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Covariant generalization of the Isgur-Scora-Grinstein-Wise quark model

D. Tadic and S. Zganec
Physics Department, University oj' Zagreb, Bijenicka c. 82, Zagreb, Croatia

(Received 10 April 1995)

A fairly general Lorentz-covariant quark model of mesons is constructed. It has several versions
whose nonrelativistic limit corresponds to the well-known Isgur-Scora-Grinstein-Wise model. In
the heavy-quark limit, the covariant model naturally and automatically produces the heavy-quark
symmetry results for meson decay constants and semileptonic decay form factors. The meson decay
constants and the Isgur-Wise functions are calculated for various versions of the covariant model and
compared with other estimates. A general and adaptable structure of the covariant model ensures
that it can be used to describe transitions involving light and/or heavy mesons.

PACS number(s): 12.39.Ki, 12.39.Hg, 13.20.—v, 13.25.—k

I. INTRODUCTION

The well-established, simple, and often used nonrela-
tivistic quark model of Isgur, Scora, Grinstein, and Wise
(ISGW) [1] has also been employed [2—5] in the investi-
gations of heavy-quark symmetry (HQS). Although the
ISGW model helped in HQS investigations, this nonrel-
ativistic model was not capable [4,5] of properly repro-
ducing all of the heavy-quark efFective-theory (HQET)
relations among semileptonic meson decay form factors.
It had to be "relativized" to some extent [2—5]. Moreover,
even in the original paper [1] some compensation for rel-
ativistic effects had to be introduced with meson wave
functions. In this way, useful insight into the HQET was
gained and subleading corrections of order A/mg were es-
timated [5] (here A AclcD and m~ is the heavy-quark
mass .

Thus it seemed useful to develop a fully covariant
model that, in the nonrelativistic limit (NRL), goes into
the ISGW model. It turned out that such a covariant
model can, to a great extent, retain the simplicity which
was an endearing and useful feature of the nonrelativistic
model [1].

The covariant model can have a fairly general form [6]
that can be, if wanted, specified in such a way as to lead
to the ISGW model in the NRL. The given covariant
formulation allows reasonable freedom in the selection
of model parameters and model meson wave functions.
They can be selected to reproduce a particular Isgur-
Wise function (IWF), which might provide a good basis
for the calculation of A/mg corrections.

An important feature in all variations of the proposed
covariant quark model (CQM) is the description of va-
lence quarks (antiquarks). They are parametrized by the
on-mass-shell Dirac spinors, as was the case in earlier
models [1] and in all subsequent usages [2—6]. In a co-
variant model, such a description might lead to difficul-
ties with the covariant definition of a meson mass M.
As shown in the next section, this can be resolved by
introducing a scalar function that represents the neutral
sea with a momentum K and vacuum quantum numbers
[6]. This is an attractive feature, as sea contributions
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FIG. 1. The IWF's are shown as functions of m. The
dashed curve shows the IWF calculated in Ref. [5] with tc, = l.
The dash-dotted curve shows the results of Ref. [5] with
~ = 0.6. The corresponding slope parameter is p —0.93. The
solid curve is obtained using our formula (3.20). Its slope pa-
rameter p = 1.17 corresponds to the Ansatz (5.1). All IWF's
were calculated using the parameters (3.23).

must figure in a description of a hadron. In the present
model, which takes into account only fluctuations involv-

ing valence quarks (antiquarks), the sea is described in
the simplest possible way, as a physical vacuum. The sea
momentum function I" (K) has a particularly simple form
if one wants to define a model that in the NRL goes into
the ISGW model.

In the third section of this paper the meson decay con-
stants and the IWF are calculated for this version of the
CQM inspired by the ISGW model. It turns out that
the covariant formulation takes care of the relativistic
effects, which previously had to be compensated for by
a phenomenological parameter K (see Fig. 1). The sea
function in this version of the CQM is just a Dirac 8 func-
tion, which ensures that a meson has a properly defined
on-mass-shell four-momentum P (P = M )
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However, one could use a nontrivial F(K) function in
the CQM. The form of such a function would influence
the model description of the physical quantities. This
is illustrated in the concluding sections of this paper by
calculating meson decay constants and the IWF for a
Gaussian F(K).

