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Charged black points in general relativity coupled
to the logarithmic U(1) gauge theory

Harald H. Soleng*
Theory Division, CERN, CH-1921 Geneva 28, Switzerland

(Received 9 May 1995)

The exact solution for a static spherically symmetric field outside a charged point particle is found
in a nonlinear U(1) gauge theory with a logarithmic Lagrangian. The electromagnetic self-mass is
finite, and for a particular relation between mass, charge, and the value of the nonlinearity coupling
constant A, the electromagnetic contribution to the Schwarzschild mass is equal to the total mass.
If we also require that the singularity at the origin be hidden behind a horizon, the mass is fixed to
be slightly less than the charge. This object is a black point.
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The singularity problem of Einstein's general theory
of relativity has sometimes been regarded as a "crisis
in physics" [1]. It is hard to accept a theory in which
space-time itself breaks down and where the Riemann
tensor is predicted to diverge on a singularity which can
be reached along a timelike curve. In general, physicists
seem to have had less trouble with analogous singularities
in gauge theories. One reason might be that in gauge the-
ories the diverging curvature tensors are curvatures not of
space-time but of internal spaces. Yet, in a sense, these
internal dimensions are just as real as the external dimen-
sions of everyday space-time. Therefore we should feel
just as embarrassed by these singularities as by the sin-
gularities of Einstein s theory. In addition, near a point
charge not only d.oes the Faraday tensor diverge, but also
the electromagnetic energy-momentum tensor blows up.
Thus, through the gravitational Geld equations, such elec-
tromagnetic singularities are also producing singularities
in space-time.

Within the framework of electromagnetism, an action
for a bounded field strength was proposed long ago by
Born and Infeld [2]. Altshuler [3] considered nonlinear
electrodynamics as a possible mechanism for inflation,
and devised a Lagrange multiplier scheme for construct-
ing nonsingular field theories. This method was later in-
voked to realize the limiting curvature hypothesis in cos-
mological theories [4,5]. In two-dimensional space-times
it has been applied both to black holes [6] and cosmologi-
cal models [7]. But nonlinear electrodynainics is not only
inspired by the desire to find nonsingular field theories;
Heisenberg and Euler [8] discovered that vacuuin polar-
ization e8'ects can be simulated classically by a nonlinear
theory. Also in string theory one has found efFective ac-
tions describing nonlinear electromagnetism [9].

In this Brief Report I investigate the logarithmic U(1)
gauge theory which is contained in the class of theories
constructed by Altshuler [3]. This particular case was
omitted in the analysis of nonlinear charged black holes
carried out by de Oliveira [10]. While this particular
theory appears to have no direct relation to superstring
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theory, it serves as a toy model illustrating that certain
nonlinear field theories can produce particlelike solutions
which can realize the limiting curvature hypothesis also
for gauge fields.

I shall find the classical (nonlinear) electromagnetic
and. gravitational fields for a static charged point par-
ticle. For the electromagnetic Geld there are in general
two invariants which need to be bounded: Ii = E pE ~

and I2 = *E pE l . For a static, charged point particle,
the latter invariant vanishes identically. Therefore I shall
only consider Ii.

The action S = f Zg —gd z is specified by the La-
grangian density

1
AB —ln(1+ AF' pF P)

16vrA-

where geometrized units [1] with G = c = 1 have been
employed. . In these units the constant A has dimension
(length) . The lowest-order terms of the Lagrangian are

16' R —F pF P+ —(F pF P) +O(A ) . (2)
2

To second order, and when I2 ——0, both the Born-Infeld
[2] and the Euler-Heisenberg [8] actions can be repre-
sented by the logarithmic Lagrangian. With the action
(1), the energy-moinentum tensor is

87rT„= 2 (1+AF pF P) F„pF ~

1 1 nP
2

——g„„—ln(1+ AF pF ).

The inhomogeneous electromagnetic field equations are

(1+AF pF P) F" (4)

The homogeneous (cyclic) equations are identities which
remain unchanged.

Let us now consider a charged point particle at rest.
Thus the space-time metric is given by the spherically
symmetric static metric. In Schwarzschild coordinates
the line element is [11]
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ds = C(r) dr + r do + r sin 8 dP —C(r) dt . (5)

The electromagnetic vector potential is given by

C(") (6)

Fi4 —— V'(r—) .

With these assumptions, the electromagnetic field equa-
tion (4) takes the form

2 V'(r) —4 A V'(r) + r V"(r ) + 2 A r V'(r) V"(r) = 0.

relative to the natural orthonormal kame
C(r) dr, w = rdo, w = r sinodg, and w = C(r)dt.
The only nonvanishing component of the Faraday tensor
is the radial component of the electric field,

The last term is a contribution to the Schwarzschild mass
coming &om a source at the origin. From now on we shall
set Mp = 0. We note however that a nonzero Mp gener-
ates a more Schwarzschild-hke space-time structure. The
explicit form of T44 can now be computed f'rom Eqs. (3)
and (7). Despite the complexity of the resulting inte-
grand, the integral can be evaluated exactly. The result
(with Mo ——0) is

5r' 5 /8AQ'+r'Cr =1+
18A 18A

4V2~Q~ 2'(49 2i 4i spy )

9~A
( r+ —/8AQ r4+

rsvp

6A ( 4AQ2 )
For small r the metric coeKcient is

The first integral is

r' —+8AQ'+ r'
4AQ

5r'

r' (——ln
/ I

+ O(")
6A q g2A~Q[ p

(16)

r' —r /8AQ' + r4

12AQ
4

~i(4' 2' 4' SAQ~ )

3~A[ Q /

(10)

where zFi is the generalized hypergeometric function and
Ci is a constant.

