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Nontrivial asymptotically nonfree gauge theories
and dynamical unification of couplings

Jisuke Kubo
College of Liberal Arts, Kanazaura University, Kanazaura 990-11, Japan

(Received 14 June 1995)

Evidence for the nontriviality of asymptotically nonfree (ANF) Y'ang-Mills theories is found on
the basis of optimized perturbation theory. It is argued that these theories with matter couplings
can be made nontrivial by means of the reduction of couplings, leading to the idea of the dynamical
unification of couplings (DUC). The second-order reduction of couplings in the ANF SU(3)-gauged
Higgs-Yukawa theory, which is assumed to be nontrivial here, is carried out to motivate independent
investigations on its nontriviality and DUC.
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Asymptotically &ee (AF) theories [1] do not suffer from
the problem of triviality [2]. It is widely believed that
the question of triviality cannot be addressed within the
&amework of perturbation theory, and so far there is
no real indication for the existence of a nontrivial four-
dimensional theory that is not AF. It is, however, tempt-
ing to think that if an in&ared-&ee theory has an ultravi-
olet fixed point which is small, perturbation theory might
be intact even near the fixed point and hence could be
applicable to the triviality problem.

About ten years ago, Sakakibara, Stevenson, and I [3]
considered perturbation theory near a fixed point. We
formulated the problem as the problem of the renormal-
ization scheme (RS) dependence, because at any finite or-
der in perturbation theory even the existence of a positive
zero of the P function depends on the RS. We performed
our investigation on the basis of optimized perturbation
theory (OPT) [4], which, as is well known, yields RS-
invariant perturbative approximations and has already
experienced certain successes in perturbative @CD [5]
and also in @ED [6]. We found that one needs a pertur-
bative calculation of a physical quantity of at least third
order in order to be able to apply our method. Inves-
tigating concrete field theory examples, we argued that
under certain circumstances perturbative analyses based
on OPT near a fixed point could be believable.

Recently, using the third-order @CD corrections of the
e+ e cross sections [7], Mattingly and Stevenson [8] ap-
plied OPT and concluded that AF @CD has an infrared-
stable fixed point. Although the assumption on the exis-
tence of an infrared fixed point in AF @CD has no logical
inconsistency, it is not clear at all how much the fixed
point found in a perturbative approach can describe the
physics in the infrared regime, because the nonpertur-
bative eKects play the essential role in understanding the
low energy physics of AF @CD. In the ultraviolet regime,
on the other hand, the nonperturbative nature may be
neglected in describing the basic part of the physics of
AF @CD.

One of the main assumptions of this paper, which is
partly motivated by this fact, is that this is true even in
asymptotically nonfree (ANF) Yang-Mills theories. Of

course, this is a very strong assumption but there is nei-
ther internal inconsistency of this assumption nor known
facts against it (at least to my knowledge [9]). Moreover,
as will be seen, the investigation based on OPT indicates
that ANF Yang-Mills theories could have an ultraviolet
fixed point so that they could be well-defined, interacting
theories in the ultraviolet limit.

The existence of an ultraviolet fixed point in the Yang-
Mills theory fits indeed with the idea of a "walking
technicolor gauge coupling" [10]. Here I would like to
emphasize its relation to unification of couplings that
does not follow from a symmetry principle, because such
a unification scheme has become desirable for the fol-
lowing reasons. (1) Most grand unified theories (GUT's)
become ANF if one attempts to obtain a realistic fermion
mass matrix by introducing additional Higgs fields, and
(2) it has been found [11] that various supersymmetric
GUT's with gauge-Yukawa unification can predict the
top-bottom mass hierarchy correctly, but the theoretical
possibility of unifying the gauge and Yukawa couplings
from a symmetry principle within the framework of field
theory is extremely limited and mostly unrealistic.

