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Gluon production from non-Abelian Weizsacker-Williams fields
in nucleus-nucleus collisions
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We consider the collisions of large nuclei using the theory of McLerran and Venugopalan. The
two nuclei are ultrarelativistic and sources of non-Abelian Weizsacker-Williams fields. These sources
are in the end averaged over all color orientations locally with a Gaussian weight. We show that
there is a solution of the equations of motion for the two nucleus scattering problem where the fields
are time and rapidity independent before the collision. After the collision the solution depends on
proper time, but is independent of rapidity. We show how to extract the produced gluons from the
classical evolution of the fields.

PACS number(s): 12.38.Bx, 24.85.+p, 25.75.+r

I. INTRODUCTION

Nucleus-nucleus collisions at ultrarelativistic energy
have long been recognized as an environment where hot
dense matter is formed [1—3]. It has been conjectured
that in such an environment one might produce and ex-
perimentally study a quark-gluon plasma [4]. Theoretical
studies of quark-gluon plasma formation have typically
assumed some init, ial conditions at some time after the
collision was initiated, and then evolved the matter dis-
tributions forwards in time according to the equations of
perfect fluid hydrodynamics [3,5].

While such an approach may work well for the late
stages of the collision when the particles are not so en-
ergetic, it does not work well for the earliest stages of
the collision. In the earliest stages, the quarks and glu-
ons emerge from their quantum mechanical wave function
and cannot be described as a perfect fluid until at least
enough time has passed for there to be scattering.

In the earliest stages of the collision, the quark and
gluon interactions should be most energetic. Such scat-
terings are therefore easier to experimentally probe as
they presumably induce hard experimental signatures
which are more easily disentangled &om backgrounds due
to soft final state processes. During the hydrodynamic
expansion, typically the scale of energy in the interac-
tion is softer and more difEcult to disentangle &om back-
grounds.

There has been recent progress in attempting to de-
scribe the early evolution of matter produced in nuclear
collisions [6]. In the parton cascade model of Geiger and
Muller, one takes the experimentally measured distribu-
tion functions for quarks and gluons and assumes that
they may be treated as an incoherent beam of parti-
cles arising &om each nucleus. The scattering of par-
tons &om partons is computed making reasonable as-
sumptions about quantum coherence and time dilation
effects. The system is thereby evolved &om very early
times in the collision until a later time when hydrody-
namics may be applicable. In such a theory, the hard
scattering signals are computed and may be compared
with experiment.

The parton cascade model while elegant and well mo-
tivated, in our opinion still lacks some theoretical under-
pinning. In particular, the issue of quantum coherence in
the initial state is treated phenomenologically, and needs
a deeper understanding. This problem has at least two
important aspects.

The first and most glaring problem is that the partons
arise &om a quantum mechanical state. In such a state
the uncertainty in momentum, Lp, times the uncertainty
in position, Lx, is close to saturated,

LpLx 1.

For example, in the longitudinal momentum distribution
of partons, the wee partons have a longitudinal momen-
tum of order of 100's of MeV. This corresponds to a lon-
gitudinal size of order of &actions of a Fermi. On the
other hand, in the parton cascade one assumes knowl-
edge of both the position and momentum of the partons,
since the partons are described by classical phase space
distribution functions. While this should be true later
in the collision as the scale of spatial gradients becomes
larger, early in the collision it is most certainly violated.

Although in the parton cascade, the assumptions on
the initial distributions are plausible, they can at best
give a qualitative agreement with precise results which
include the effects of coherence, and at worst totally ig-
nore some classes of interference phenomena. For ex-
ample, one obvious problem is that for a single nucleus,
the partons will spread out since they are an incoherent
distribution of partons with different momentum. After
some time, one therefore no longer has a spatially com-
pact nucleus.

Another class of phenomena which is not fully treated
in the parton cascade model is the problem of coher-
ent addition of the color charges of quarks and gluons.
Such coherent addition is for example responsible for
Debye screening, and presumably magnetic screening,
which will serve as a cutofF for divergent transport cross
sections in parton-parton processes. In the parton cas-
cade, a low momentum cutoff is introduced by hand, and
of course results for many processes depend upon this
cutofF.
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While the parton cascade may lack precision in many
detailed computations, it nevertheless is outstanding for
its qualitative predictions. We nevertheless would like to
put this model onto firmer foundations, and understand
clearly its limits of applicability.

