
PHYSICAL REVIEW D VOLUME 52, NUMBER 11 1 DECEMBER 1995

Radiative weak decays of charm mesons

Gustavo Burdman, Eugene Golowich, JoAnne L. Hewett, and Sandip Pakvasa
Eermilab, Batavia, 1/linois 60510

Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01008
Stanford Linear Accelerator Center, Stanford, California 9/809

Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 988M
(Received 27 February 1995)

We address standard model predictions for Savor-changing radiative transitions of the pseu-
doscalar charm mesons. Short-distance contributions in D radiative transitions are contrasted with
those in B decays. A full analysis is presented of the c -+ u + p electromagnetic penguin ampli-
tude with QCD radiative corrections included. Given the importance of long-range efFects for the
charm sector, special attention is paid to such contributions as the vector dominance and pole am-
plitudes. A number of two-body 6nal states in exclusive charm radiative decays is considered and
the corresponding branching ratio predictions are given.

PACS number(s): 13.40.Hq, 13.40.Ks

I. INTRODUCTION

It has become increasingly evident that the database
for charm hadrons is in a state of rapid expansion, and
that physically important levels of sensitivity are being
achieved. Perhaps the most impressive example of this
to date is the recent observation of the nonleptonic decay
Do ~ K+n, with branching ratio [1]

= 0.0077 + 0.0025 + 0.0025 .
Boo~z-~+

TABLE I. Status of electroweak-induced charm decays.

Mode
DO~ 0

DO ~ yo

Branching ratio
(1.4x 10
&2.0x10 4

This transition has been interpreted as evidence of a dou-
bly Cabibbo suppressed transition rather than of D -D
mixing.

The discussion in this paper will be directed towards
a somewhat difFerent aspect of charm physics, the fIavor-
changing radiative decays. These transitions require the
joint occurrence of weak and electromagnetic interac-
tions. From Table I [2], we see that no such events have
yet been observed. However, these decays are an ac-
tive area of study, and data gathered in ongoing T(4S)
and 6xed-target experiments are establishing markedly
improved bounds. Our objective in the analysis to fol-
low will be to provide up-to-date predictions for fIavor-
changing radiative transitions of charm systems. Since
the experimental situation for charm mesons is at present
more favorable than for charm baryons, we shall restrict
our attention to the former. Even with this restriction, it
is a tall order to supply accurate theoretical values. It has

become evident over a long period of time that theoretical
calculations of D-meson weak decays are not particularly
trustworthy, due in part to the absence of a rapidly con-
vergent approximation scheme and also to the presence
of signi6cant hadron dynamical efFects in the D-meson
mass region. Despite this, we feel that one can make
some definite statements, such as the relative importance
of long-range and short-range effects [3] and of the var-
ious types of Bnal states which can reasonably be antic-
ipated. We shall base our analysis on a variety of theo-
retical techniques, &om operator-product expansion and
renormalization-group methods to more phenomenologi-
cal approaches such as vector-meson dominance (VMD).
Measurement of radiative charm decays would probe the
long-distance contributions and thus provide further in-
sight in the extrapolation of calculational techniques to
the B sector. The size of long-range efFects in B —+ Xgp
decays is an outstanding question and must be deter-
mined in order to establish the viability of measuring the
Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vtg
from these processes [4].

Let us summarize the contents to follow. In Sec. II, we
consider the short-range component in radiative charm
decays, primarily the charm counterpart of the penguin
amplitude which dominates the radiative B-meson de-
cays. In addition to addressing c-quark physics, our anal-
ysis contains a purely theoretical advance by removing an
unnecessary assumption made in earlier studies involving
6-quark applications. Section III begins our analysis of
the so-called "long-distance" contributions with an anal-
ysis of pole diagrams, which are induced by the weak
mixing of pseudoscalar andior vector charm mesons with
noncharm states. In Sec. IV, we continue our study of
long-distance efFects by turning our attention to a study
of VMD amplitudes. Our conclusions and recommen-
dations for future studies are given in Sec. V. There is
also an Appendix in which the applicability of VMD to
certain light-meson decays is commented on.
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FIG. 1. Short distance efFects.

II. SHORT-DISTANCE CONTRIBUTIONS

Examples of diagrams which mediate the short-
distance transition amplitudes for radiative charm decay
are depicted in Fig. 1. Looking ahead, our conclusion
regarding such short-distance amplitudes will be that in
radiative decays of charm mesons they are small relative
to long-distance effects, even though they receive large
enhancements Rom /CD corrections. This is of course
in stark contrast to B decay.

In recognition of the importance attached to the elec-
tromagnetic penguin transition in radiative B decays,
we give a brief pedagogical comparison between the role

I

played by this efFect for B and for D decay. The two
transitions in question are given at the quark level by

b(p, A) + s(p', A') + p(q, a.),

c(p, A) m u(p', A') + p(q, a) . (2)

To highlight the crucial role played by the quark masses
and CKM matrix elements, let us at fn. st ignore the efFect
of /CD radiative corrections. The relevant Feynman di-
agrams are then depicted in Figs. 1(a) and l(c) and the
penguin amplitude for the transition of a heavy quark Q
to a much lighter quark q and an on-shell photon is given
by [5]

A~
'" —— ) A, E2(z;)uq(p', A')e" (q, A)cr„„q"[myP~ + mqPL]ug(p, A) )4 2m2

where Pn (PI, ) are the right- (left-)handed helicity projection operators, z, —:m2/Mi22, , A;—:V;, 'V~s for Az~, ~ and
A, = V„V„,for A ~„~. The function E2 gives the contribution of each internal quark to the electromagnetic penguin
loop,

3 — 2—
E2(x) = Q

3x~ lnx 2x3 + 5x2 —x 3x3 lnx
2(* —1)4 4(x —1)s 2(*—1)4 ' (4)

with Q being the charge of the internal quark. For b -+ sp the sum is carried out over the quarks u, c, t and the term
proportional to the s-quark mass in Eq. (3) is generally neglected, whereas for c ~ up, one sums over the quarks,
d, s, b and. ignores the corresponding term proportional to the u-quark mass.

Let us get acquainted with some of the numerical values. In Table II, we erst display the magnitude of the
function E2 and then fold in the CKM dependence for the b -+ sp transition (we take m„= 5 MeV, m, = 1.5 GeV,
mq ——174 GeV, and the central values of the CKM matrix elements as given in [6]). Dominance of the t-quark
intermediate state is evident, even upon including the CKM factors. Its effect is so large that the other intermediate
states are numerically negligible and hence are typically omitted. The corresponding situation is given for c ~ up
in Table III (with m~ = 11 MeV, m, = 150 MeV, and mi, = 4.9 GeV). The amplitude for c ~ up difFers &om that
of b -+ sp in two important respects, (i) there is no single intermediate state which dominates, and (ii) the overall
magnitude is much smaller.

Neglecting the final-state fermion mass, the @CD uncorrected decay rate I'& is given by

I (o)
Q —+qp

nG2
~, m~s ) ~E,(~) (5)

TABLE II. Contributions to b —+ 8+ p. TABLE III. Contributions to c —+ u+ p.
Quark

2.27 x 10
2.03 x 10

0.39

Ivy v."
I&~

1.29 x 10
7.34 x 10
1.56 x 10

Quark
d
S
b

1.57 x 10
2.92 x 10
3.31 x 10

(v. v„,)E,
3.36 x 10
6 26 x 10
3.17 x 10
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To obtain the branching fraction, the inclusive rate is scaled to that of the semileptonic decay Q -+ q /v. This
procedure removes uncertainties in the calculation due to the overall factor of m which appears in both expressions,
and reduces the ambiguities involved with the imprecisely determined CKM factors. Taking the above numerical
values for the internal quark masses, and using the values of the semileptonic branching ratios as given in [6], this
yields

30! IV i,V,*,Fs(x, ) I'
2~

I
V.sl'[a(m. /ms) + (IV sl'/IV. sl')a(m /ms)]

= 1.29 x 10

B ~„~ = 3n IV;,V„,F2(x, ) + V sV„sF2(xg) I

2~ IV-I'[a(m. /m. ) + (IV.~I'/IV- I')g(maim. )l
= 1.39 x 10

Here, the function g(x) is the usual phase-space factor
in semileptonic meson decay, where constituent values
of the final-state quark masses have been used [7]. The
QCD uncorrected c ~ up transition is seen to have an
unobservably small branching &action.

We next examine the quantitative impact of the QCD
radiative corrections on the above branching ratios. We
begin by reviewing the calculation for the b -+ sp transi-
tion, which will serve as the foundation of our subsequent
discussion of c -+ up. The QCD corrections are calcu-
lated [8,9] via an operator product expansion based on
the efFective Hamiltonian

The above efFective Hamiltonian is then evolved &om
the electroweak scale down to p mb by the
renormalization-group equations (RGE's).