II. RELATIVISTIC MODEL(S)
AND THE ISGW LIMIT

A meson II with the four-momentum P and the mass
M is covariantly represented by

[H(E, P, M)) =IV ) j[4mgmg]d yk4[y~ —m~)O[e)
CqSI iS2

xd qh(q —m„)8(e)d K F( K)h ll(»)+ q+ K —P)8(E)P(lJ )
xu~, (p) p v', (q )d+ (q, c, s )b+~ (»), c, s, ) ~

0) .
(2.1)

Here, the index d refers for concreteness to a light d an-
tiquark, whereas the index Q denotes any of the heavy
quarks. The Dirac functions such as b(»)2 —m2&), com-
bined with the corresponding step function 8(e), ensure
that valence quarks are on the mass shell. This is a char-
acteristic feature of the ISGW model. One can select, if
desired, a quark wave function P(l~) which goes into the
ISGW wave function in the NRL. Various momenta in
(2.1) are

P"(P )t)

IP —& (pP qP)

(2.2)

The ISGW limit is obtained if the wave function is se-
lected as

I

frame (P = 0) to the momentum-dependent mass [1]
M = (») + m&) ~ + (») + m&)

)' . Generally, one has
the same freedom in selecting F(K) as one had in se-
lecting P(l~). However, the ISGW state vectors of the
weak-binding limit (WBL) [1] will be obtained if a simple
form is selected:

P" (P"
F(K) = ~" K" —

~
[P —(p+q)]- I

(2.4)MqM )
In the meson rest frame,

K (P = 0) = [M —e —c] = pre(p, q), K(P = 0) = 0 .

(2.5)

Obviously, as»i'(»), q) is not always positive, K does not
correspond to a physical, on-mass-shell particle. It can be
associated with some sea contribution. This contribution
can, in principle, have a less naive form than (2.4), which
has been inspired by the ISGW limit. For example, one
could try (see Sec. IV) the form

y(t)' )
e+(&~)'/2)-'')s

3/4 n3/2 (2.3)
E(K) = h~ l K"—P~ r'P —.Ic'

Here Ps corresponds to the variational solution [1] with
the harmonic-oscillator wave functions.

The sea function F(K) ensures that the meson mass
M can be covariantly defined. Without E(K), the
Dirac delta function b~4l(p + q —P) leads in the rest

(2.6)

It also leads to the ISGW model in the NRL.
After performing the integrations d K, dp, and dq

in (2.1), one is left with

C)SI )S2

x 4 (~~)Bg ., (p )ys&d...(q) d„+(q,c, s2) && (»7, c, s] ) ~0)

P(» + q)~
M

(2.7)

Using the notation

P&
„

P&
»)~ = »)" —

M2 (») P), »)~~
—

M2 (p P) (2.8)

one realizes that the Dirac h function in (2.7) constrains the orthogonal components of the quark four-vectors: i.e. ,

pJ + qJ 0 o
P P (2.9)

In the meson rest frame this gives the ISGW relation
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p+q =0.
By rewriting the complex b' function in (2.7) one obtains a more manageable form

(2.1O)

iH(E, P, M)) =X ) d p d q
(E2/M2) [1 —(Pq/Ee)] ( M )

q+P ——
(» ~~)T

&( ~)ug. , (p)»~'. , (q)d.'(q ~ »)|~(p c»)Io) .

Here the quantities T and pII are

(2.11)

m~ —mq + pIT= 1+ P p
&II

= (2.12)

In the NRL and. the WBL [1],

Q ~ ( md

E —+M, emmy, ~mme,

(2.13)

Pp P~ m& —,q ~ —»7+ (m&+m&) —,
M M '

(t~)2 ~ 2m' —p ', ug. ..(p )pseud, ...(q ) ~ &.„—.. .

one Ands

2P,~H(E, P, M))NR, WB ~ )

The substitution

p p + P

d p exp —p +2m'
C)8y )82

P +x8„„d„+—p+ (my+ mg) —,c) 32 b~(p, c, sg)~o) .! M' (2.14)

(2.15)

leads to the well-known [1—5] ISGW form

H(E, P, M))NR WB = N )
C)81 )82

2 /gp2
3/4@3/2

xb„„d~—p'+ P esp b~ p'+ P c sg 0
M (2.16)

The full covariant forms (2.1) or (2.11) lead to fully covariant predictions for meson form factors in the CQM, as
shown below. These states can be covariantly normalized. With

one finds, for the state (2.7),

(H(E', P', M) ~H(E, P, M)) = 2ES~'l (P —P ')

1

[(E /M2)(1 —Pq/Ee)] (p~~~T/M)

(2.17)

[1+P(eP —E» )/EM m„2 —mg2+ p2~~]

b~sl (P —P ')
i ~

( )
= 2Eh (P —P ') (2.18)
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From this expression, N(P) is

N(P) = —N(0)M

where N(0) can be calculated numerically.

