15) without changing S~. Again, such a process is ex-
pected to reduce the fluctuations in detA(P). Now the
partition function is

Si(4) =
4~ ) .«(4.'4*+p),

S~(P, @) = @b,(P)@, (5 2)

The diagonalization of the fermionic matrix can be done
in a way similar to that in [12]. An advantage now is
that the parameter space (rn, Kf, r) can be economically
searched.

where instead of gauge-fermion interactions in (2.2), we
have fermion-scalar interactions
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