In the RG analysis, the Wilson coefi1cients are to be
evaluated perturbatively at the TV scale where the match-
ing conditions are imposed and then evolved down to the
renormalization scale p, . The expressions for the (ci,) at
the R scale are

ci 3—s (Mpr) = 0, c2 (Miv') = 1

8

II,~ ——— Ag ) ci, (p, )Oi, (p),
%=1 with

cp(Mg ) = ——,'Fz(x, ), cs(Mg ) = —-'D(xg) (9)

where the (Og) are a complete set of renormalized
dimension-six operators involving light 6elds which gov-
ern the b -+ s transitions. They consist of two current-
current operators 01~, four strong penguin operators
03 6 and electro- and chromomagnetic dipole operators
07 and 08.

z3 —52:2 —2x 3x2 ln x
4(*—1) 2(x —1)

The solution to the RGE at the leading logarithmic order
is given by

Oi ——(c p„Pl.bp)(spy" Pl.c ),
Og ——(c p„PI,b )(spy"Pi, cp),

Os ——(a &„PLb ) ) (qp&"PLqp),
q

04 ——(s p„Pl,bp) ) (qpp"Pl, q ),
q

O, = ( &„Pib )) (qp-&"PRqp),

Os = (s-~~P~bp) ) (qp&" Rq-)

Op —— mg(s o„„PRb )F"",
16m2

Os —— '
mg(s o„„TpPRbp)G "

16~2

(8)

cq (p,) = Ui, )(p, M~)c)(M~),

where UI, &
denotes the evolution matrix in a 6ve-Bavor

context and is determined by

U'(mi, mz) I,„=OI, ) [g ']0,„' . (12)

In the above we define g = n, (m2)/n, (mi) and a~

pP)/2PO (not summed on l), where Po ——11 —2nf/3
and p = 0 p~ +~ 0 is the diagonalized form of the
8 x 8 anomalous dimension matrix. We use the scheme-
independent form of the matrix p', which is given ex-
plicitly in [10] in terms of the number of Q = +s and

Q = —si quarks present in the efFective theory.
Scaling again to the semileptonic decay, the branching

fraction is now given by

6n V,~V,*.

Vg
lc~ (~)l'

~(m-/ms) + (IV-s I'/IV-s I')g(m-/mb)
(13)
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The numerical values of the separate contributions to
cz+(p) are, with mq ——174 GeV (for illustration pur-
poses), p = mb = 4.87 GeV, and a, (Mz) = 0.124 as
determined by the CERN e+e collider LEP [ll],

QCD enhancements are not as dramatic.
We now consider the case of radiative charm transi-

tions. The ~Ac~ = 1 effective Hamiltonian can be written
as

cz (p) = 0.670c7(M~) + 0.09lcs(M~) —0.172cz(M~)
= 0.670{—0.195) + 0.091(—0.097) —0.172 . (14)

10—4G~
Ab) cb(I )Ob(i ),

2 A:=1
(16)

Taking the overall CKM factor in the branching fraction
to be unity, and [V„b~/~V, b~

= 0.08, this procedure yields

Bb~,~ ——(2.92+o'st} x 10

The central value corresponds to p = mb, while the
upper and lower errors represent the deviation due to
assuming p = mb/2 and p = 2mb, respectively. We
see that this value compares favorably to the recent
CLEO measurement [12] of the inclusive rate of Bb~,~ =
(2.32 60.57j0.35) x 10 4. When compared with the un-
corrected result of Eq. (6), the QCD corrections are seen
to increase the branching ratio by roughly a factor of 2.

We take this opportunity to refIect further on the size
of the QCD corrections. Earlier estimates [13] of these
corrections found that the enhancements to the 6 —+ Sp
branching &action were more than an order of magnitude
for mq ( M~. This is because the effect o'f the QCD ra-
diative correction to the weak vertex is to replace the
Glashow-Iliopoulos-Maiani (GIM) power suppression in
Eq. (3) by a logarithmic suppression. We explicitly illus-
trate this efFect in Fig. 2, where we show the dependence
of the c7 Wilson coeKcient on the mass of a single in-
ternal quark using the calculational procedure described
above. In the lower of the two curves, the dependence
of c7 determined at scale p = m~ is displayed, while
the upper curve corresponds to the evolved c7 evaluated
at p = mb. We see that cy(p = mb) is a reasonably
fIat function of the intermediate quark mass, and that
the corrections are substantial for light internal quarks,
with an increase of 3—4 orders of magnitude in the rate
for m~ = 5—10 GeV. For the case of one heavy internal
quark, e.g. , 6 ~ sp with m~ ) M~, we see that the GIM
mechanism no longer plays such a crucial role and the

with A; = V*,V„; as defined previously. The CKM struc-
ture of the operators difFers dramatically &om the 6 M Sp
case. Here, both Oq and O2 have two contributions
which have approximately equal CKM weighting since
~A,

~
~Ag~. We stress that extreme caution must be

exercised in order to correctly incorporate these terms.
To be precise we explicitly separate Oq and 02 into two
operators according to their CKM structure,

Og —(u p„Pl.sp)(spy"Pl, c ),
Oqb = (u p„Pl,dp)(dpi'"Pl, c ),

02 ——(u p„PI,s )(spy"Pl. cp),
02b —(u 7„PI,d )(dpi'"PI, cp),

and write the remaining ~b, c~ = 1 operators in a form
analogous to their ~Eb[ = 1 counterparts

O = ( -v P -) ) (q v"P q ),

04 = (u p„Pl,cp) ) "(qpp"PL, q ),

O, = (u 7„Pl,c ) ) (qp&"PRqp),

Os ——(u p„PI.cp) ) {gpss"PRq ),

Oq —— m, (u o„„PRc )I""",.
16vr2

Os —— ' m, (u o„„TpPRcp)G ""
16vr2

where the terms proportional to m„ in 0~ 8 have again
been neglected. Since the quantity —Ab has been factor-
ized in Eq. (16) above, the values of the corresponding
Wilson coefFicients at the matching scale are now

10—1 p =mb
c,.(M~) = O, c„(M~) = O,

c2~{M~) = —A, /Ab, c2b(M~) = —A~/Ab . (19)

10

1O
—4

The values of the Wilson coefficients for cs s(M~) are
the same as in Eq. (9), and the coefFicients cq s(M~) are
modified to

10—6

10

1
c7 (M~) = ——

2
—'E2(X, ) + I'2(Xb)

b

A'D(*.) + D(»)
b

(2o)

1O-8
50 100

m, (GeV}
150 200

FIC. 2. Dependence of c7 on intermediate-quark mass.

with each containing intermediate 8-quark and b-quark
contributions. Due to the CKM dependence, cy s(Mgr)
now contain both real and imaginary terms which in prin-
ciple must be evolved separately. We note that the real
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parts of the 2;,-dependent terms are numerically the same
order of magnitude as the xb terms. Now we evolve the ef-
fective theory down to the scale p m . This takes place
in two successive steps; first, we go from the electroweak
scale down to mb working in an effective five-flavor the-
ory, and then to p ( mb in an effective four-flavor theory.
This procedure is similar to what is performed for the
~Es~ = 1 kaon transitions [14], where the effective theory
is evolved to p 1 GeV in three successive steps. We
then have

Rec~ (y) = U&&(p, mi, )U&„(mi„Miv)Rec„(M~),
mck~(&) = &kl(P iii&)Ul (iiib Mw)lmc (Mw), (21)

and

lcv (~)l' = lRecV~(u)l'+ l™~v(~)l'. (22)

The renormalization-group evolution matrices U and U
are determined as in Eq. (12) now using a 10 x 10 anoma-
lous dimension matrix p . We take the anomalous di-
mensions of the split operators O~ b and 02 b to be
exactly those for O~ and 02, respectively, as the anoma-
lous dimensions do not depend on the CKM structure of
the operator. We use the form of p' as given in [10],
taking care to keep nf ——4 and 5 as needed. The rela-
tive numerical values of the contributions to c& (p) with
p = m = 1.5 GeV are

c~ (m)=Rec~ (m)
= 0.458cv(Mw) + 0.125cs(Mm) —0.312[c2~(M~) + c2i, (Mw)]

= 0.458(—0 414 x 10 ) + 0.125(—0.239 x 10 ) —0.312
~

—A, —Ag

Ag )
= 0.458(—0.414 x 10 ) + 0.125(—0.239 x 10 ) —0.312, (23)

where the CKM unitarity condition A, + Ap ———Ab has been used to simplify the final term. Incidentally, it should
be stressed that the choice of —Ai, as a prefactor in Eq. (16) was quite arbitrary, and we could have pulled out some
other factor, say A, (or A~). This would have affected the Wilson coefficients at the matching scale, but the final
result would have remained, as it must, unchanged.