(2.19)

(D+(PL ) lc~"blB'(P~))

1 .[J+(P~+ Pr))" + &-(P~ —PD)"]

(D'+(e, PD) Icy"blB (P~))

2ge e~(PB + PD)p(PB PD)o ) (3 1)
2)r 2

(D*+(e,P~)lc&"»bIB (Pgy))

III. MESON FORM FACTORS
AND THE ISGUR-WISE FUNCTION

The form factors for B -+ D (D*) semileptonic transi-
tions are defined in the standard way:

(2)r)'
[fr*"+ a+(e* . Pg)(Pg + PD)"

+a—(e' . Pa)(Pa —PD) "] .

Here the vector meson state ID*) is obtained from (2.1)
by replacing» by (ep). For example, one finds that

(D+(PL))lcp"bIB (Pp)) = 3(2)r) Nr)(PD)N/(Pg) ) d p'd p
I81 )82)81

1 1

(ED/MD) (1 — D& '/E&") (EB/MB) (1—

(3) ~ PB „]PD—p+ (pB~~))TB + p (pD)()T&MB MD

xQD(tDX)QB(43K)[ —6~...(V ')»)i..., (P'))i. s'(p')y"its. ..(p)as...(p)»))~...(~')] . (3 2)

Here

EDe' —PDJ7' EBe —PBp
PDIJ] =

M ) PB/J = TD = 1+
D B

a
—m~ + (pi)~~)'

PDI/

TB = 1+
mi + (pg//)

, .' = pm~+ r 2, e = gm', = p .

In the B-meson rest frame (Pg = 0) this becomes

(D+(PD)l p"blB (0)) = 3(2)r) ND(PD)N~(0)
m~mb md

J' P e'e

p ( )
1

ED /MD2 (1 —P~ q '/ED e')

PD
M (pD~~~)TD y~y~. (v }.

D

Here v' = —p = —p'+ (pari)TD,MD
4v") = -T»

I
1+

I
~"

I
1+

8 q m ) q mq)

p'"(pv) ~'"(pp')
d b d b

p"(p'v') p'"
b d b

and

mg)

(3 4)

1

3/4/33/2

1

42p/3 /2

1
3/4@3/2

exp [m~ —
(pg~~) ]

1 2 2

2@i)

—p'
exp

exp 2 [m, —(pi)(() )
D

(3.5)
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The trace which determines fV") is analogous to formula
(22) of Ref. [4] and the ] /mg term can be connected with
the momentum A: of the same reference. That term con-
tains the Wigner rotation of the light quark. Compari-
son with (3.1) allows the extraction of the form factors,
which can be computed numerically. In order to check
I.orentz covariance, calculations leading to identical re-
sults have also been carried out in the D-meson rest frame
(P~ = 0).

The decays with the vector meson D*+ in the anal
states are described by expressions analogous to (3.3).
The factor (V"j has to be replaced as follows:

PD .
D

(3.9)

The Dirac b-function constraints then determine

~1 mQ
q = PD.

D
(3.10)

This means that both valence quarks seem to travel as
free particles. Indeed, with (3.9), one finds that

In the heavy-quark limit (HQL), one is tempted to
identify the heavy-quark momenta with the heavy-meson
momenta: for example,

Here

(V") —} (V*") or (A*") . (3.6)
2 2 (j

1
m, —

(pz)~~) = 0, (3.11)

P'+ m, „P+m}, ]' —mg
2m 2mb 2m~

(3 7)

One has failed to account for the Wigner rotation of the
light quark [4] and all information on the internal quark
momenta is lost. Thus a more reasonable choice is

(~* )=T y*"+ ., „~+
2m, 2mb 2m'

P' ~ P&+ k', ~k'~/m. && 1.
D

(3 8)
It leads to

(3.12)

1 1 2 2
ADHPL 3)4PS)2 P 2P2 [ (I D~~) ]

HQL

1
exp

prinz. 2P&qz,

(PD k ')' ~

g

(Pr} k')2 t' 1 )
(pD~~)iiqz, ™+ k'

