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Thermodynamics of an anyon system
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We examine the thermal behavior of a relativistic anyon system, dynamically realized by coupling
a charged massive spin-1 field to a Chem-Simons gauge field. We calculate the free energy (to the
next leading order) from which all thermodynamic quantities can be determined. As examples, the
dependence of particle density on the anyon statistics and the anyon-antianyon interference in the
ideal gas are exhibited. We also calculate two- and three-point correlation functions, and uncover
certain physical features of the system in thermal equilibrium.

PACS number(s): 74.20.Kk, 11.10.Wx

I. INTRODUCTION

The statistics of particles play a fundamental role in
determining the macroscopic properties of many-body
systems. The conventional particles are classified into
bosons and fermions as they obey either Bose-Einstein
or Fermi-Dirac statistics. It is known that a many-body
wave function is symmetric under permutations of iden-
tical bosons, but is antisymmetric for identical fermions.
And bosons condense while fermions exclude. Attempts
to generalize statistics date back at least to Green's work
in 1953 [1]. Green found that the principles of quan-
tum mechanics also allow two kinds of statistics called
para-Bose statistics and para-Fermi statistics. Another
type of interpolating statistics is provided by the con-
cept of anyons [2,3]. Limited in two spatial dimensions,
anyons are particles (or excitations) whose wave func-
tions acquire an arbitrary phase e' when two of them
are braided. The phase factor 0;, now being any value be-
tween 0 and 1 (modular 2), defines the fractional statis-
tics of anyons. The concept of fractional statistics (or
anyons) has been useful in the study of certain impor-
tant condensed matter systems, particularly in the the-
ories of the quantum Hall effect [4], superconductivity
[5], and some other strongly correlated systems [6]. Most
e8'orts to understand the fractional statistics have been
in absolute zero; though in the literature one can also
Gnd calculations for certain quantities at Gnite tempera-
tures such as corrections to the statistical parameter and
induced matter masses [7]. A systematic study to under-
stand the thermodynamics of anyon systems is necessary.
In this paper we will address the issue.

An elegant dynamical construction of a particle sys-
tem that obeys fractional statistics is to couple bosons
or fermions via a conserved current to a Chem-Simons
gauge field, so that the fictitiously charged particles each
are endowed with a "magnetic" flux. The flux-carrying
charged particles are nothing but anyons; when one such
particle winds around another, it acquires indeed an
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Aharonov-Bohm phase [3]. Since the Chem-Simons cou-
pling characterizes the strength of the attached flux and
thus the Aharonov-Bohm phase, it characterizes the frac-
tional statistics cf the particles as well and is called the
statistical parameter. This sort of Chem-Simons con-
structions involves only local interactions, and so is read-
ily to be dealt with at the level of local quantum field the-
ory. In the study of some systems that are basically non-
relativistic, low energy efFective theories are found sufFi-

cient, convenient, or both. On the other hand, however,
to understand the short distance behavior of a system,
including anyon antianyon pair production, a relativis-
tic treatment is necessary. In the relativistic case, one
has found that a theory with a scalar minimally coupled
to a Chem-Simons field at a particular value of Chern-
Simons coupling is equivalent to the theory for &ee (spin-

2) Dirac fermions [8]. This phenomenon is called statis-
tics transmutation. In fact, here, not only are the statis-
tics of the matter field transmuted, but also the spin of
it. It is further demonstrated that, in a spinning mat-
ter Chem-Simons field theory with an arbitrary Chern-
Simons coupling, an integer (or odd-half-integer) part of
the Chem-Simons coupling can be reabsorbed by chang-
ing the spin, the character of Lorentz representation, of
the spinning matter Field [9]. Once this is done, in the
resulting theory the matter field has a higher spin and
the Chem-Simons coupling is weaker. This implies the
existence of many equivalent Geld theory representations
for one single anyon system.