We now compute the branching &action. We evaluate n, in the modified minimal subtraction (MS) scheme
[using n, (Mz) = 0.124 as before] and extend the range down to the charzn scale using the Bernreuther matching
conditions [15] at the threshold p = mb ——4.87 GeV. Note that we have also taken the CKM matrix elements to be
real and have neglected any possible imaginary components. Given the small values of cq s(M~), this approximation
is well justified. It is clear &om the above that the c2(Miv) term completely doininates, due to the small contributions
to c~ s(M~) &om the light internal quark masses. This is in stark contrast to b ~ s transitions (and likewise to
s ~ d), where the heavy internal t-quark forces the magnetic dipole coefficients to be competitive with c2(Mgr). This
can be seen explicitly by comparing the above with Eq. (14). The @CD-corrected branching &action is then

2
6o. VbV b lcv'(~) I'
vr V,. g(m, /m, ) + (/V, g/'//V„/')g(md/m, )

= (4.21 —7.94) x 10 (24)

where the lower (upper) value in the numerical range
corresponds to the scale p = 2m, (m, ). We see that
the effects of the @CD corrections are quite dramatic in
charm radiative decays, and that the rate is given al-
most entirely as a consequence of operator mixing. The
stability of this result can be tested once the complete
next-to-leading order corrections to the magnetic dipole
transitions are known.

Finally, we wish to comment further on the CKM de-
pendence of the ~Ab~ = 1 and ~Ac~ = 1 effective Hamil-
tonians. We consider each case separately.

(i) ~&b~ = 1 transition. Here, the the t-quark con-
tribution is seen to dominate in every respect. Thus,
for the dipole operators O~ and 08, the u-quark and c-
quark loops are omitted because they are numerically
tiny (e.g. , see Table II). Likewise, due to the smallness
of the u-quark CKM factors, the approximation is made
in the literature [9] to omit any current-current operators

containing u-quark fields. This explains why only the c-
quark-dependent operators Oi 2 appear in the ~Ab~ = 1
operator basis of Eq. (8). This assumption also explains
another aspect of the analysis. Ordinarily one would ex-
pect O~ 2 to be accompanied by the CKM factor —A,
yet it is the prefactor A& which appears in the effective
Hamiltonian of Eq. (7). This is because the tiny value of
A„has allowed one to write the CKM unitarity relation
as A —Aq and thus remove dependence upon A„.

(ii) ~Ac~ = 1 transition. In this case, the CKM depen-
dence is more complicated since no single quark loop is
dominant. One must expand the operator basis as we did
in Eq. (17). However, we wish to take note of a seem-
ingly remarkable feature which occurs upon carrying out
the RG analysis. The operators 02 and 02b turn out to
have equal anomalous dimensions and thus c2 and c2b
have the same numerical coefficient in Eq. (23). The most
elegant way to understand this result is to exploit the U-
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Og -+ 02—:2(02 + 02b)

,'[(u —p~PI.s )(spy"Pl. cp)

+(u-~ P~d-)(dp~"P«p)]

02b m 02b =
2 (02 —02b)
', [(u -p„PL,s )(spy"PLcp)

(u &—„Pl.d )(dp&"Pl, cp)],

(25)

along with a corresponding replacement of coefficients,

I I
c2a M cga an& c2b + c2b (26)

The matching conditions for the modified coefficients
would then have become

A, +Ay
c2 (Mg)= ' =1—Ab

and

spin symmetry present in the system of operators O~
and 02 2b. Thus, suppose instead of proceeding as we
did, we replaced the operators 02 and 02b of Eq. (17)
with the equivalent set 02 and 02b, where

At the hadronic level, this is the so-called vector-meson
dominance mechanism. We shall discuss the pole ampli-
tudes in this section, leaving consideration of the VMD
mechanism for Sec. IV.

The pole amplitudes are but a subset of an en-
tire class of long-distance contributions, including the
two-particle intermediate states and proceeding to all
higher n-particle intermediate states. However, of these
the most phenomenologically accessible are the single-
particle or pole terms. The relevant diagrams, appearing
in Figs. 3(a) and 3(b), are seen to fall into either of two
basic classes. We shall refer to transitions as type I if
weak mixing occurs before photon emission, i.e., if the
incoming D meson experiences weak mixing, and as type
II if photon emission occurs before weak mixing, i.e., if
the final-state meson is created via weak mixing. In prin-
ciple, the intermediate states occurring in the type-I and
type-II amplitudes consist, respectively, of all possible
virtual spin-zero and spin-one particles. We shall find it
practicable, however, to take into account only the light-
est such virtual particles.

In analyzing long-range eKects for Qavor-changing D
decays, we shall employ the effective weak Hamiltonian
of Bauer, Stech, and Wirbel [17] (BSW),

A, —Ag
c2b(M~) = —Ab

Gy'R = — [: ai(ud')(s'c) + a2(s'd')(uc):],
2

(28)

with analogous replacements made also for Oq and Oqb.
Since the Inixing of 02 and 02b with 07 has no de-
pendence on the mass of the internal s and d quarks, the
operator 02b does not contribute to the process c —+ u+p
due to cancellation between the s-quark and d-quark con-
tributions. This cancellation is in fact just the manifes-
tation of an underlying U-spin symmetry. That is, in the
limit of neglecting light quark masses, 02b carries U-spin
1 and thus cannot couple to a photon. This decoupling
occurs via the very s-quark and d-quark cancellation un-
der discussion. As a consequence, the other operator 02
must have the same anomalous dimension as 02 under
RG How, and we obtain the result cited above.

As a corollary, it is clear that in the ~Eb~ = 1 tran-
sition, the approximation made of omitting the u-quark
current-current operators is quite unnecessary [16]. One
could just as easily deal with an expanded operator basis
containing u-quark fields analogous to that of Eq. (17)
or invoke an SU(4) version of u-quark —c-quark U-spin
symmetry and proceed as above.

where the colons denote normal ordering and d', and 8'
are the CKM-mixed fields

d' = V„gd+ V„,s,.'= V...+V.„d. (29)

We shall work in the 2 x 2 basis of quark Bavors:

~&
V„e V„, ) ( 0.975 0.222 l

I, Vg V„) ( —0.222 0.975 (30)

(mv2) = nv, (1+vs)e2, (31)

and a~, a~ are &ee parameters whose values will generally
depend on the mass scale being probed. Here, they are
determined by fitting to D -+ Kvr data [18]:

Specific forms for the Cabibbo-favored and Cabibbo-
suppressed Hamiltonians will be given shortly. The quark
fields occur in left-handed combinations, denoted by

III. LONG-DISTANCE POLE CONTRIBUTIONS
ai(m, ) = 1.2 + 0.1, a2(m, ) = —0.5 + 0.1 . (32)

Long-distance contributions can be partitioned into
two basic classes. The first corresponds, at the quark
level, to annihilation diagrams cqq —+ q2q3 where a pho-
ton line is attached to any of the four quark lines. In
terms of hadronic degrees of freedom, these give rise to
the set of contributions which include the pole diagrams.
The second type of contributions corresponds to the un-
derlying quark processes c —+ qqq2q, followed by q2q —+ p.

~W
P„

D

FIG. 3. Pole contributions.

(b)

w
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A. Pole amplitudes of type I

Among the possible exclusive D decays, the most
promising for experimental detection occur in the class
of vector xneson-photon (Vp) final states:

D(p) + V(k, A) + p(q, o) .

and we do so in Sec. IV. The constants (fv) are obtained
&om I'vox+i- data and have recently been compiled in
Table I of [20).

Now, a pseudoscalar state P which is created by weak
mixing will propagate virtually until it eventually decays
into the final state. This latter transition is electromag-
netic and hence parity conserving. It has the amplitude

For these, the transition amplitude has the gauge-
invariant form

Mv~p = hv~pet (k, A)et (q, o)e"" ~k pp . (38)

~a~v, =,t (k, ~),t(q,.)[A-(p.p- —g.-q p)

+i,A e"" ~k pp] . (34)

The parity-violating and parity-conserving amplitudes
are denoted by A and A respectively, and each car-
ries the dimension of inverse energy. Both amplitudes
are generally required because the weak interaction does
not respect parity invariance. The D ~ Vp decay rate
is given by

3
~q~

(~A ]+~A4'
where g is the decay momentum in the D rest frame,

2 2mg mQ
2m))

(0~V„~V'(q, W)) = S" v.„'(q, W)

gve' (q, A) . (37)

Note that we define two equivalent parametrizations g~
(with units of GeV2) and fv (dimensionless), for the vec-
tor decay constant. We have found that employing g~
in the discussion of pole amplitudes alleviates notational
confusion which would otherwise occur between the vec-
tor and pseudoscalar constants fv and f~. However, it
is traditional to use fv in discussing VMD axnplitudes,

Which particular combination of the parity-conserving
and parity-violating amplitudes contributes to the decay
process will depend upon the weak-mixing amplitude. In
principle, a charm meson can mix with a sequence of ei-
ther scalar (S„)or pseudoscalar (P ) mesons. Although
some work on scalar mixing has been done [19], the out-
come is rather model dependent because detailed experi-
mental and theoretical understanding about scalar states
is lacking. In this paper, we shall therefore consider only
the weak mixing of charm mesons with light pseudoscalar
mesons and thus work with only parity-conserving (PC)
pole amplitudes.