To begin to tackle this problem, one must understand
at least some aspects of the quantum mechanical wave
function of the quarks and gluons in the nuclear wave
function. In the past, one rarely considered the nuclear
wave function, and the structure functions for a nucleus
were taken as a given quantity. There was no constructive
description of how such structure functions arise.

Recent work by McLerran and Venugopalan has given
rise to a picture of how the structure functions arise at
small x for very large nuclei at ultrarelativistic energy. In
this description, the effects of quantum and charge coher-
ence of the partons in the nuclear wave function are prop-
erly included. The gluons arise &om the non-Abelian
Weizsacker-Williams fields generated by the color charges
of the valence quarks.

In this paper, we will extend the treatment of McLer-
ran and Venugopalan &om a description of a single nu-
cleus to the collision of two nuclei. This work is in some
sense an extension of early effort which were somewhat
ad hoc to describe such collisions by classical fields [7,8].
We will see that in the region where most of the parton
density sits, the gluon distribution function can initially
be described by a classical Geld. These classical fields are
to be interpreted as resulting &om coherently superim-
posing large numbers of gluonic quanta. This way the
classical description, wherever applicable, will automati-
cally incorporate coherence effects.

The gluon Geld for a single nucleus arising in this
way is a non-Abelian Weizsacker-Williams Geld. At the
initiation of the collision, the non-Abelian Weizsacker-
Williams fields of the two nuclei play the role of bound-
ary conditions for the time evolution of the gluon field.
This classical Geld eventually evolves into gluon quanta.

The picture we have of the collision is therefore the fol-
lowing. Before the nuclei collide, they are described by
valence quarks and their coherent Weizsacker-Williams
fields. These fields are classical in the sense of classical
electromagnetic fields, but of course cannot be thought of
as composed of particle with classical phase space distri-
butions. During the collision, the fields are still classical,
but sufBciently strong so that the equations of motion
evolve the fields nonlinearly with time. As time evolves,
the field weakens. When the strength of the gluon field
is sufBciently low, the Geld equations linearize, and the
gluon Geld describes the evolution of weakly interacting
classical gluon waves. At this time, the coherent addition
of the fields is no longer important, and they should be
described by an incoherent distribution of gluons. The
parton cascade model may therefore be used.

Prior to this time however, the coherence in the gluon
field is essential. The simple fact that the evolution of the
gluons is described by a classical field is a consequence of
the fact that the gluons are in some locally coherent state.
A description in terms of incoherent classical particles is
simply not possible.

In the second section, we review the relevant results
of computation of the small z structure functions for a
single large nucleus. We will attempt to describe the
kinematic limits of applicability of this description. We
will argue that the Weizsacker-Williams fields should de-
scribe the distribution of gluons in the region of trans-
verse momenta which gives the dominant contribution
after integrating over transverse momenta.

In the third section, we set up the problem of nucleus-
nucleus scattering. We derive an equation for the time
evolution of the gluon Geld. We relate the results of such
a computation to the phase space density of gluon radi-
ation.

In the fourth section, we summarize our results and
speculate on their region of validity.

II. REVIEW OF THE
McLERRAN-VENUGOPALAN MODEL

In the work of McLerran and Venugopalan [9,10], it
was argued that for very large nuclei, A / —+ oo at small
values of Bjorken z, 2: (( A /', the quark and gluon
distribution functions are computable in a weak coupling
limit. This is because the density of partons per unit
area defines a dimensionful scale and when

1 dN
~~ ~+CD

7i g
(2)

the strong coupling parameter o.s(p2) should become
small. Here y ln(1/x).

In lowest order in a naive weak coupling expansion,
it was shown that the gluon distribution function was
of the Weizsacker-Williams form, that is proportional to
1/x. It was also shown that the p~ dependence was also
of the Weizsacker-Williams form dK/d2p~ 1/p2& for
o.gp (( p~ (( p where p AqcDA /

Of course the naive weak coupling expansion may not
be strictly valid, since there is the well known Lipatov en-
hancement of the low x structure functions [11,12]. This
enhancement involves quantum corrections to the lowest
order naive weak coupling result, and changes the small
x distribution to 1/x + '. While this behavior is com-
putable in the McLerran-Venugopalan model, its nature
is not yet fully understood. We expect however that as
far as the local effects on the parton distribution at fixed
rapidity, y ln(l/x), the main effect is to renormal-
ize the charge which generates the Weizsacker-Williams
Geld.