2 + O
I(m, ) (3.13)

Furthermore, in the HQL, m, -+ MD, so that f+(PB = 0)HqL

A:'wp' —P (3.14)

An analogous procedure is carried out for the B meson.
If one had chosen (3.9) instead of (3.12), one would

have obtained

«I
, M~+ M~

4M MD

(V") = —.'~[~.(1+8')~"(1+P)~.], (3.15)
PD. qI

(ED + ML})mg
(3.16)

)
mc mb

Here the Wigner rotation of the light quark is absent.
The expression (3.15) is analogous to the expressions em-
ployed by Ref. [5]. However, this reference does keep
some information on the internal quark momenta in the
valence-quark wave function, by retaining some relativis-
tic terms [5], and thus evades the unacceptable result
(3.11).

Finally, one finds, for example,

I(&i) = 3(2~)'N&„qL(P~)+&HqL(0)
I

(Mii l

mgMD
HC}L ~iiHC}L

EDP —PDq '

Here we have used
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mb
/ «/

~/ E' E
g

m(g mQ

e'
Ml ED

M '

m +q'

A meson decay constant fH is determined by the ex-
pression

,(,P"fH = (0I: A(0)w"~sly(0): IH(@,P, M))

(P~@r)2&q'= —I '+ m„'+
~

I /2—

~ / W/

—+ 0, m, A:-' mP' —PD,
mb mc D

1 q
/2

PH -+ rtr~„~ =
&

exp
PHqL +HQL

(3.17)

1

MB+ MD

Similar expressions are readily obtained for other form
factors. Defining

my M Mme
( )eE Eg pg

x
i

fmgp" + mgq"'l

l m(gmQ
q= —p+P/M(p(~ )T

(3.24)

Here @g(x) are valence-quark fields [1]. The decay con-

stant fH is easily calculated in the frame P = 0. In order
to check covariance numerically, it has also been calcu-
lated for several difFerent P values. The results have
always been identical.

With the parameters [1,5]

(3.18)
v= (M&+MD)g, ~, = (M&+—MD)a+,

we find the well-known HQS relations [7]

Ps, „=0.39 GeV, m„=mg = 0.33 GeV,
m, = 1.645 GeV,

Ps, „=0.42 GeV, ms = 4.983 GeV,
(3.25)

one finds that
(3.19

1
Fi ——V = A2 ——

1 —Q2/(MB + MD)2
Ag .

This immediately shows that the definition (3.12) has
not introduced any A/mg corrections. It only retained
internal quark momenta and the Wigner rotation, which
is necessary if inconsistencies and contradictions are to
be avoided [4]. The relations (3.19) are valid only in the
HQL. Then all form factors contain the same Isgur-Wise
function, which is determined by

(3.26)f~ = 258.8 MeV, fH = 151.9 MeV .

In the HQL, the expression (3.24) takes the form

1 fM) Mmg
,&, P"fH...= 3~ g (P) ~'&

I z I

2m- '~' l@)
&&4HqL(t~)

Here

((zv) = Bf+ ——BPi,

2/MH M~
M. +M.

(3.20)
In the HQL, one uses the average meson masses

(3.27)

(3.28)

PD. PB10=VV 4

and (3.23) in order to find the HQS result

In the B-meson rest frame (PH = 0) one finds
f&HgL

(3.21)
The numerical values

MD
fL)Her

B
(3.29)

m2
((rr))~ = exp —

2 (ur —1)2K' HqL
(3.22)

Our curve (solid line in Fig. 1) is calculated using the
parameters of Ref. [5]:

The expression (3.20) also satisfies the well-known [7]
constraint ((1) = 1. In Fig. 1 our IWF is compared
with that calculated by Amundson [5], who obtained

f~„~L= 235.8 MeV, fH„~„=143.8 MeV, (3.30)

which have been obtained using (3.27), are quite close
to the result (3.26), showing that the model-determined
corrections to the HQL are about 5—6%.