The gauge-Yukawa unified models, proposed in Ref.
[11], are constructed on the basis of the principle of re-
duction of couplings [12, 13]. Though there are certain
successes of these models, the reduction principle is as-
sociated with no intuitive, physical meaning. Dynamical
unification of couplings (DUC), which I propose in this
paper, is based on the assumption that Yang-Mills theo-
ries with matter couplings can have an ultraviolet fixed
point and hence are well defined in the ultraviolet limit
if a reduction of couplings is appropriately carried out.
Therefore, DUC gives a reduction of couplings a simple,
theoretical meaning at least. This is speculation at this
moment, and nontriviality of realistic gauge- Yukawa uni-
fied models has to be verified on a case by case analysis
of course. However, because of the complexity of the re-
alistic models, they are not appropriate to be considered
if one only wants to test the idea of DUC. In the second
part of this paper, I will consider a simplified toy model,
the SU(3)-gauged Higgs-Yukawa model, and carry out
the reduction program in second order to motivate inde-
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pendent investigations on its nontriviality.
We begin by recalling the basic result obtained in

Ref. [3]. Consider a physical quantity 7Z(pl„p, n(p)/vr)
in a massless renormalizable theory, where pA, stand for
the physical external momenta, p is the renormalization
scale, and n(p) is the renorinalized coupling. In the nth
order of perturbation theory, X. can be written as

The coefficients b, 's (i & 2) are RS dependent, and
along with p they can uniquely parametrize the RS de-
pendence. Therefore, 'R, being a physical quantity, has
to satisfy pNZ/Op + PO'R/Oa = 0 and also O R'/Ob,

0 (i & 2), which we altogether symbolically denote by
dR/d(RS) = 0. Then the essence of OPT is to demand
the optimization condition [4]

R, 'l"l(pi„p, a) = pa 1+ ) r, (pg, p) a' d R("} =0,
( ) RS=QPT RS

while the P function takes the form

Pl l(a) = —a ) b a' .
i=0

a =

neer,

and to fix &om this an optimized RS for a given physical
quantity. Note that in perturbation theory one has only
d'Rl l/d(RS) = O(a"+i). In Ref. [3], we assumed that
OPT makes sense even near a fixed point and found that
the fixed point a~p~ in third order can be obtained &Gm

7bp, 3bp
0 = + aQPT + p2 (aQPT) for third order,

4bg bg

83bp 12 f bp bi l 2 64bo
0 = + aQPT +

~ p2 +
l (aQPT) + ps (aQPT) for fourth order,

52bi 13 (bi 4bp ) 13bi

where

b2 f' b, ) bs ( b2 2 biri l
p2 = r2 + ——

I
ri +

I ps —&s + - "i
I

—+ 3"2 —2"i-
bp ( 2bp ) '

2bp ( bp 2bp

(2)

(3)

(4)

are the RS-independent quantity for a given 'R. From Eqs. (2) and (3), one sees that the xnore negative the p's are,
the more likely is the existence of a positive a~pg.

Before I come to the non-Abelian case, I would like to discuss @ED with many flavors in fourth-order. The result
will be compared with that in third order to check the reliability of OPT. Using the fourth-order calculations together
with the lower-order results [14], one can extend our third-order analysis [3] to the next order. As we did there, I
consider

d (
&(—p /p, a) = —2 in[1+ II(—p /p, )] = fa I+—)d ln —p2 y, 2

as a RS-invariant quantity, where II(—p /p, a) is the photon self-energy. From Ref. [14] I obtain the coefficients of
the P function,

2 1 1 11
ho= f, bi =-— f4 =--f+ f', ——

3 ' 2
' 16 72

23 95 13 77
64 432 18 1944

(f is the number of flavors), and also [15]

3 5 3 47 25
ri( p /p = 1) = ——— f, r2( p /—p = 1) = ———— ——2((3) f + f4 9 32 16 81

69 11 121 15 16829 29
128 72 24

+ —+ 4(3) ——4(5) f +
2 2592 16

——&(3) f'—125
729

where ((3) = 1.202057. . . , ((5) = 1.036928. . . , and the
quantities above are defined in the MS scheme. Inserting
them into p's deffned in Eq. (4), I obtain

135 301 15 9 3
p. = + ——C(5) f+ ---C(3) f'

256 64 2 4 2

0.527344 —3 07384f + 0.4469. 1f

One sees that ps is positive for f & 7 so that indeed
there is no positive zero of Eq. (3) and hence no indi-

93 23
p2

————— ——2$(3) f —1.453125 + 0 48745f, .
64 12
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11 2 17 (5 1
bo = —C~ — &zf—, bi = —C~ —

l

—C~+ -Cs
6 3 ' l2 i6 2

xTy f,
2857 s ~ 1415 ~ 794= C~+

l

— C~+
864

205
288

(7)

11+ C~Tf +——C~ Ty f,72 16 (8)

cation for the existence of an ultraviolet fixed point for
f & 7 at fourth order. For f & 6, one has a positive
zero; nopT(= aopTm') 3.04, 2.42, 2.08, 1.85, 1.68, 1.55
for f = 1, 2, 3, 4, 5, 6, respectively. But they are too large
that one cannot trust the result. So our third-order con-
clusion [3] remains unchanged at fourth order, supporting
the reliability of the analysis based on OPT.