The charge which generates this field in lowest order
in the naive weak coupling expansion is the charge of the
valence quarks which are treated in a no recoil approxi-
mation. While it may be true that the Lipatov correction
might involve new physics, and the picture might change,
we will ignore its efFects here except to state that we
believe it will efFectively renormalize the valence quark
charge through some x dependent source of charge. To
see how this might occur, recall that the strength of the
Weizsacker-Williams distribution is proportional to the
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amount of charge present at a value of x larger than that
of the distribution. We are therefore assuming the main
effect of the quantum fluctuations is to generate an ex-
cess amount of charge at values of 2: larger than that at
which we measure the parton.

In the work which follows, we will not treat the prob-
lems generated by the Lipatov effect. We will instead
concentrate on the naive lowest order approximation to
the McLerran-Venugopalan model. This will be sufti-
cient to understand many qualitative aspects of nucleus-
nucleus collisions, and we hope in the end with small
modifications can also be extended to include the effects
of the Lipatov enhancement.

In Ref. [9], it was found that to compute the struc-
ture functions one simply treated the valence quarks as a
source of light cone charge. Here the valence quarks are
being treated as a source of charge moving at the speed of
light along the light cone x = 0. The source of charge is
being treated classically. This approximation as justified
so long as the typical transverse momentum scale is

p «v
where p is proportional to the number of valence quarks
per unit area.

At the same time the number of gluon quanta at reso-
lutions with p~ && p will be sufficiently high to allow for
a description of the gluonic degrees of freedom through
a classical field.

Within these limits, all one has to do is to formulate
and solve the Yang-Mills equations in the presence of the
classical current induced by the valence quarks:

Here z(x) = x~ + o serves as a reference point used to
define "initial values" for the color distribution of the
valence quarks

which then, due to covariant current conservation
[D„,J (x)] = 0, evolve along the particles trajectory
via parallel transport or link operators U[A](x, z(x)):=
Pexp[ —ig j

~

ldx'+A (x'+, x~, x = 0)] connecting the
points x and z(x) along the particles trajectory.

Given a solution to the equations of motion, charge
density p is to be treated as a stochastic variable, and
to compute ground state expectation values one must
average over all sources with a local Gaussian weight

dp exp — dx
2 2p

This Gaussian distribution arose from the approxima-
tions used in Refs. [9,10]. It was argued there that on the
transverse resolution scales corresponding to p~ && p that
the valence quark charges may be treated classically. The
exponential factor is the contribution to the phase space
density associated with counting the number of states of
valence charges for a fixed value of the classical charge. It
can be thought of as arising &om the following classical

picture. Suppose we look in a tube through the nucleus.
This tube has a transverse size much less than a Fermi
but large enough so that it intersects many nucleons. In
this case, there will typically be many valence quarks in-
side the tube each coming &om a different nucleon. The
color charge of each quark is therefore uncorrelated with
that of any other quark and the color charges will add
together in a random walk. This will lead to the above
Gaussian distribution.

Physically, the picture one has is the following: The
valence quarks are recoilless sources of color charge prop-
agating along the light cone. Their charge can fluctuate
&om process to process and the averaging over charges
corresponds to this fluctuation. The local charge den-
sity is therefore a random variable. The reason why
such a stochastic source of charge arises is because the
transverse resolution scales which we are interested in are
small compared to a Fermi. On such a scale, when one
looks at the nucleus, one sees uncorrelated quarks com-
ing &om different nucleons. The source of color charge
therefore random walks in color space. The criteria that
p~ && p are the criteria that within each transverse res-
olution scale, there are many quarks so that the color
charge is typically large and can be treated classically.

The solutions of the above Yang-Mills equations can
be chosen to be of the form

A+ =0,
A =0,
A' = 8(x )n, (x~).

Here the first line may be interpreted as a gauge choice.
Using light cone gauge A+ = 0 one has direct access to
the gluon distribution functions of the parton model. The
requirement to have A = 0 then could still be imple-
mented as a gauge choice at least along the trajectories
of the particles, making use of the residual gauge &ee-
dom present in any axial gauge. In this case it turns
out that there is a particular solution to the equations of
motion which has A vanishing everywhere. On such a
solution the link operators on the right-hand side of the
Yang-Mills equations drop out entirely and the equations
become

The solution to these equations is

1
n; = ——. U(x~) V';Ut(x~)

'Eg

that is a pure two-dimensional gauge transform of a vac-
uuDl.