IV. CAUSSIAN SEA

PHgL = 0.42 GeV, mg = 0.33 GeV . (3.23)
It might be useful to demonstrate the Qexibility of the

expression (2.1) by selecting a sea function I"(K) that
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would be different from the naive choice (2.4). In princi-
ple, this could be based on some QCD modeling of the sea
contribution. However, for illustrative purposes a simple
example can be selected, which in the NRL and WBL
goes into the ISGW state. Yet it leads to noticeably dif-
ferent results when used in the CQM. This is

S(K) =a('l K~ ——
i

[P —{p+q)]„i
.— ~P /P"

M iM
(4 1)

A simple arbitrary choice for the parameter o. is

(4 2)

The integration over the sea momentum K gives

K" = M-P& E(e+ e) —(P2/M)(pii)T
(4 3)

In the meson rest frame [Pl" = {M,O)], this goes into
(2.5). In the WBL, one finds that

K=0, K =M —(mg+mq) . (4.4)

P(l~) m P~ = P(l~)e (4 5)

In the HQL, one can use (4.3) and (3.12)—(3.17) in order
to obtain

K = (M —
p((

—
q(() —+ q((,

(O'K)HQL ~ 4'(ll )HclLe

(4.6)

Again, all formal deductions (3.17) are repeated with
insertions of the factors exp[ —nq ] associated with the

II

product PD„~„PH„~„.In the frame P~ = 0, for exam-
ple, one has

O'D g O'B g ~ O'D g O'B exP( +[(qDi()' + e'])

(4.7)

Thus the K dependence has disappeared and (2.1) in
the NRL-WBL is again the ISGW state (2.16). This
conclusion is valid for any meson frame, i.e. , any P".

In the CQM, all manipulations are exactly analogous
to those presented in the second section of this paper. In
all formulas one has to make the substitution

Owing to the relations (2.4) and (4.1), or similar, the
interplay of the sea and the valence-quark contribution
leads to a meson mass M which is not just a sum of the
valence-quark masses. However, the values of the quark
masses are interconnected with the quark wave function
(2.3). For any mass change, the variational procedure
which leads to (2.3) has to be repeated, or alternatively
the meson wave function P can be determined in some
other model, for example, in a model inspired by the
Bethe-Salpeter equation. For illustrative purposes, the
mass mg has been changed in the model versions de-
termined. by (2.3)and (2.4) or (4.1). Such a procedure,
admittedly inconsistent, has been used just to illustrate
the flexibility of the CQM's.

In Table I the meson decay &om factors are calcu-
lated using (2.4) and the parameters (3.23), (3.25), and
(3.28). The spectator antiquark mass mg has been arbi-
trarily changed, as discussed above. As expected, the fH
values change with mp, but not dramatically, mostly by
less than 20%. Deviations from the HQL relation (3.29)
are more interesting. They ainount to about 9% when
the full CQM is employed. This indicates that, in this
version of the model, the HQS relation (3.29) presents
a very good approximation. Absolute values f~(CQM)
are closer (less than 5% difference) to fIi„z„,as should
be expected with mt, /m, = 3.3.

The results presented in Table II show that the sea
contributions can be very important. Whereas the gen-
eral pattern is similar to that displayed in Table I, the
absolute values of the meson decay constants fH are
much smaller. For example, with m~ ——0.33 GeV,
fD(4 1)/fD(2 .4) = 0..59 and f H(4. 1)/f~(2. 4) = 0.70.
However, this has to be taken more as an illustration of
the model Aexibility than as a serious prediction. The sea
descriptions (2.4) or (4.1) are very crude and one should
better refer to them as "mock sea" functions.

Other calculations of the meson decay form factors lead
to a broad range of values. A relativistic quark model
with centrally confined quarks [8] gave values that were
smaller up to 50% (fD = 130.6 MeV, fbi = 90.9 MeV)
than our (3.26) values or the values in Table I. These
values are much closer to our values shown in Table II,
which illustrates how model-based predictions depend on
details of the model construction. The larger fD and fH
values, as obtained in the present CQM, are closer to the
results based on QCD sum rules, lattice calculations, and
semilocal parton-hadron duality [9]. The estimates in the
QCD sum rules [10] gave fD =120—250 MeV and f~ =
90 —200 MeV. The predictions of the lattice calculations
[ll] are in a similar range fD = 170 —230 MeV and
f~ = 140 —220 MeV. Lower values, fD = 80 MeV and

V. NUMERICAL EXAMPLES AND DISCUSSION TABLE I. Meson decay constants corresponding to for-
mula (2.4).

It is well known that various relativistic wave functions
(states) can lead to the same state in the NRL. This has
been illustrated in Secs. II and IV for two slightly dif-
ferent versions of the CQM. However, the different ver-
sions of the CQM lead to somewhat different estimates
of physical quantities. These di8'erences persist even in
the HQL.