In this paper we consider thermodynamics of a free
relativistic anyon system described by a massive spin-
1 Geld coupled to the Chem-Simons gauge field. Using
the finite temperature field theory method [10], we cal-
culate the &ee energy, from which all thermodynamical
quantities can be obtained. In particular, we exhibit the
particle density as a function of the fractional statistics,
and the interference between anyons and antianyons in
the ideal gas. We also calculate the two- and three-point
correlation functions to obtain certain physical quanti-
ties such as the screening length, e8'ective masses, and
temperature-dependent statistical parameter. The relia-
bility of perturbative expansion requires that the Chern-
Si,mons coupling be small. Under this restriction, recall
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the spin and statistics transmutation [9]; this theory of
&ee anyons is equivalent to a theory of charged spin-

2 particles (electrons for instance); each particle carries
about one unit of flux. The perturbative results obtained
here could be directly useful only to this system and those
like it. For a case in which an electron carries more flux,
one may map the problem to a theory with a higher spin
matter Geld and weaker Chem-Simons coupling and con-
duct a similar perturbative calculation.

II. THE MODEL

The model of interest is given by

I = [e„„p—B„*(0 —i2ga )Bg + MB„*B„
0 2

+ gesvp apO vs] (2.1)

where the three space-time manifold 0 has a Lorentzian
signature. First of all, a free massive spin-1 B„ theory,
something like Eq. (2.1) with a real B„and without the
Chem-Simons interaction, was first proposed as a self-
dual field theory [ll]. This self-dual theory, possessing a
single massive degree of &eedom and governed by a first
derivative order action, was then shown to be equivalent
(by a Legendre transformation) to topologically massive
electrodynamics [12]. It was also shown to have posi-
tive Hamiltonian and positively definite norm of states
in Hilbert space [13]. The free massive spin-1 field the-
ory was used as a starting theory to construct a relativis-
tic wave equation for anyons by considering one-particle
states as unitary representations of the Poincare algebra
in 2+1 dimensions [14].

Then, we now consider another construction of anyons
as shown in Eq. (2.1) by using a complex B„field, and
coupling it to a Chem-Simons Geld via the current

j„=—i~„vpB*Bg . (2.2)

This current is conserved as Eq. (2.1) is invariant under
global U(1) transformations. As stated in the previous
section, a Chem-Simons coupling endows charged par-
ticles with fluxes and turns them into anyons. To check
this, let us consider the equation of motion of the a„ field

&p, vAvaA = 2gj~ ) (2.3)

in particular, gjp ——b =
2 e,~ B,a~ for p = 0. This implies

a charged particle with density jp is attached with a mag-
netic flux tube b. The parameter g characterizes the com-
bined strength of charge and. flux, and thus the statistics
of anyons. Equation (2.3) also implies that Chem-Simons
field has no independent dynamical degree of &eedom.
Indeed, the equation of a~ could be solved by integrating
over the current. Equivalently, one could integrate out
the a~ field &om the action Eq. (2.1) and obtain a non-
local term for B~ (which we are not going to do in this
work) .

Equation (2.1) is also invariant under local U(1) gauge
transformations:

a„(x,t) -+ a„(x, t) + O„n(x, t),
B„(x,t) m e* ~"' B„(x,t) .

(2.4)

(2.5)

Namely, a„, as a gauge field, fills adjoint representation
of the gauge group while B&, like a charged matter field,
fills fundamental representation, though both a~ and B~
are governed by a first derivative order kinetic term. The
nonzero mass I of the B„field plays a key role here. It
is the mass that makes B~ a (matter) field that carries
local dynamical degrees of freedom. Indeed, if setting
M = 0 in Eq. (2.1), one obtains a topological Chern-
Simons SU(2) gauge theory [9].

To see how many degrees of freedom the massive spin-1
Beld B„carries, let us write down the equation of motion
for B„:

~„„g(0 —i2ga )Bg + i,MB„=0 . (2 6)

Action (0~ —i2ga~) on Eq. (2.6), and using Eq. (2.3)
and the current conservation O„j„=0, for M g 0, we
have

(Bp —x2ga~)B~ = 0 . (2.7)

Equation (2.7) is actually a constraint. In canonical ap-
proach, it is convenient to eliminate Bp by solving Eq.
(2.7). Since the action involves only first derivative, Bi
and B2 are actually canonical conjugate to one another.
This implies that B„carries a single degree of freedom
per real Beld. We will verify this argument in a different
perspective when the &ee energy is calculated in the next
section.