Physically, this solution is also easy to understand.
The solution is a gauge transform of vacuum on one side
of the sheet of valence charge, and another gauge trans-
form of vacuum on the other side of the sheet. We have
chosen the field to be zero on one side of the sheet as an
overall gauge choice. (This could be relaxed by an over-
all gauge transformation. ) Because of the discontinuity
in the fields at the sheet of valence charge, the solution is
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not a gauge transform of the vacuum fields. Its disconti-
nuity gives the source of valence charge.

Although we have not been successful in explicitly find-
ing the solution to this equation, it is in principle possible
to do numerically. Several generic features of the averag-
ing over different sources of charge are possible to infer
nevertheless.

For p~ & o.sp, the typical value of the external charge
is so large that it is a bad approximation to linearize
the gauge transformation and directly compute the field
in a naive weak coupling expansion. In this region, the
nonlinearities of the field equation become important.

In this kinematic region, the shape of the Weizsacker-
Williams distribution changes form, as is shown in Fig.
1. The 1/p2& behavior turns over and goes to a constant.
This provides a low momentum cutoff in the number of
gluons generated by the distribution. At high momen-
tum, we can compute no further than p~ & p. The
distribution should nevertheless extend beyond this re-
gion. In fact the upper momentum cutoff should be
determined only by the kinematic limit of the process
considered. Strictly speaking the number of Weizsacker-
Williams gluons is infinite, but only logarithmically, and
the cutoff will be determined by the process of physical
interest.

Suppose we consider the production of gluons in a two
nucleus collision. We can naively determine the cutoff in
momentum of produced gluons. Let us assume that we
are in the weak coupled perturbative region. The rate
must be proportional to the density squared of gluons,
so that it must be proportional to o.&p . It involves scat-
tering, so there are two more factors of o.~. Therefore on
dimensional grounds, we expect that the probability of
making a pair of on mass shell gluons should be of order
n~&p4/p~&. This is of order one when p~ np, that is at
precisely the place where the fields evolve nonlinearly. It
cuts ofF rapidly in p~, so that the number of produced
gluons should be ultraviolet finite.

This example teaches us two things: First that for a
physical process there is no ultraviolet divergence and for
this process the important contribution for gluon produc-
tion is at scales less than p. Second, that the process is
strongest in the region where the field is strong. In this
region, the field is evolving nonlinearly, and the coher-

ence of the field is important. It would therefore be a
mistake to assume that the distribution of produced glu-
ons refm. ects the distribution in the initial nuclei. This is
true for gluons with p~ & as@, that is "hard gluons, "
but the softer gluons which dominate the production are
in a nonlinear region.

The appearance of these nonlinearities might be quali-
tatively included in the parton cascade model. However,
insofar as there is an in&ared cutoff dependence in some
physical process, the results will be somewhat quantita-
tively unreliable. Processes without such a cutoff depen-
dence would of course be more reliably computed.

The hope in our attempt to compute gluon production
is that the classical nonlinearities will cut off the naive
divergence in the production amplitude at small p~. To
see that this is plausible, recall that the single gluon dis-
tribution changes its form at small p~ f'rom 1/p& to con-
stant at p~ & o.pp. It is therefore quite plausible that
these effects in fact cut off the singularity at some scale
of order o.gp. If this is so, then if A is large enough so
that A / && 1, this cutoff is at a scale much larger than
Aq~D, and the computation is self-consistent.

III. THE TWO NUCLEUS PROBLEM

We now turn to the problem of nucleus-nucleus scat-
tering. We work in the center of mass kame. Both nuclei
are at suKciently high energy so that they can be treated
as infinitesimally thin sheets (see Fig. 2). They are large
enough so that these sheets can be taken to be of infinite
extent in the transverse direction. We will be interested
in describing the production of gluons at typical momen-
tum scales which are p~ &( p, but much larger than
200 MeV. In this case the source of color charge can be
taken as classical as in the McLerran-Venugopalan model.
The charge is of course a stochastic variable which must
be integrated over with a Gaussian weight as described
in the previous section.

dN/d'p,

FIG. l. Weizsacker-Williams distribution for a single nu-
cleus.

FIG. 2. Two nuclei Lorentz contracted to infinitely thin
sheets before the collision takes place.
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The sources of color field set up a classical color field.
After the collision the color field will begin to evolve in
time. Much after the collision, the color Geld will describe
the propagation of &ee gluons. In this section we will
describe how to compute the evolution of the color field,
and then how to compute the Gnal state distribution of
gluons.

The Yang-Mills equation for the two source problem is

[D„,Il" j = J"(z), (10)

where

J+ = b(z )pg(z~),
J = h(z+) p2(z~),
J'=0,

and we have restricted ourselves to work in a gauge where
the link operators along the particle trajectories drop out.