It is appropriate at this point to comment on the nota-
tion to be employed from this point on in both Secs. III
and IV. We shall denote fJ as the decay constant of
pseudoscalar meson P and define h~&~ as the coupling
constant for the EM interaction vertex of the photon p
with the mesons V, P. Also, the decay constant of vec-
tor meson V is given in terms of the V-to-vacuum matrix
element of the vector current:

The absolute value of the coupling constant h~~~ can be
inferred phenomenologically by using

ill (M ™)
4~r~ v, /~q~ (M~ ) Mv) . (39)

The general type-I decay amplitude AI for D ~ Vy is
then given by

T +Pp-
(41)

as well as

xc2
4' (42)

To summarize, we shall include in our study of type-I

A,'c(D~V&) =) hv,~, , (P„~Z~'~D).
m(7 mQ

(40)

With Fig. 3(a) as a guide, the notation should be self-
evident.

Predictions for D ~ Vp decay amplitudes will be ob-
tained below in terms of both type-I and type-II pole
amplitudes, and in the next section we shall do the same
by using VMD amplitudes. We can, however, accom-
plish somewhat more. In principle, the discussion for Vp
final states extends to a larger set of meson-photon fi-
nal states Mp, where the only restriction on meson M
is that it have spin greater than zero. For each diferent
type of Mp final state, there will be a gauge-invariant
D-decay amplitude such as Eq. (34) and an MpP in-
teraction vertex such as Eq. (38). However, the generic
form of Eq. (40) continues to hold, except that hv~x „ is
replaced by hM~~„. Of course, to have predictive power
requires knowledge of the hM~~ coupling constant. For-
tunately, much has been learned about radiative decays
in light meson systems over the years. In particular,
there are varying amounts of experimental evidence for
17 such transitions in the listing of [6]. Of these, 10 in-
volve 1 ~ 0 mesonic transitions, 3 involve 2+ + 0, 2
involve 1+ + 0, and 2 involve 0 —+ 1 . This informa-
tion allows us to extend the analysis of type-I amplitudes
from just Vp final states to include both Ap and Tp con-
figurations as well, where A and T stand for axial vector
and tensor mesons, respectively. The Ap final states are
very analogous to the Vp decays in that the coupling
constant h~~x is found via Eq. (39) and the D -+ Ap
decay amplitude has the saxne form as Eq. (35). For the
Tp final states, one uses instead
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amplitudes certain D ~ Ap and D m Tp transitions.
For the type-II or VMD amplitudes, however, we shall
limit our calculations to just the Vp Anal states.

I'~~ + /FD~ & + along with the branching ratio
BD+ & +. In our numerical analysis, we shall use the
following weighted average of the above decay constants,

1. Cabibbo fa-uor ed (CE) tr ansitions
fD"~' ——299 MeV . (48)

In this case, the BSW Hamiltonian becomes

, G~'R = —V„~V„* [: ai(ud)(sc) + a2(sd)(uc):] .
2

For the sake of comparison, we note that this value is
somewhat larger than the central value of a weighted av-
erage taken &om a compilation of existing lattice esti-
mates [25]:

(43) fop
——242 MeV . (49)

The calculation of weak-mixing matrix elements of D's
with the light pseudoscalar mesons is straightforward and
results are tabulated in Table IV. The fact that these
mixing amplitudes are evaluated in vacuum saturation
makes the forms in Table IV easy to interpret. Thus,
for example, in Cabibbo-favored D+ decay, it is the term
in the BSW Hamiltonian with coefBcient aq, which con-
tributes, and as such, the weak-mixing matrix element
is naturally proportional to the decay constants f and

D, -

For the decay constants of the light mesons we use

f = 131 MeV and f~ = 161 MeV . (44)

The present situation for the decay constants fli and fD.
of the charm mesons is somewhat problematic. Experi-
inent provides the upper limit for f~,

fD & 290 MeV, (45)

f 216 MeV, (46)

which is an average over the lattice estimates [25] and
falls between the other two types of d.eterminations.

Recently, the following experimental results (in units
of MeV) for fD, were announced by the CLEO [26],
WA75 [27], and BES [28] Collaborations:

as obtained from the branching ratio determination
Bri~~~+„& 7.2 x 10 at 90% confidence level [21].
Thus only theoretical estimates exist for fry These.
occur in three categories, lattice theoretic [22], @CD
sum rules [23], and quark model fits to color-hyperfine
mass splittings [24]. Estimates fall in the range 185 &
fD (MeV) & 262. We shall adopt the value

The only other ingredients needed are the radiative
coupling constants h~~~, which were de6ned earlier.
Putting together all the necessary ingredients and rang-
ing over the set of final-state mesons M = p(770),
K*(892), bi(1235), ai(1270), a2(1320), and K2 (1430)
yields the magnitudes of type-I pole-model amplitudes
(in units of GeV ) given in Table V. These values
should be considered as upper bounds for the follow-
ing reason. We have considered the lightest possible
intermediate states, pions and kaons, because only for
these particles is there suKcient data for determining
coupling constants. However, the pion and kaon inter-
mediate states propagate far off shell. Instead of having
a squared momentum near the mass-shell value q = m
the virtual pion must carry q = m~ )& m and sim-
ilarly for the kaon. This effect could well suppress the
transition amplitude.

In principle, one is to sum over all pionlike and kaonlike
intermediate states. Other possible contributions should
be heavier and thus less affected by this suppression ef-
fect. For pionlike intermediate states, the next state in
order of increasing mass would be m(1300) and beyond
that the unconfirmed state vr(1770). Although there is
not suKcient data to make a numerical estimate of their
effect, we can anticipate for such states that (i) the prop-
agator contribution will indeed be larger, (ii) the weak
mixing between a ground state D meson and a radially
excited meson P will be wave-function suppressed, and
(iii) the radiative coupling constant hM~~ might well be
relatively smaller due to phase-space competition with
other decay modes of the massive meson P . We would
expect the net result of these effects to decrease the over-
all contribution &om the excited states.

2. Cabibbo suppressed (C-S) transitions
' 344 + 27 + 67 (CLEO),

fry = ( 232 + 45 + 52 (WA75),
434+ iss+ss (BES),

(47) The weak mixing now proceeds according to the weak
Hamiltonian

where the CLEO value is inferred &om the ratio TABLE V. Type-I Cabibbo-favored decay.

Mixing
D+ ~ 7t-+

D'~ K'
D+ ~~+

Matrix element
a, V„gV;.f fo+ mo+ G p /~2
aqV~qV, *,fz fom&0 Gz/+2

0

TABLE 2V. Cabibbo-favored mixing amplitudes. Mode

D,+ m b(1 320)p
D+ +a+(1270)7-
D+ m a+(1320)p
D —+K' p

[X,'o
~
(G.V-')

8.2 x 10
7.2 x 10
12x10
2.1 x 10
5.6 x 10
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: ag
~

V„gV;~(ud)(dc) + V„,V,.'(us)(sc)
~2.

+a2
~

V„,V;, (ss) (uc) + V„qVoq'(dd)(uc) ~:

(50)

(dd) = —0.7071m + 0.58' i 0.40'',
(sd) = —0.57@+0.82'', (51)

where an q-g' mixing angle 8~ = —20' is adopted [29].
In addition, we take [29]

The mixing amplitudes which are relevant for Cabibbo-
suppressed decays appear in Table VI. Observe that we
have simplified the notation for D transitions by ex-
pressing V„gVg* in terms of V„,V,*.

The analysis for Cabibbo-suppressed decays proceeds
analogous to that for Cabibbo-favored decays, with one
significant complication. For each of the Cabibbo-favored
transitions, only one amplitude contributes. For D de-
cay, however, all the Cabibbo-suppressed pole amplitudes
contain a sum over a, g, and g' intermediate states. It
is important to get the relative phases of the interfer-
ing amplitudes correct. We have therefore performed an
analysis of the nine V ~ P p couplings in light of the
most recent data, where V = po, u, gP and Po = m, q
and g' [30]. The magnitudes of the Cabibbo-suppressed
amplitudes are displayed in Table VII.