The terms of first derivative in Eq. (2.1) violate par-
ity and time reversal symmetries, and so does Eq. (2.1)
itself. This is one of the attractive features of anyons re-
lated to the quantum Hall effect and some other planar
systems. However, Eq. (2.1), being a free anyon the-
ory, is too simple to be realistic. In practical problems,
more ingredients are usually necessary. For instance, to
study optical features of superconductivity, a dynami-
cal electromagnetic Geld and a Chem-Simons field, with
gauge symmetry breakings, are introduced [15]; to study
the dispersion relations of electromagnetic waves in an
anyon model, both topologically massive gauge Beld and
Chem-Simons gauge field are used [16]. Though we do
not expect to go far in applications in this work, we hope
the study of the simplest model captures certain basic
features of anyons.

Since a local Chem-Simons interaction is introduced to
present even free anyons, we are dealing with an interact-
ing field theory, with a dimensionless coupling constant
g. In quantum field theories, it happens quite often for a
coupling constant to receive nontrivial renormalization.
However, it is not the case for the Chem-Simons cou-
pling g, because of the topological nature of the Chern-
Simons term. The P function of g vanishes identically,
and so g is not a running coupling constant. Therefore,
the Chem-Simons coupling serves well as a controlling
parameter in a perturbation expansion. In a heat bath,
a coupling turns out to be temperature dependent. If the
Chem-Simons coupling would. go up rapidly with temper-
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III. FREE ENERGY AND PARTICLE DENSITY

Now we attach the system to a heat bath at tempera-
ture T. As is known [10], the finite temperature behavior
of any theory is specified by the partition function

Tr —P(H —~m) (3.1)

and the thermal expectations of physical observables

ature, perturbation would break down very soon. How-
ever, as to be seen below, the effective Chem-Simons cou-
pling is just a slowly increasing function of temperature;
in a large range of temperatures perturbation expansion
should be reliable.

(O) = —T [O.-~l"- 1], (3.2)

where P = 1/T is the inverse temperature (the Boltz-
mann constant k~ = 1), II the Hainiltonian, N the parti-
cle number operator, and p the chemical potential, which
appears as a Lagrange multiplier when the system con-
serves the particle numbers.

From functional integral representation of a quantum
field theory, we can readily work out the partition func-
tion of the anyon system at finite temperature T. The
trick is rather simple: to replace the time variable t with
the imaginary time i7 via a Wick rotation, and to ex-
plain the final imaginary time as the inverse tempera-
ture P = 1/T. Then the partition function of the system
described by Eq. (2.1) is

'Va„'VB*BBpBc17t"exp — d7 d xZ
p ~ A

(3.3)

with the Euclidean Lagrangian

Z M6 = ——e„),B*(8„—i2ga„+ bp p p )Bi, + B„*B„—
0

——epvpa~Bvag + (B~c)(O~c) + —(Oil a~)

(3 4)

where the chemical potential p is introduced to reflect
the particle conservation, and the Faddeev-Popov ghosts
c and c and the last term above are for covariant gauge
fixing. Being bosons or ghosts with ghost number +1,
all fields in Eq. (3.4) are subject to periodic boundary
condition so that

a~(P, x) = a~(0, x) and B~(P, x) = B&(0,x) . (3.5)

From the partition function Eq. (3.3), it is easy to
work out the Feynman rules at finite temperature: the
Chem-Simons propagator in the Landau gauge (p = oo)
and the vertex are

Dp ( )
&pvApA

J'
0and I'„), ——ge„„), , (3.6)

with p3 ——2vrnT, which is due to the periodic boundary
condition; and the propagator for the B„field

e„»pp + h'„M + p„p /M
Pl/ p'+ M2

where p3 —— 2vrnT —i p. Besides, each loop in
a Feynman diagram carries an integration-summation
T P I d p/(2vr) over the internal momentum frequency
(p, ps), and at each vertex, momentum-frequency conser-
vation is required.