What follows is a slight generalization of the analysis
of Ref. [8] in @CD, but with completely different physics
and its applications in mind. The P-function coefficients
of the first three orders in the MS scheme can be found
in Ref. [16]:

the reason given before. I will below calculate pq in ANF
SU(2), SU(3), SU(5), and SO(10) gauge theories with f
Dirac fermions in the fundamental representation [C~ ——

N, Cy = (N —1)/2%, Ty = 1/2 for SU(1V) and C~ = 8,
C~ = 9/2, T~ = 1 for SO(10)]. To this end, I use the
third-order corrections to (A) oq t(e+e -+ hadrons) [7]
and (B) the Gross-Llewellyn Smith suin rule for deep
inelastic neutrino-nucleon scattering [17].

(A) ot &(e+e ~ hadrons). The first quantity is
the so-called B ratio R(s/p, a(p)) = dR g& Q&[1 +
'R(s/ps, a)], which is defined by oq t(e+ e -+
hadrons)/o(e+e ~ p+p ) in the e+e annihilation,
where 8 is the center of mass energy, d~ is the dimen-
sion of the quark representation, and Qy stands for the
electric charge of the f quark. Since it is unlikely that
the real electric charge of the quark is related to the ex-
istence of a fixed point in a non-Abelian. gauge theory, I
instead use the fermion number and assume that Qf = 1
for all the fermions. Under this assumption, I recall the
third-order result of Ref. [7]:

where C~, C~, and T~ are the usual group theoretic
coefficients. Asymptotic non&eedom requires that f &
11C~/4T~, and I concentrate only on such cases &om

I

R( ) = —C~ a(1+ r a+ rqa ),4

where

(9)

"&(sip = 1) =

29 19 20+l ——+ —C(3)- —~(5) lC~ T~f.
48 3 3

41 11 1 11 4
ri(s/y, = 1) = ———((3) C~ ——Cz + ——+ —((3) T~f,8 3 8 6 3

90445 2737 121 q q 127 143 23
2592 108 432 48 12 32

1 1 302 76
+55 ——C~+ —Cy ((5)C~+ ——((3) ——~ T~f18 3 81 27 27

11 1 doS'dob' f 1940 448 10 11+ ——&(3)144 6 Cy d~ ( 81 27 9 54
f+

l

— + &(3)+ —&(5)+ —~'
l
C~

(10)

Using these three- and four-loop results, one can now computes pq defined in Eq. (4):

pq [ —4.2140+ 0.03224f + 0 05455f —. 8.12 x 10 f —1.53 x 10 f ][1—f/11] [for SU(2)]

[
—8.4102 —0.50203f + 0.10845f —2.066 x 10 f —6.78 x 10 f ][1—2f/33] [for SU(3)]

[
—21.9066 —1.30140f + 0 13594f —.1.71 x 10 f —2.44 x 10 f ][1—2f/55] [for SU(5)]
[ —47.8948 —1.6234f + 0.2569f —1.680 x 10 f —1.53 x 10 f ][1—f/22] [for SO(10)]

where d od s' = 0 for SU(2) and SO(10), and 40/3 and 504/5 for SU(3) and SU(5), respectively, have been used.
Then I investigate whether Eq. (2) has a positive solution if f & 12, 17, 28, 23 for SU(2), SU(3), SU(5), SO(10). The
result is shown in Table I. As one can see Rom Table I, o.opT for some cases is small so that one may trust the results.