Before the collision takes place, we find. a solution of
the equations of motion to be

A+ =0,
A =0,
A = 0(z-)0(-z+)~;(») + &(z+)0(-z )~*,(z~)

(12)

+ . O1,2 = P1,2(ZJ )

The physical picture one has of this solution prior to
the collision is that the nuclei have zero field in &ont of
them as they approach one another. Behind them the
Beld is pure gauge. Because each nucleus has a different
charge density, the gauge is difFerent for each nucleus.
This is an exact solution of the equations of motion so
long as one is outside the forward light cone, that is in

This is a solution of the Yang-Mills equations in all of
space-time except on or within the forward light cone, as
shown in Fig. 3.

In the forward light cone, we must add in extra pieces
in order to have a solution. This will be done below.
The two-dimensional vector potentials are pure gauges
and solve for t ( 0

A+ = z+n(~, z~),
A = z P(7., zi),
A' = n's(~, z~), (14)

where

~ = gt2 —z2 = v'2z+z

This solution depends only on the longitudinal boost in-
variant variable 7. and has no dependence on the space-
time rapidity variable

1 x+
g = —ln

2 x

The factors of x+ and x in the definition of the vector
potential guarantee that under longitudinal boosts, the
vector potential transforms properly.

By making a gauge transformation which is only a
function of proper time and x~,

U = U(v. , zi), (17)

we see that we can Gx

(18)

which we shall choose to do. This choice corresponds to
a gauge condition

regions which are out of causal contact from the collision
event.

The fact that we have a solution of the equations of
motion which does not evolve in time before the collision
is remarkable. This solves the problem of cascade models
that an isolated nucleus composed of partons will spon-
taneously fall apart. Here the individual nuclei and their
parton clouds are static except for their overall center of
mass motion.

How do we describe the Gelds after the collision? Ex-
cept at the forward light cone, that is, when we are inside
or outside the cone, the Belds satisfy &ee Geld equations.
We will look for a Lorentz covariant solution to the equa-
tions of motion. We try, for x ) 0 and x+ ) 0,

I

X

X
1

,
'X+

x+A +x A+ =0,

X

FIG. 3. Regions with diferent structures of the gauge po-
tential: In regions 1 and 2 we have the well known sin-
gle-nucleus solutions n~, 2. While the gauge potential in the
backward light cone is vanishing we have a nontrivial solution
in the forward lightcone, region 3.

which in turn is consistent with dropping the link oper-
ators in (10).

If such a solution solves the equations of motion on
boundary conditions, it will predict that the distribu-
tion of partons is boost invariant. It is the generaliza-
tion therefore of Bjorken's boost invariant hydrodynamic
equations to the equations which generate the initial con-
ditions for the hydrodynamic equations.

As a consequence of the boost invariance of the Yang-
Mills equations, the ansatz above solves the equations
within the forward light cone. This can be checked ex-
plicitly. The equations which result for o.3, and n, for
x+, x ) 0 are
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—8~On —[D', D', n ]=0,
1

D;, 0 ns +ig7. [n, B n] = 0,
7

B~—~O~ns —ig~ [n, D*, n ] — D~, F~* = 0. (2o)

asymptotically, for large 7,

n(r, zJ ) ~ V(zL)e(r, ZJ )V (zJ ),

n', (~) z~) +V-(z~) e'(7, z~) ——. 0* V (z~).
Zg

(24)

These four equations can be checked to be consistent
with one another. Prom this point on, all vector indices
will refer to two-dimensional transverse vectors. The
longitudinal and time coordinates will be denoted sep-
arately.

In intermediate step in deriving the above equations,
we computed the field strengths E"".The results of those
computations are

The solution should tend to a small field plus a gauge
transformation. The value of this gauge transformation
is determined by the field equations and has a nontrivial
dependence on the sources. It results from solving the
nonlinear time evolution equations for the fields.

The equations of motion for the fields in the asymptotic
region are linear for e and e'. The equations are

1——OT7 A)
'T

0!3 —Xg 0!3)0!3 )

~ (1F'+ = —x+
i

—0 ns ~ D', n (21)

(22)

The only task which remains is to show that the above
solution also satisfies the boundary conditions generated
by the sources. For either x & 0 or x+ ( 0, the ansatz
above satisfies the equations trivially. We look first at
the equation D„,E~' = 0. This has a delta function
singularity at x = x+ = 0 which requires that

—g &g &' —(V' S'& —V"~~) e~ = o.
7

(25)

d2kg 1 a~ kg
(2~)2 +2~ r3/2

a,i dk~ K' a ~k2 X / 2ItL'J Z J —'G4)T

(2~)2 g2~ ~1/2

(26)

Observe that V'e' does not enter the asymptotic equa-
tions, so that there are in fact only two dynamical degrees
of &eedom in the solution, as must be the case.