The action of the (dd) and (ss) operators on the vacuum
when expressed in terms of the pseudoscalar meson states
becomes

TABLE VII. Type-I Cabibbo-suppressed decay.

Mode
D+ -+ p+p
D+ -+ bi+(1230)p
D+ —+ a+, (1270)p
D~ —+ a2+(1320)p
D+wK+p
D+ ~ K,"+(1430)p

D -+u) p
Do~go

~~PC

1.3 x
1.2 x
4.9 x
3.4 x
2.8 x
6.0 x
4.8 x
6.1 x
7.4 x

I
(Gev )

10
10
10-'
10
10
10
10-'
10-'
10-'

F&-o ( 2100 keV w F&-o~&o~ & 764 keV,

F~.~ & 131 keV ~ F~.~ ~i & 1.44 keV,

F~ ~ & 4500 keV ~ F~.~ ~g ( 4500 keV .
(54)

Fortunately, predictions for the F~ o~~o~, F~ + ~+~
and F~.g ~+p transitions have appeared in the litera-D, mD,
ture recently [31—34]. There is some spread in predic-
tions, and so we choose the representative values

F~.o~~o~ ——20 keV,

F~-+~~g~ ——0.5 keV,

F&.+ &+ ——0.3 keV,
(55)

bit more heavily on theoretical predictions.
The first diKculty is that the couplings h~.o~~o,

h~.+~~+, and h& + &+ have not yet been experimen-
d f d

tally measured. This is because, although the relevant
photonic branching ratios have been measured, only up-
per bounds exist for the full widths of the associated
spin-one exited states, D*, D'+, and D,+:

B. Pole amplitudes of type II

Analogous to the type-I D ~ Vp decay amplitude of
Eq. (40) we have

which implies

h~ o&~o = 0.542 GeV

h~. q&~y ———0.087 GeV

h~.+,~+ ——0.066 GeV-',
(56)

A~, (D m Vp)

(V i'R ' ]D„') 2 2 hg). ~g) (53)
TAN) mQ yn

where we have adopted the phases implied by the quark
model. A rough check on whether the above values are
reasonable is afForded by the nonrelativistic quark model,
in which

for the corresponding type-II transition. From the view-
point of phenomenology, the type-II transitions are more
problematic than are those of type I because less exper-
imental input is available. Thus, we shall need to rely a

TABLE VI. Cabibbo-suppressed mixing amplitudes.

h~ o~~o ——2e

h~ +&~+ = 28

hD+ D~ =28
d

M
2

M
2

1+

1

Mg
1

M,

(57)

Mixing
D+ ~~+
D+ -+ K+
D —+ vr

D mq
D'~g'

Matrix element
azV„gV gf foymo+GF/v 2

agV, V;fz fo.mo. Gs'/V2
0 7071a2V, V;f.&o f m&Gs/y 2
—1 15a2V, V;fzo f„m. &Gs/Q2
0.42a2V„, V;, foo f„moGp/ J2

where the (A) are constituent quark masses, distinct
&om the current masses (ml, ) of Sec. II. If we take
M 1.64 GeV, as implied by a fit to D and D' masses,
then the relations in Eqs. (55)—(57) yield M„M& =
0.48 GeV and M, 0.53 GeV.

The other of the difBculties concerns the weak-mixing
matrix elements. For type-II transition amplitudes, the
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mixing occurs between charm and light vector mesons,
as in

nately, one knows less about the decay constants of axial-
vector mesons than one does of the vector mesons.

(p+[A' '[D.'+) = a, V„d,V..gp+g~. GF/&Z.

In the above, the g~ are the vector-meson decay con-
stants defined in Eq. (37) and whose determination we
shall discuss shortly. As with the type-I amplitudes, we
have employed vacuum saturation. To determine the ac-
tion of the (dd) and (ss) operators upon the vacuum we
employ the ideally mixed vector meson states, so that

0

(dd) = and (ss) = P .
~2

For the light 1 mesons, the collection (gv) of vector
decay constants can be determined by referring to the
vacuum-to-meson matrix elements of J~ given in Table I
of [20]. Together with isospin and SU(3) relations along
with quark model insights, these generate all the needed
values, e.g. ,

m2
gp+ 0.17 GeV, g~- gp+ 0.22 GeV, . . . .

mp

To estimate the D,*+ and D* decay constants, we invoke
the heavy-quark-symmetry relations

gD. = mls. fD. - 0.588 GeV,
gD. = mg) fg) 0.403 Gev (61)

The magnitudes of the type-II amplitudes thus calculated
are given in Table VIII.

D* excitations with spins not equal to one will not
contribute to type-II amplitudes if we adhere strictly to
the Hamiltonian of Eq. (28) [20] and continue to work
within the vacuum saturation &amework. The reason is
that mesons with J ) 1 cannot have a nonzero matrix
element with the vacuum via the current qp„(1 + ps)c.
The possibility of an intermediate charm meson with J =
0 is disallowed since it could only mix with a final state
J = 0 particle and the decay of a spinless particle to
another spinless particle plus a photon is forbidden.

Although we have considered just final-state vector
mesons in Table VIII, it should be obvious that in prin-
ciple the spin-one intermediate D* states can also mix
weakly with axialvector final-state mesons. Unfortu-

IV. LONG-DISTANCE VMD CONTRIBUTIONS

The VMD contribution to charm meson radiative de-
cay is depicted in Fig. 4. In the VMD approach the
D ~ Mp amplitude is obtained by multiplying the
D -+ MV amplitude by the factor e/fv where e is the
electric charge and fi is the dimensionless version of the
vector-meson decay constant defined in Eq. (37). It is
important to keep in mind that in the VMD process
D ~ MV, the vector meson V is ofI' shell. Thus, to
obtain the VMD amplitude for D ~ Mp will require an
extrapolation &om p& ——m& to p& ——0 for both the
V ~ p vertex and the D ~ MV transition. For our
considerations, the main intermediate states will involve
virtual rho and phi mesons. We shall employ the ob-
servation made in [35] that the rho-gamma vertex seems
to be unaffected by the extrapolation whereas the phi-
gamma vertex is reduced by a factor of g4, ~2. In
the following, we will consider a number of examples for
the case M = V, and so we shall be working with VMD
chains which begin with the process D —+ VV. Since
the VV final states have I = 0, 1,2 as allowed orbital
angular-momentum values, the VMD amplitude will in
general have a parity-conserving part AvMD correspond-
ing the the VV P wave and a parity-violating part AMD
corresponding to the VV S wave and/or D wave.

In practice, there are two means for determining the
D ~ MV part of a VMD amplitude for D ~ Mp.

(1) One can input D ~ MV experiinental data di-
rectly in order to phenomenologically determine the D ~
MV amplitude. In this approach, it is crucial to main-
tain gauge invariance. A careful discussion of how to
construct a gauge-invariant amplitude was recently given
in [20] (which considered this type of empirical VMD con-
tribution to B ~ K'p), so we need not detail this proce-
dure here. Since the database for D ~ MV transitions
is unfortunately small, the ability to generate VMD am-
plitudes using this phenoxnenological method is limited.

(2) One can employ some theoretical description to
model the D ~ MV amplitude. Since the models cur-
rently available do not always reliably reproduce branch-
ing ratios and polarizations of final-state vector mesons
in decays of heavy mesons [36], this method is also not
beyond criticism. For definiteness, we shall continue to
employ the BSW model [17] introduced in Sec. III [37].

TABLE VIII. Type-II decays.

Mode
D+ ~ p+~
D +K* p
D+ ~p+
D+ —+K +p

D' ~ ~'p
D

[~PC

1.9 x
5.9 x
3.6 x
5.1 x
4.7 x
6.9 x
1.6 x

I

(GeV-')
10-'
1O-'
1O-'
1O-'
1O-'
10
10

FIG. 4. VMD contribution.
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I 4vMD I
=

z 2 a; (m, )fx I
2mD

x (mr)+ mi. ) Ai(qo) + 4k mDV (qo)
mLi + my.