TABLE I. The third-order fixed points (o.opT = aopTn) from the B ratio.

f
12
13
14
15

SU(2)
(bo/bi) pg
—3.317
—1.912
—1.815
—2.014

~OPT
0.494
0.856
0.960
0.940

17
18
19
20

SU(3)
(bo/bi)p~
—18.197
—5.689
—3.794
—3.365

+OPT
0.096
0.294
0.441
0.516

28

32
34

SU(5)
(bo/bi) po
—54.289
—10.073
—6.583
—6.100

O'OP T
0.033
0.167
0.259
0.296

f
23
26
28
30

SO(10)
(bo/bi) pg
—35.281
—8.999
—7.670
—7.852

O'OP T
0.049
0.183
0.222
0.230
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(B) The Gross-Llewellyn Smith sum rule. This sum rule says that the first moment of the isospin singlet structure
function for the hadronic matrix element which describes deep inelastic processes is 6 at the parton model level:
J' dz(Fs""+ Fs" )(x, Q /p, 0) = 6 [1+74(Q /p, , a)], where z is one of the scaling variables in the processes. The
third-order QCD correction has been computed by I arin and Vermaseren [17]:

1241
432

11
+~ 144

'R( l = —C~ a ( 1 + ria + r2a ),3 =3 2

23 7 1
& (Q'/V' = 1) = —C —-C —-f,

12 8 3
5437 55 11 1 2"2(Q'/&' = 1) = ——&(5) C~ — — &(3) C~C~ + —Cs
648 18 9 32

3535 1 5 l f 133+
I

— ——&(3) + -&(5)
I

C~ +
I

+ —&(3)
I

C~
1296 2 9 j ( 864 18

(12)

(13)

(14)

As in the case (A), I insert the ri and r2 into p2 in Eq. (4) to obtain

p2 [6.8068 —3 90512.f + 0 57496.f —3.157 x 10 f + 5.48 x 10 f ][1—f/ll] [for SU(2)]
[16.5809 —6.45245f + 0.630222f —2.2537 x 10 f + 2.44 x 10 f ][1—2f/33] [for SU(3)]
[47.7897 —11.25861f + 0.658477f —1.3979 x 10 f + 8.77 x 10 f ][1—2f/55] [for SU(5)]
[132.1687 —23.63008f + 1 340446f. —2.8751 x 10 f + 1.37 x 10 f ][1—f/22] [for SO(10)] .

The values of p2 and 0.p& for some diferent
f() llC~/4TF) are shown in Table II.

Note that even in the ideal situation the fixed point
values are RS dependent, and they are process depen-
dent in OPT. What should not depend on them are its
existence and the value of the anomalous dimensions at
the fixed point (critical exponents). Therefore, results
(A) and (8) found above are surprisingly similar in the
sense that the size of the fixed point values is similar in
both cases so that in both cases one could believe the
OPT results which indicate the existence of ultraviolet
fixed points in ANF Yang-Mills theories.

Triviality of gauged Higgs-Yukawa systems is widely
expected, unless they are completely asymptotically &ee.
A rigorous treatment of the asymptotic behavior of the
theory with more than one coupling is given in Ref. [12].
It was found [13] that by imposing a certain relation
among the gauge, Higgs, and Yukawa couplings which
are consistent with perturbative renormalizability, it is
possible to make the SU(3)-gauged Higgs-Yukawa sys-
tem completely asymptotically &ee and hence nontriv-
ial [18]. This renormalization-group-invariant relation
among couplings is a consequence of the reduction of cou-
plings [12].

Inspired by the possibility that ANF Yang-Mills the-

ories may be nontrivial under certain circumstances and
by the fact that gauged Higgs-Yukawa systems can be
made asymptotically Bee by means of the reduction of
couplings, one may be naturally led to the idea that even
ANF gauged Higgs- Yukawa systems are nontrivial if the
reduction of couplings is appropriately carried out. One
then would achieve a dynamical unification of couplings
in a theory, because these couplings are forced in a dy-
namically consistent fashion to be related to each other
in order for the theory to remain well defined and inter-
acting in the ultraviolet limit.

OPT for systems with more than one couplings does
not exist yet, because there is no known systematic way
to control the propagation of the RS dependence of lower
orders to higher orders. But it is clear that once the
reduction of couplings is applied to a system with many
couplings so that the reduced system contains only one
independent coupling, one can employ all the facilities of
OPT. Unfortunately, third-order calculations in gauged
Higgs-Yukawa systems do not exist yet. Here I would
like to present the result of the two-loop reduction in
the ANF SU(3)-gauged Higgs- Yukawa theory to motivate
corresponding higher-order calculations.