The solutions to the above equations at asymptotically
large ~ are of the form

and there are no further discontinuities in this equation.
Now for [D„,F"+]= J+, we find that

7 ) Z~ = ——0!yi Xg ) O.'2 Xg

These two equations for J+ reduce to the same bound-
ary condition, and therefore neither o. nor o; are over-
constrained, demonstrating once more that our ansatz
contains the correct degrees of &eedom.

Note that assuming the boundary conditions above,
we are implicitly requiring that the solution be regular
at 7. = 0. It is easy to check that the quantities a and o,3
can either be regular at the origin or diverge like n 1/~2
and n' ln(w). These singular solutions will lead to a
divergent energy density, and are therefore not allowed.

So with the above two boundary conditions, the solu-
tion to the equations of motion is uniquely specified. This
solution is remarkable since in spite of the possible asym-
metry in the charge on either nuclei, the solution is up
to trivial factors rapidity independent. This has amus-
ing phenomenological consequences for the collisions of
asymmetric nuclei. The distribution should be flat in
rapidity. The height of the central plateau of course de-
pends on the asymmetry in a nontrivial way.

In order to determine the gluon radiation produced by
these fields, we must solve for them at proper times long
after the collision. We expect that the energy density will
dissipate and therefore the field strengths will become
small. Using the expressions above, we conclude that

In this equation, the frequency cu =~ k~ ~, and the vector

r.* = e"k'/u). (27)

1 + 1
q = —ln(x+/x ) = y = —ln(p+/p ). (28)

To proceed further, we compute the energy density in
the neighborhood of z = 0. Here asymptotically ~ = t.
The energy in a box of size B in the transverse direction
and dz in the longitudinal direction with I (( t becomes

«= —',* J' ',*.";-)
I

..'(") I*

i,b

(29)

Recalling that dy = dz/t, we find that

The notation + c.c. means to add in the complex conju-
gate piece.

To derive an expression for the energy density, we re-
call that 7. is large. Near z = 0, this implies that the
range of z where w t )& z that the solutions are z inde-
pendent. This means they asymptotically have zero p .
Now suppose we are at any value of z, and ~ is large but
t z. We can do a longitudinal boost to z = 0 without
changing the solution. Again in this frame the solution
has zero p . We see therefore that for the asymptotic
solutions the space-time rapidity is one to one correlated
with the momentum space rapidity, that is at asymptotic
times we find that
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dE
dyd2kg

and the multiplicity distribution of gluons is

dN 1 dE
dyd~k~ u) dyd~k~

As we expect for a boost covariant solution, the multi-
plicity distribution is rapidity invariant.

Finally, we must comment a bit on the characteristic
time scale for the dissipation of the nonlinearities in the
equations for the time dependent Weizsacker-Williams
Gelds. This is diKcult to estimate in general, but scaling
arguments should sufFice to estimate the time scale. The
basic point is that the typical momentum scale in the
problem relevant for the formation of most of the gluons
is p~ o.p which up to logarithms is p~ 200 MeV
A / . The characteristic time scale for the dissipation of
the classical nonlinearities should therefore be of order

I/p~. This is in agreement with other estimates of
the characteristic formation time for partons, and is in
agreement with the model of Geiger and Muller.

IV. SUMMARY AND CONCLUSIONS

We have derived a theory of the formation of gluons
which is applicable for small x gluons in the collisions of
very large nuclei. We have found that the gluon distri-
butions as measured in deep inelastic scattering undergo
an entirely nontrivial evolution in forming gluons which
would be the initial conditions for a parton cascade. We

have shown how one can compute these initial conditions.
After finding the initial conditions, the subsequent evo-

lution might be described by a combination of the parton
cascade and hydrodynamics.

There are many further problems to be addressed in
this theory. The equations described above must be nu-
merically solved. This will provide for initial conditions
for average head-on collisions. In addition it will predict
the spectrum of fIuctuations &om collision to collision.
Perhaps the most interesting problem is to compute the
hard particles produced during the early evolution of the
distributions so as to 6nd a precise quantitative test of
the theory.
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