The single most important function in thermodynam-
ics is the free energy, from which all thermodynamic
properties are determined. Now we consider the per-

I

turbation expansion of the free energy. With a conven-
tional Fourier transformation, we choose to work in the
momentum space. At the leading order, we ignore the
interaction and calculate

Zp ——[det( —e„„gpss + Mb'„„)]

x det
l e~ pp—p + p~p—). det(p') . (3.8)

These determinants are the Gaussian integrals for the
free B~, a„and c fields, respectively. The determinant
for the massive B„field is

The determinant for the Chem-Simons field a~ is
(3 9)

) - —1/2

~I»p&+ pipv I)
(P'p') '

(3.10)

However, this contribution &om a~ is canceled out by
that from the ghost, the last determinant in Eq. (3.8),
up to a gauge parameter term QPp which can be ab-
sorbed into the zero-point energy. (Therefore it requires
a deduction of the zero-point energy from the free energy
before a gauge fixing, for instance p = oo in our choice. )
This result is compatible with the fact that the Chern-
Simons gauge field carries no local dynamical degree of
freedom. Putting together all these, by definition of free
energy density X = —lnZ/(PV), we obtain

d2
Xp ——T [ln(1 —e ~1 "1)+ ln(1 —e ~~ " )],(2') z

(3.11)

-1 — 1
[d t(-.- p +M~.-)] '= ll'(p'+M')] '.

p
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with u = gp2+ Mz, and with the zero-point energy
dropped. Equation (3.11) is recognized as the free energy
of two-dimensional, relativistic massive boson ideal gas.
The second term in Eq. (3.11) is due to the antiparticles.
This verifies that B~ carries one single dynamical degree
of freedom per real field. Given W, one may calculate
all other thermodynamic quantities by computing certain
derivatives [17]. For instance, the particle density n =
N/V = 0%/B—IJ.. At leading order,

d'p (
np ——

(2 )2 g P( — ) —1 P( + )

T=
2

I»(* -r) —»(* r)] (3.12)

where we have introduced dimensionless parameters x =
M/T and r = p/T, and

1
g„(x,r) =, , dyy"

I~n) ev'*'+y'+ (3.13)

1 dzT ): f(p ) = - —lf(z)+f(-z)l
2 — 27r

+" dz ( f(z)
2vr (e—iPz+» —1—OO+'CC

In particular, gz(x, r) = (x + r) /2 + r /2 —ln(1—
e (*+')) + dilog(e*+").

To consider quantum corrections, we first intro-
duce a formula that maps the discrete summation
T P f(ps ——2vrTn —ip) into continuum integra-
tion. It holds

FIG. 1. The nonvanishing vacuum diagram at order g .
The real (dashed) line stand for the B„(ap) propagator.

is temperature independent, and it is linearly divergent.
Therefore, a regularization is needed. If a naive cutoff A
is introduced, the result is

d p 1 A M
~ (2~)s p2 + M2 2~& 47r

(3.17)

One can, of course, choose other proper regularization
procedures, for instance the regularization by dimen-
sional continuation. Using the latter regularization to
calculate the same integral, one ends up with only the
second term in Eq. (3.17). Namely, the two regulariza-
tion schemes differ &om one another by a A-dependent
term. This linear cutoff term can be absorbed by
renormalization —redefinitions of the zero temperature
mass and/or coupling constant —as we shall see below.
As long as renormalized quantities are concerned, no
physics should be affected by the regularization proce-
dure(s) used. The first integration in Eq. (3.16) involves
no divergence, neither ultraviolet nor infrared, thanks to
the Bose-Einstein distribution function. Performing the
integrations on the complex z plane and in the real two-
dimensional p space in the first term of Eq. (3.16), we
obtain

f( z)—+ ipz pP —1 )
(3.14)

A M T
J(M, T, p) = ——+ —[hq(x, r) + h2(x, r)], —

27r 4' 4'
(3.18)

1
J(M, T, p) =T ) 2' ~ p2+ M~ (3.15)

as long as the function f(ps) has no singularity along
the real p3 axis. This formula is also convenient for
regularization, as the temperature-independent part of
a quantity is completely separated out, and as is known
[18], only the temperature-independent part may contain
divergence and so need ultraviolet (or infrared) regular-
ization and renormalization. For the later use, let us
calculate

where

1 1
h„(x, r) = dy

r(n) o gy2+~2 dy +. +

(3.19)

In particular, h2(x, r) = —ln(1 —e ( +')).
The perturbation correction to the partition function

at the next leading order in the Chem-Simons coupling
g is from the two-loop vacuum diagram given in Fig. 1.