I et me first mention a few words about the reduc-
tion of couplings, and consider a massless, renormaliz-

TABLE II. The third-order fixed points (aop~ = cop~or) from the Gross-Llewellyn Smith sum rule.

f
12
13
14
15

SU(2)
(bo/bi) p~
—2.896
—1.279
—1.063
—1.104

+OPT
0.568
1.133
1.333
1.314

17
18
19
20

SU(3)
(bo/bi) p2
—17.196
—4.681
—2.766
—2.296

+OPT
0.100
0.339
0.558
0.684

28
30
32
34

SU(5)
(bo/bi) pz
—52.488
—8.261
—4.725
—4.148

~OPT
0.034
0.193
0.331
0.390

23
26
28
30

SO(10)
(bo/bi) p2
—38.544
—10.708
—8.599
—8.107

~OPT
0.046
0.161
0.204
0.225
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able gauge theory based on a simple gauge group with
N other couplings, where the gauge coupling is denoted
by n, and the others by n;, i = 1, . . . , N. The com-
plete reduction of couplings [12] is equivalent to de-
manding that o,; be written as a power series of o., i.e.,

or1,
( ) (o.jz) n, i = 1, . . . , N. As a conse-

quence, the reduced system contains only n as the inde-
pendent coupling. It was shown [12] that the power series
is consistent with perturbative renormalizability only if
the reduction equations

(i5)

are satisfied, where P stands for the P function of o.,
and P; for that of n, . The uniqueness of the power series
solution can be decided at the one-loop level, and the g's
can be computed order by order in perturbation theory
[i2].

TABLE III. The expansion coefficients for the reduction
of couplings in the SU(3)-gauged Higgs-Yukawa theory.

nd
9
10

(o)
It
2

2.296
3.294
4.356

(o)
Ih

1.283
1.533

2.586
3.592

The gauged Higgs-Yukawa model I consider below can
be obtained &om the standard model by switching ofI'

the SU(2) and U(1) gauge couplings, dropping all lep-
tons, and allowing np families of quarks. I also assume
that only one of the (up-type) Yukawa couplings is non-
vanishing; the simpliffed system contains only the SU(3)
gauge coupling o., the Yukawa coupling o.q, and the Higgs
self-coupling o.h. Here I am interested in the case for
nq ) 8, and recall the P functions [21]

101 ) 3
la + —ah+ . .

6 ) 16
39 9
8

ah + 5aahaq ——aha& +
2

P 11 2 f' 19 51 ) 1——+ —n&+
I

—n& ——
l

a — a, +-
7r 2 3 i6 4) 4

P, 9 9 3 3, fio—= ag at, —4a—+ —aalu ——abag ——ag +
l

nd-
7r 4 2 4 2' i9

Pb I5 3—= 3ah + 3ah ag —3a —4aa ——ay, a + a]6 't
4 (16)

where a, = n;/z. It can be shown that the power series
solution of the reduction equations (15) with i = t, h, i.e. ,

(17)

exists uniquely to all orders in perturbation theory so
that the original system with three independent cou-
plings can uniquely be reduced to a system with only one
independent coupling, n. The first- and second-order co-
efficients can be computed by solving Eq. (15) with the
second-order P functions (16), and the results are given
in Table III. The reduced system has only one P function:

11 2 / 151 169—=a ——+ nd+
l

— +— nd lavr 2 3 q 12 54

+O(a')

The fact that the first two coefficients of P for ng ) 9
are positive (as they are in the previous cases) does not
mean anything about a fixed point within the framework
of OPT; one needs a complete third-order calculation to

I

obtain pz and then to solve Eq. (2). If it is negative and
large, there will be a small, positive aQPT.

Unification of the gauge couplings in ANF extensions
of the standard model were previously considered in Ref.
[19]. In contrast with the present idea, it was assumed
there that the gauge couplings asymptotically diverge so
that if one requires the couplings to become strong simul-
taneously at a certain energy scale, one can predict their
low energy values [20]. There are many papers based
on this idea, but none of them discusses nontriviality of
ANF unified gauge models and its possible relation to
unification of couplings. Obviously, there will be many
applications of the idea of DUC in constructing realistic
unified gauge models, and it is therefore most desirable
to justify the assumptions leading to the idea of DUC
independently in difI'erent approaches.

I would like to thank T. Kugo for stimulating discus-
sions, which led me to consider DUC in ANF theories,
and also G. Schierholz, T. Suzuki, and K. Yamawaki for
useful information and discussions. I am greatly indebted
to W. Zimmermann for continuous support and encour-
agement.
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