(4vrcx )
&&v)

' (62)

where IkI is the photon spatial momentum, q represents
I

Within this approach, the squared VMD amplitude for
the important case where M is a vector meson becomes

either of the d or 8 light quarks, and I is a process-
dependent isospin coefficient. The BSW coefficients
ai (m ) and az(m, ) which correspond to the color-favored
and color-suppressed operators are given in Eq. (32). The
remaining notation is explained by noting that in the fac-
torization approximation for D —+ MV, one of the 6nal-
state particles, which we call X' (either M or V), couples
directly to the vacuum and the other, which we call Y
(either V or M), appears in the D to Y-m-atrix element
of the charged weak current J,"h. Thus the quantity fx
is the decay constant of X, and Ai(q ) and V(qz) are the
semileptonic form factors de6ned by

(Y(P~)IJ,"„ID(P))= e""P e„'PpP~ + 2m' iAo(q ) q"(q ) pupa e 2

mD + my- q

+i (mii + my. )Ai(q )& (P + PY) 2mYAs(q ) z 'q
qA2(q') ' q

mD +mg q
(63)

In the VMD amplitude, the form factors are to be eval-
uated at qo: 0 if X = V and at qo ——mM if X = M.
Throughout, we shall make use of the form factors as
measured [38] in D ~ K'lv and also employ SU(3) rela-
tions as needed. This should provide a good estimate of
the form factors appearing in the D to pand D-t-o /ma---
trix elements. Whenever the form factors are to be evalu-
ated at momentum transfer other than at q = 0, we shall
use a monopole form to extrapolate &om q = 0. This
amounts simply to dividing the form factors at q2 = 0 by
the quantity 1 —q2/m2

&,.
In the following, we shall give VMD predictions for a

number of speci6c D + Mp decays, grouped as Cabibbo
favored, singly suppressed, or doubly suppressed. In
the few cases where we can employ both the above ap-
proaches, we shall refer to them, respectively, as "method
1" and "method 2." Given the lack of abundant D ~
MV data, however, we shall be forced to adopt the the-
oretical approach of method 2 in most cases.

Before we can proceed, there is another topic which
much be addressed, the dynamical complication of sig-
nificant final-state interactions (FSI's). Although pre-
sumably not a problem in B ~ MV decays, detectable
FSI are known to exist in the D-meson mass region. This
can produce an ambiguity in the VMD analysis because
FSI will inherently be part of any VMD amplitude ob-
tained &om D ~ MV data, but will not be present in
the BSW construction. It is difficult to remove the effect
of FSI &om the phenomenological VMD amplitude be-
cause the vector meson V is to be taken off shell, and FSI
might have an important kinematic dependence, i.e. , the
p~& dependence of the FSI has also be taken into account.
Consequently, any FSI effects entering in data may not be
present to the same extent in the VMD amplitudes. As
regards the factorization construction (method 2 above),
the exclusion of any FSI effects in the BSW amplitude
amounts de facto to a specific prescription for the p2& de-
pendence of the FSI. There is some information of the p&
dependence of the p-V couplings and of certain matrix
elements, but it is not possible at this time to separate

I

the two effects. As we show in the Appendix, the effect
for p emission in Az(1320) decay can be as much as a
factor of 2. By contrast, no such suppression is seen in p
photoproduction, although in P photoproduction an ef-
fective reduction of about v 2 in amplitude is observed
and a somewhat smaller effect of /1.5 is seen in u pho-
toproduction.

A. Cabibbo-favored modes

(a) D ~ Ko'p. This is an instance in which the phe-
nomenological approach is applicable since experimen-
tal information on the D ~ MV intermediate state is
available. There is a branching ratio determination [6]
B~O~If opo = (1.6 6 0.4)% and the amplitude is known
to be (i) almost all transverse and (ii) almost all S
wave. ~ This allows us to write the VMD contribution
to D ~ K* p as

&vMD =
& &vMD 0 (method 1), (64)

p mDZ~

where we follow the notation of [20] and denote
@Do~~ 0 po as the phenomenological S-wave amplitude
for D w K* p . With I'Do g.o o

—— 2.53 x
10 GeV and a~o~+ opo 1.63 x 10 GeV, this
yields QvpvMD(Do -+ K*op) of about 6.8 x 10 s GeV
The data on D + K* p are consistent with no parity-
conserving (P-wave) contribution.

The Particle Data Group also lists branching ratios of (3.0+
0.6)% and (2.1+0.6)% for S wave and D wave, respectively [6].
These values are completely consistent with the fact that the
total transverse mode (which must be entirely S wave by the
absence of any P wave) is (1.6 + 0.5)% and that the S wave
(longitudinal) must cancel with the D wave to produce the
net zero longitudinal branching ratio.
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Alternatively, the factorization approach of Eq. (62)
predicts both amplitudes. In this case, we take a; = a2,
and the vector meson to be mixed with the photon is
the p, so that V = p and X = K *. The form factors
needed are those entering in D + p semileptonic transi-
tions. Making use of the measured D ~ K* form factors

I

implies I = 2. To extrapolate the form factors &om

q = 0 to q = m~. , we use a monopole form where the
D* is the nearest singularity. The parity-violating and
parity-conserving amplitudes are given in Eq. (62) by the
terms involving the Aq and V form factors, respectively.
Using f~- = 0.2 GeV we obtain

AvMD
——5.1 x 10 GeV, AvMD ——3.8 x 10 GeV, (method 2) . (65)

We notice that AvvMD is in reasonable agreement with
the one obtained from the use of data &om the non-
leptonic mode, given the large uncertainties involved in
these predictions. Indeed, the factorization estimate for
the D ~ K *p S-wave amplitude gives aoo~~ opo

1.3 x 10 s GeV which is within 20%%uo of the experimen-
tal value. It also predicts a P-wave branching &action of
0.15% for D ~ K 'p, which is below the current upper
limit of 0.30%%uo.

(b) D+ -+ p+p. The VMD amplitude for this decay
proceeds via D+ -+ Pp+ followed by +p mixing. Al-
though the branching ratio for D+ +Pp+ is -known to be
(6.5 +i s%%uo), no information on helicities or partial waves
exists, so we cannot apply the phenomenological method
here. Turning instead to the factorization approach of
Eq. (62) we have X = V = P and Y = M = p+.
Therefore we require the D+ + P semileptonic form fac-
tors evaluated at qo ——m . Although there is experi-
mental information of these decays, the branching &ac-
tion and the form factors depend strongly on BD+ & +,
which is still very uncertain. Thus, again making use of
D -+ K' data, taking I = 1 and with a decay constant
of g~ 0.17 GeV, we Gnd

gz be the transverse &action of the observed branching
ratio, gg the S-wave &action in the transverse mode, and
g~ the P-wave &action, we then obtain for the S-wave
amplitude of Do -+ p P,

aoo~&oy: mD
47CFD0~po @77+ 'QS

ski

= 7 x 10 gg~gs GeV, (67)

and for the corresponding P wave,

/DO ~+0y

mpmp

4arI Po~poygZ re

= 1.46 x 10 ggz g~ GeV

AvMD = 0.60 x 10 GeV

where again we employ the notation of [20] in denoting
b~o~pop as the phenomenological P-wave amplitude for
Do -+ p p. Then, multiplying by the VMD factor e/f~,
we obtain the method 1 estimate

AvMD = 3.2 x 10 GeV and (69)

and (66)
AvMD = 1.0 x 10 GeV

AvMD
——2.8 x 10 GeV

The Cabibbo-favored VMD amplitudes are summarized
in Table IX.

B. Singly Cabibbo-suppressed modes

TABLE IX. Cabibbo-favored VMD amplitudes.

Mode

D +K
D+ + p+p

IAvMD
I

(1o
Parity conserving

3.8
3.2

GeV ')
Parity violating

5.1-6.8
2.8

(c) Do ~ pop. This process can proceed via two differ-
ent intermediate states, namely p P and p p . There is
one known branching ratio B~o~~oy ——(1.9 +0.5) x 10
with no helicity (or partial wave) information. Letting

for gz 0.5 and gs 0.66 [37]. On the other hand, there
is no available experimental information for D ~ p p,
other than B~o~ + += (8.3 6—0.9) x 10 s which
can be taken as an upper limit. I et us also estimate the
D ~ p p mode in the factorization approach, which can
be used to predict both the off-shell amplitudes, D —+
ps/ and Do ~ p p . In both cases we need the Do ~ p
form factors, for which I = 2. Using Eq. (62) we obtain

AvMD(p P m p 7) = 0.22 x 10 GeV

AvMD(p P m p p) = 0.18 x 10 GeV

AvMD(p p -+ p p) = 0.75 x 10 GeV

(70)

Our estimate for the parity-conserving p p + p p tran-
sition is based on the observation that an on-shell P-wave
p p state is forbidden by Bose statistics and hence the
associated off-shell amplitude will be suppressed. First,
let us coxnpare the first two rows in Eq. (70) with the re-
sults obtained in Eq. (69) by making use of the pog data.
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We can see that the factorization amplitudes are lower,
as caused by smaller predictions for the nonleptonic in-
termediate modes. In general, factorization predictions
will be modified by FSI. For instance, in the case at hand
there could be a large enhancement due to K'K* +p-og
rescattering effects [39]. If this is the case, this effect
strongly depends on the kinematics and it is different in
the off-shell nonleptonic amplitudes entering in the calcu-
lation of the VMD diagrams. The factorization approach
provides a prediction which is &ee &om FSI effects. In
these cases we will take these two estimates as the allowed
range. On the other hand, factorization predicts that the
p p intermediate state provides most of the VMD am-
plitude. When both intermediate states are taken into
account in the factorization estimate, the predictions of
Eq. (69) and Eq. (70) roughly agree. This will not be the
case for the following mode.