mq (GeV) fo (MeV)
0.33 258.8
0.3 251.4
0.2 227.1
0.1 204.3
0.01 18?.1

AH«(MeV) f~ (MeV) fiiH&~ (MeV)
235.8 151.9 143.8
233.2 149.3 142.2
223.6 140.3 136.3
212.6 131.2 129.6
202.2 123.6 123.3
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TABLE II. Meson decay constants corresponding to for-
mula (4.1).

mq (GeV) fo (MeV) foaz„(MeV) fg (MeV) fnao„(MeV)
0.33 157.4 146.2 105.7 89.1
0.3 153.8 144.5 104.4 88.1
0.2 141.0 137.8 99.6 84.0
0.1 127.2 129.2 93.5 78.8
0.01 114.5 120.5 87.1 73.5

1,0-

0.9-

0,8-

0.7-

0.6-

MeV and f~ = 130 MeV, reinarkably close to the values
of Ref. [8], were found in a potential quark model [12].

The IWF calculated in the CQM defined by (2.4) (see
Fig. 1) shows similar behavior to the ISGW-Amudson
[5] result obtained with the correction factor K = 0.6. Its
slope p de6ned by

((io) = 1 —p (to —1) + O((io —1) ) (5.1)

is about 25% larger than the results of Ref. [5]. This
can be attributed to the fully relativistic character of the
CQM, including Wigner rotation. As shown in Ref. [4]
the Wigner rotation increases the slope of the IWF by
about 20%.

Figure 2 shows the influence of the "mock sea" contri-
bution. The solid curve and the dotted curve correspond
to the sea functions (2.4) and (4.1), respectively. The use
of (4.1) increases the slope p by 10%. One is tempted to
assume that the relativistic effects (see Fig. 1) might
play a larger role in the calculation of the IWF than the
sea effects. However, the model is too crude for such
far-reaching conclusions.

An arbitrary d-antiquark mass change, using mp ——0.1
GeV instead of (3.23), produces virtually the same ((iv)
curve with either the (2.4) or the (4.1) sea description.
The slope p = 1.07 is 9% smaller than the results based
on (3.23) and (2.4) (see also Fig. 1).

A plethora of p values can be found in the litera-
ture. By Btting the data on B —+ Dlv and using dif-
ferent Ansatze for the IWF [4,13—15], the p values have
been found to be in the range p = 0.92 —1.57. This
is slightly larger than the value based [2,3,16—18] on the
ISGW model [1], p = 0.8. Relativistic quark models
[8,12] gave p = 1.25 and p = 1.1, respectively. The QCD
sum-rule estimates [19—26] p = 1.0 —1.14, as well as the
lattice computations [27—29] p = 0.71 —1.35, are more or
less in the same range as the estimates [4,13—15] based

1.0 1',4
I

1'.6

FIG. 2. Several IWF's are shown. The dashed curve, with

p 1.07, is obtained by using either (3.20) or (3.20) plus (4.7)
substitution with mg = 0.1 GeV. The solid curve, p 1.17,
is obtained using (3.20) and m, g = 0.33 GeV, the same as for
the solid curve in Fig. 1. The dotted curve is obtained with
the Gaussian sea (4.7). Its slope parameter is p = 1.29. All
slope parameters correspond to the Ansatz (5.1).

on the B ~ Dlv data. The values of the slope param-
eter p shown in Figs. 1 and 2, which roughly span the
range p = 0.93—1.29, are similar to 6tting-data estimates
[4,13—15], or QCD sum-rule estimates [19—26], or lattice
[27—29] estimates. The value obtained in the simplest
CQM version of the ISGW model is p = 1.17.

Our results obtained using (2.4) are connected with
the Close and Wambach [4] deductions. In their case,
the ISGW model was relativized suKciently to make it
covariant in the HQL. They have also taken care to in-
clude the Wigner rotation of light quarks. With m cor-
rections, their approach might also approximately, and
adequately, describe lighter mesons (K).

When one starts with a covariant description, the HQL
follows automatically by the m& expansion. The HQS
results are readily obtained in this limit. The Wigner ro-
tation is also automatically included in a covariant proce-
dure. Fiirthermore, the CQM can be used for the descrip-
tion of the light mesons or the heavy-light meson transi-
tions. A very general structure of the model, including
the sea function I'(K), provides for its great adaptability
and ability to model various physical situations.
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