For small r we find a linear potential

V(r) = — r + O(r')
2AJQ[

A linear ultraviolet potential has also been found [12] in a
Kaluza-Klein model based on a five-dimensional Lovelock
theory. Apart f'rom an irrelevant constant, which has
been neglected, the Coulomb potential is the leading term
for large r:

V(r) = ——— + O(1/r').Q 2AQ
(12)

With this exact solution for the electromagnetic field,
we can integrate Einstein's field equations. Note that
the 44-component of the Einstein tensor for the metric
(5) can be written

By comparison with the case A = 0, we have identified
the integration constant with the charge Q. Integrating
once more, we find

Even though this metric seems to be well behaved at the
origin, there is still a curvature singularity there; at small
radii the leading order of the Kretschmann invariant is

8 2

R p~sR ~~ = + O(1/r ). (17)

This singularity should, however, not come as a surprise;
we have not attempted to limit the space-time curvature.
On the other hand, this singularity is much weaker than
the singularities of the conventional Reissner-Nordstrom
and Schwarzschild space-times.

From Eq. (16) one finds that C(r) changes sign near
the origin if A ( 2Q2. This means that there is a horizon
at a small radius and that the model is a black hole if
A is small. If A = 2Q2, then the horizon is at the ori-
gin. Such an object is a pointlike black hole and we
shall call these objects black points. This is not the
first occurrence of a pointlike black hole; charged dila-
tonic black holes [13,14] with a dilaton coupling constant
a ) 0 also reduce to black holes with a vanishing hori-
zon radius in the extremal case. For a ) 1 the dilatonic
black points behave physically as elementary particles
[15]. In the limit A m 0, we expect to recover properties
of the Reissner-Nordstrom solution and the appearance
of a horizon agrees with this expectation. There is how-
ever no inner horizon for any nonzero A.

At large radii we get the asymptotic form

d&. = ——(.[1-C(.)'])
T df'

2s&4I'( —)2 (q~s&2 Q2
C(r)' = 1 — ', , +, + O(1/r'), (18)

Consequently, Einstein's field equations reduce to

C(r) = 1 —— r T44(r )dr
8',2, , 2Mp
P p r (14)

where I'(2:) is the gamma function. We note that a
Schwarzschild mass has been generated by the field (an-
other contribution to the Schwarzschild mass term can
be added by assuming a point mass Mo g 0 at the ori-
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gin). It is possible that effects of this type can explain a
charged particle's mass in terms of electromagnetic field
energy. It is therefore of interest to see what the size of
the A coupling must be in order that this is the case. For
a particle with charge Q and rest mass M = mo, the
electromagnetic contribution to the Schwarzschild mass
is equal to the rest mass if and only if A = Ap, where

and

A Q
mp

po = = 0.824033.
I'(-.')'
9 vr

(2o)

Using the solution (9), we find that the critical radius is
given by

P ~ IQI ~ (22)

At smaller scales the electromagnetic Beld becomes effec-
tively r independent.

It has long been conjectured that all or nearly all of
the mass of the lightest charged particle is of electromag-
netic origin. If we insert the value A = Ao with Q = e and
mo ——m, (the electron mass), we find r„=3 x 10 is cm.
This is of the same size as the classical electron ra-
dius or around 100 MeV in energy units. This might
look appealing, but the model fails because in this case
the critical value of A is about an order of magnitude
larger than the size of the corresponding coupling in the
Euler-Heisenberg [8] action. High-precision experiments

For A & Ap there is a positive point mass at the cen-
ter of symmetry, and if A ( Ap, the central mass must
be negative. A negative central mass is also found in
the pure Reissner-Nordstrom case; here the well-known
Reissner-Nordstrom repulsion must be caused by a gen-
uinely negative gravitational mass.

The presence of a nonzero A implies that the Coulomb
interaction changes character at a radius r„where

V'(r) 2 = I/A.

in @ED rule out such a large value of A.

It is perhaps more natural to look for these effects at
the Planck scale [16]. Indeed, there is a cosmic censorship
argument that leads to A at such a large scale. In addition
to the requirement that the whole mass be generated
by the field, one can also demand that the space-time
singularity at the origin should not be naked. From the
small-distance behavior of the metric (16), one finds that
r = 0 is a horizon if

(23)

This extremal (in the sense that it is on the verge of be-
coming a naked singularity) solution describes a black
point. Since the "point gravity" (the analogue of the
"surface gravity" of a black hole) and the horizon area
vanish, both the Hawking temperature and the entropy
formally vanish, but for these objects the statistical de-
scription is probably inappropriate [17]. If we combine
the constraint (23) with Eq. (19), we get a unique value
for the mass:

mp = ppQ. (24)

Using Q = e/3 by analogy with quarks, as suggested by
Rosen [18], gives mo = 5.1 x 10 7

g = 2.9 x 10i7 GeV.
The Planck scale plays a role in low-energy physics; in

geometrized units the elementary unit of charge is e =
~nII . Since charge implies an electromagnetic field, and
since this field must have an energy that is equivalent
to a rest mass, one should naturally expect any charged
particle to have a mass not much smaller than the Planck
mass. Nature is different. The great puzzle it presents to
us is not why the electron has a mass but why its mass
is so small. The solution to this problem must be sought
at the Planck scale.

Rote added in proof. After completion of this work, M.
Cvetic informed me about two papers describing black
points in effective heterotic string theory [19].
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