(d) D ~ Pp. Now, there is only one nonleptonic
intermediate state, Ppo. The amplitudes as extracted
from D +Pp d-ata are

implying the method 2 amplitudes

AvMD = 1.9 x 10 GeV

and

pv e Gy' Gz mp p
AVMD = (mQ + ming ) mD E~

msD E~ pv 2 V
m~. mp (mD. +m~. ) A,

'VMD 2
PC

AVMD

(75)

Upon taking the form factors to be identical to those in
D+ +K' i-n the SU(3) limit, we have

AVMD
——1.6 x 10 GeV

Incidentally, the expectation for D+ —+ p+p is that its
branching ratio should be at least 0.4%.

(g) D+ + K*+p. Proceeding analogously, we use the
factorization estimate of D+ —+ K*+p to express the
VMD amplitudes for D+ —+ K'+p as

AvMD AvMD ID ~Po y
= 2.1 x 10 GeVPV e/f~ PV —8 —1

e/fq
AVMD: 3 5 x 10 GeV

AvMD = 10 x 10 GeV

(76)

On the other hand, factorization predicts the much
smaller amplitudes

AVMD = 0.7 x 10 GeV

AVMD = 0.9 x 10 GeV

Our VMD predictions for the magnitudes of the Cabibbo-
suppressed transition amplitudes are summarized in Ta-
ble X.

and (72)

0.6 x 10 GeV C. Doubly Cabibbo-suppx'essed modes

Part of the difference between the predictions in Eq. (71)
and Eq. (72) may be due to the presence of FSI effects
in the on-shell amplitude measured and used in Eq. (71)
and the assumed absence of FSI in Eq. (72). In Table X
we include both predictions as the allowed range.

(e) D ~ wp. This mode is very similar to Do —+ pop
and we obtain, &om the factorization approach of method
2

AVMD = 0 7 x 10 GeV

Finally, to estimate the size of the doubly Cabibbo-
suppressed modes, we consider the D+ ~ K'+p transi-
tion. Upon computing the amplitudes using the factor-
ization expression of Eq. (62), we obtain

AvMD = 4.2 x 10 GeV

and

(73)

AVMD = 0.6 x 10 GeV

(f) D+ ~ p+p. Here, the mode D+ + p+po should
give the dominant contribution to the VMD amplitude,

AvMD 4.4 x 10 GeV

Similarly, we find for the mode D ~ K* p

AvMD 1.75 x 10 GeV

and (78)

TABLE X. Cabibbo-suppressed VMD amplitudes.
AvMD

——1.83 x 10 GeV

Mode

D+ w p+p
D+ w K*+p

D' -+ u)'p

IAVMD
~

(1O
Parity conserving

1.6
0.9

0.2—1.0
0.6

0.6-3.5

GeV ')
Parity violating

1.9
1.0

0.5-1.0
0.7

0.9—2.1

V. SUMMARY AND CONCLUSIONS

As shown here, weak radiative decays of charmed
mesons are not dominated by the short distance pen-
guin diagrams of Figs. 1(a) and 1(c), but rather by long-
distance processes involving nonperturbative strong in-
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nonlept
BDmMp &EMBD~M (79)

where BD "M is the branching ratio for the nonleptonic
D decay to some final state M. Thus, typical branch-
ing ratios of order BP"g (0.001—0.05) would in-
duce radiative branching ratios in the range BD~M~
(7 x 10 -+ 4 x 10 4). In Secs. III and IV we have
performed a more detailed analysis by modeling the non-
perturbative dynamics.

Inspecting the long-distance contributions to the set
of exclusive processes D ~ ~, D + up, D, ~ K*+p
and D+ —+ p+p for which c —+ up is the underlying
transition, we see that the VMD and pole amplitudes
carry a single factor A, therefore representing an enhance-
ment of A over the penguin amplitude. As can be seen
in Table XI the expected branching &actions for these
modes are in the 10 —10 range, whereas we estimate
B,~„~ 10 . As a consequence, c ~ up is not a good.
process to test the validity of the standard model. That
is, a hypothetical contribution &om new physics would
have to be extremely large in order to overcome the long-
distance physics.

The situation is very different in radiative B decays.
The short distance transition b —+ Sp has the same CKM
structure as the corresponding long-distance contribu-
tions. For instance, the mode B ~ K*p might con-
ceivably have long distance contamination of the order
of 20% in the rate [20]. Although this is small compared
to the charm case, it would be desirable to reduce the
uncertainty in the calculation of these efFects in order
to subtract them &om the measured signal. Moreover,
long distance effects could also be affecting the inclusive
6 -+ 8p branching ratio, therefore limiting the precision
with which the standard model can be tested in these
decays.

teraction dynamics. To our knowledge, the calculation
performed here of the QCD radiative correction c ~ up is
the first explicit and detailed analysis of this system given
in the literature. In addition, we were able to employ
U-spin arguments to clarify the role played by neutral,
fiavor-changing operators such as ucqq which contribute
to the expanded operator basis in the RG analysis. Our
conclusion that the c + up QCD radiative corrections are
substantially larger than for 6 —+ 8p is due in part to the
large operator mixing at the lower renormalization scale
associated with the c quark and in part to the disparate
sizes of the Wilson coeKcients at the matching scale of
the contributing operators. Nevertheless, the radiatively
corrected c ~ up penguin transition remains extremely
small. The main sources of suppression are the small
quark masses and also the CKM factors ~V,&V„s~2 occur-
ring in the numerator of the c + up branching &action
in Eq. (24). In the Wolfenstein pararnetrization, with
sin 0 = A, this CKM dependence amounts to a A sup-
pression in decay rate.

On the other hand, we have shown in Secs. III and
IV that long-distance contributions are several orders of
magnitude larger. A very rough estimate of the typical
branching ratio to be expected is

TABLE XI. Amplitudes (in GeV ) and branching frac-
tion predictions.

Mode

Ds pD'K".
D+b+q
D+~+~
D+ +
D+p+~
D+b+~
D+a+p
D+~+~
D+K +q

D'4'v
D+Z*+~
DK'p

~PC
P-I P-II VMD
8.2 —1.9 + 3.2
5.6 —5.9 13.8
7.2
1.2
2.1
1.3 —0.4 + 1.6
1.2
0.5
3.4
2.8 —0.5 +0.9
6.0
0.5 —0.5 +(0.2—1.0)
0.6 —0.7 +0.6
0.7 —1.6 +(0.6—3.5)
0.4 —0.1 +0.4
0.2 —0.3 +0.2

VMD
+2.8

+(5.1—6.8)

+1.9

+1.0

+(0.6—1.0)
+0.7

+(0.9—2.1)
+0.4
+0.2

Bo +M~(10 )

6—38
7—12

6.3
0.2
0.01

0.04
0.03

0.8—3
0.2

0.1-0.5
0.2

0.1—3.4
0.1—0.3

0.01

The various amplitudes are summarized in Table XI
and are given there in units of 10 GeV . In princi-
ple, the most conservative attitude is to take all relative
signs as unknown, which would render the calculation
of branching ratios highly uncertain. Fortunately, with
the aid of the quark mod. el we can reduce this ambigu-
ity. The relative sign of pole-II to pole-I contributions is
affected by (i) a minus sign difference in the pole denomi-
nators, (ii) an extra minus sign in type-II amplitudes due
to the vector-meson propagator, and (iii) minus sign dif-
ferences in the VPp couplings between the c-quark and
light-quark EM sectors. In a quark description of a q~q2
meson, this latter sign is inferred by studying

hvar»=e/ +
I' n
I mr m2)

(80)

Although this line of reasoning narrows down the range
of predictions significantly, experimental data will be
needed to obtain information regarding the relative phase
between the pole and VMD contributions. In this re-
gard, it will be helpful to note that, at least in our ap-
proach, the parity-violating amplitudes arise solely &om
the VMD process.

Next, let us comment on the inclusive photon spec-
trum. In the B system, the quark transition 6 ~ Sp
provides a useful &amework for predicting properties of
the hadronic inclusive decay B —+ X,p. Thus, one esti-
mates the B + X,p decay rate by computing the b ~ Sp
decay rate and normalizing relative to the semileptonic
decays to eliminate undue dependence on the mass mp.
Likewise, one predicts the photon energy spectrum in
B ~ X,p decay by referring to the underlying two-body
b -+ sp decay [40,41]. If quarks were free, there would be
a monochromatic photon spike at E~ = (m& —m, )/2mb
ms/2. In reality, the photon spectrum becomes broad-
ened via hadronization of the 8-quark jet. The indi-
vidual strange mesons (K"(892), ICr(1270), etc.) which
populate the inclusive final state X, originate predom-
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inantly from the s-quark jet hadronization. These ex-
planations of B ~ X,p inclusive decay are in accor-
dance with the spectator model, and so isospin symme-
try should manifest itself event-by-event. For example,
the rates for isospin-related modes such as B —+ K* p
and B ~ K* p should be equal. A deviation from this
pattern would constitute evidence for either nonspectator
or new-physics contributions. In a heavy-quark effective
theory description, such nonspectator effects would occur
at subleading level.

The theoretical description of charm inclusive decay
could hardly be more difFerent. Now, there is no emergent
light-quark jet which hadronizes to form the set of final
states. Instead, the "black box" of long-range effects such
as pole amplitudes, VMD amplitudes, etc. , dominates the
physics. Thus, to determine the photon energy spectrum
in D —+ X„p, one would sum over the most important
of the exclusive radiative modes. Presumably this would
yield a reasonable description at least over the part of
phase space where the photon energy is largest. It would
be prudent to be on the lookout for the unexpected. For
example, exclusive modes in light meson radiative decay
are known to exhibit rather large isospin-violating effects,
as in

APPENDIX: VMD IN LIGHT-MESON
RADIATIVE DECAY'

The original application of VMD for analyzing
hadronic radiative decays occurred in the light meson
sector [43]. In order to test the VMD method using an
up-to-date database, we too shall consider (brie8y) light
meson radiative decays in this appendix. As we shall
see from our study of two particularly clean examples,
the situation is encouraging but not uniformly so. First,
we shall revisit the original arena for testing VMD, the
p and u decays into pion-photon final states. Then we
shall analyze decays of a higher mass state, the tensor
meson A~+(1320). We stress that in each of these cases
the transition is purely electromagnetic, unlike the more
complicated electroweak decays treated in the main body
of the paper. Therefore, the "pole" amplitudes do not oc-
cur here since there is no weak mixing, so one obtains a
clear look at the VMD contribution.

1. Radiative decays of the vector mesons p and u

There are three electromagnetic P-wave decays in the
p-~ system:= 2.27 + 0.30 and = 1.76 + 0.49.

~K +~K++ ~p+ m~+p Ld M7t p) p MÃ p) and p Mx' (A1)

If this effect were to be maintained mode by mode in the
exclusive D decays, it would lead to interesting levels of
isospin violation in the inclusive decay. Of our results,
Table XI indicates that the likeliest possibility for isospin
violation would appear to be in D + pop/D+ -+ p+p.

Finally, we note that the weak radiative modes con-
sidered here are not the only charm decays of possi-
ble interest. For example, there are transitions like
D ~ p e+e, which involve emission of a virtual pho-
ton (instead of an on-shell photon) which then converts
to a lepton-antilepton pair. Since the photon is off shell
for those modes, the theoretical description requires more
amplitudes than we needed here. Experimentally, such
modes would also allow study of the phase space distri-
bution for the three-body final states. We plan to ad-
dress these interesting modes, as well as others like l+l
pp, etc. , in a future publication. Experimentally, these
leptonic channels are easier to identify as the weak ra-
diative modes suffer from larger backgrounds, e.g. , from
D ~ K* vr m K* pp. Nonetheless, both the radia-
tive and leptonic modes are being actively pursued by
experiment [2,42], and we look forward to the eventual
observation of these decays.

f~ 12 I'
g4P p7f e /q/s

(A2)

where f —+ f~ for u decay and f ~ f for p decay
Noting that the decay momenta in u —+ mp and p ~ vrp
are almost equal, one has

In the VMD approach, these are described in terms of two
electromagnetic mixing amplitudes, u-p and p-p, and one
strong interaction vertex g p .

Due to the off-shell nature of the VMD amplitudes,
different momentum regions occur in the upper vertex for
the transitions of Eq. (Al). In ~ ~ vrp, the intermediate
p propagates at q = 0 whereas for p —+ vrp it is the inter-
mediate cu which propagates at q2 = 0. Part of the VMD
folklore built up over the years is that extrapolation of
the light vector meson squared momenta from the meson
mass shell to the photon mass shell does not strongly af-
fect the decay amplitude. The ratio of p and co decay
widths can be used to test this as follows. Recall that
for the VMD description of 1 + 0 p transitions, the
strong vertex g p is related to the decay width I via
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provided the same strong vertex is used in each decay.
In the above, we have used the charged-p decay width
in view of its superior accuracy. The value appearing in
Eq. (A3) is seen to be in accord with that inferred from
vector meson decay into lepton pairs (cf. Table I of [20]):



6398 BURDMAN, GOLOWICH, HEWETT, AND PAKVASA 52

= 3.39 + 0.10 . (A4)

Alternatively, one can use each of these radiative de-
cays to extract determinations of g ~ as in Eq. (A2),
and one 6nds

' (11.73+0.35) GeV (~ -+ vr p),
g ~ =

& (12.40 + 0.64) GeV (p+ -+ 7r+p),

, (16.40 + 2.1) GeV (po m gros).

The u —+ m p and p+ ~ m+p determinations are seen to
be consistent within experimental error. This is signif-
icant because these decays involve diferent momentum
extrapolations as discussed above. The larger coupling
obtained &om p + m p decay has substantially larger
errors. We now turn to a diferent transition in which,
if one accepts the data at face value, a non-negligible
momentum dependence is present.

mination and interference with ~ or P mediated processes
is absent.

The amplitude for the transition A2+(p) + 7r(q)+ ps(k)
can be written as

A p —— ~e"" Pp„et(k)q hp (p)q
mA

(A9)

2 5

40~m4 '
A

(A10)

one determines a magnitude for the coupling g p. This
can be used, in turn, to predict the radiative coupling
g ~ via the VMD formula

VMD
g~~ = &-p ) (A11)

where g ~ is a dimensionless quantity and hp (p) is the
spin-two polarization tensor of the A2. From the decay
rate relation,

2. Decays of the tensor meson A.s+(1320)
and we 6nd

g = 1.99 + 0.06 . (A12)
The meson A2 (1320) has been observed to decay into

both the vrp and vrp modes, with branching ratios

BA,~ p
——0.701 + 0.027

Alternatively, it is possible to determine the pion-
photon coupling directly Analogou. s to Eq. (A9), we can
write down a gauge-invariant photon-emission transition,

and (A6) A ~ = ~ e"" Pp„et (k) q hp q
mA

B~,~ ~ = (2.8 + 0.6) x 10

'P: +=(—)'(—) wL=0, 2, 4, . . . ,

&: 121 = I1+ &I ~1 = 1 2, 3, (AS)

which implies that L = 2. In addition, of the three light
vector mesons p, ur, P, only the p can appear together
with a pion in a Anal state of A2 decay. The reason is
that the decay A2 ~ mV (V is a vector meson) proceeds
through the strong interactions and conservation of G-
parity forbids the m~ and vrP modes. Thus, the rho is
the only light vector meson involved in the VMD deter-

These data turn out to provide a particularly clean test
of the VMD method in two respects. First, there is just
a single partial wave in the Gnal state. As a consequence,
the decay rates alone can be used to test VMD without
any need for polarization information of the 6nal-state
particles. The occurrence of a single orbital angular mo-
mentum in the final state follows &om conservation of
parity and of angular momentum. Thus we have

Fixing the coupling g ~ in terms of the decay rate

2 5g„q
40vr m A

(A14)

yields the value

g'"~ = 0.98+ 0.11 . (A15)

Thus, one obtains a factor of 2 discrepancy between the
empirical amplitude and the VMD prediction, with the
VMD value being the larger. Several possible explana-
tions for the lack of agreement come to mind. Although
the radiative branching ratio given in Eq. (A6) has rea-
sonably small error bars, the signal is based on only one
experiment. Alternatively, there may be unexpectedly
large momentum dependence in the A2vrp vertex. Thus,
as one proceeds &om the rho mass shell (k2 = m2) to the
photon mass shell (k2 = 0), a "softening" might occur in
the VMD estimate. However, to our knowledge there is
no previous evidence for such momentum dependence for
the p extrapolation.
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