Calculating the two-loop diagram, we obtain

By using Eq. (3.14), we have lnZ2 —— gMPV
~

n—o + J (M, T, p) ~, (3.20)q4M'

It is not diKcult to check that the tadpole and so the dumb
diagrams have no contribution, because of the totally anti-
symmetric tensor structure of the Chem-Simons propagator
and of the interaction vertex.

(3.16)

where w = p + M . The second term in Eq. (3.16)

+" dz d'p
J(M, T, p) =

+,, 2vr (2vr) z

f 1
xl . +'( e iPz+Piz 1— e i Pz Piz 1)——

d'p 1
(2vr)s p2+ M2 '
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and correction to the free energy density

g2MT / 1
~

—[g2(x, r)-—g2(x, r)](4')2 ) x2

(3.21)

In Eq. (3.21), we have replaced the bare parameters M
and g with the renormalized (zero temperature) parame-
ters M (and so the dimensionless parameter z = M„/T)
and g„, whose definitions to the next leading order will
be given in the next section.

From Eq. (3.21), we yield the correction to the particle
density at the next leading order:

r) 1 — ' —[g2(x, r)——gq (x, r)] [h2 {x, r) +—h2(x, r) + 2: ho(~, r) +—~ ho {~,r)]
g„M2 1 2 2

8vr2 x2

+)& —&~(&, —~) —h2(~ "))[ao(x, r) —ao(~, ~)])—. (3.22)

To obtain the above, we have used [19]

and
0 x

~n+ 1 — gn —i
AT n

(3.23)

Now we see that, when the Chem-Simons interaction
is switched on, the charged particles are attached with
the Aux and they are now anyons; the particle density
is a function of the Chem-Simons coupling that charac-
terizes the statistics of the anyons. If interpreting the
antiparticles as "antianyons" carrying opposite charge
with opposite sign of particle numbers, from Eqs. (3.21)
and (3.22) we see the anyons and antianyons interference
even in the "&ee" anyon system. It would be tempting
to check whether the free energy and other thermody-
namical quantities at a particular Chem-Simons coupling
g = m/2 in the present model turn out to be the ones for
the ideal charged fermion gas, since such an equivalence
of the two models at zero temperature is suggested by the
statistics and spin transmutation [9]. Unfortunately, it is
difficult to check in perturbation expansion, as all higher
order corrections must be taken into account when the
coupling is so strong.

IV. TWO- AND THREE-POINT CORRELATIONS

In this section, we calculate the two- and three-point
correlation functions to the next leading order and dis-
cuss certain quantities of the system, such as the effec-
tive vector mass, screening lengths, and effective Chern-
Simons coupling constant. We take the chemical poten-
tial p, = 0, for simplicity. The corresponding diagrams
are depicted in Fig. 2.

I

We consider first the effective mass of the B„ field.
With Z„„(p) denoting the self-energy of B„,the inverse
two-point correlation function of the B~ field is

G - '(&) =G'. (&)-~ -{J). (4.1)

p 0„G ), (&)ep D „(q)27r 2
n

2

=2g T~ g g~g~
(27) )2 q2 (q2 + M2)

(4.2)

Since the fields are subject to periodic boundary con-
dition in the imaginary time direction, and the Lorentz
invariance is broken to the spatial rotation invariance in
two dimensions, the longitudinal components of vectors
and tensors are not necessarily the same as the transverse
ones. Therefore, the effective mass of the B„field takes
a form [20]

M((g, T)b„s6 s+Mt, (g, T)h„;h„; = G„(p = 0) . (4.3)

Calculating Eq. (4.2) and using Eq. (4.3), we obtain the
effective masses of B~ field

To calculate the effective mass, we set the external
momentum-frequency p = 0, and consider the self-energy,
from Fig. 2(a):

g' 1 1 (' 6
M, (g. , T) = M„+ M. ———

~

h—,(~) ——,[h,,(O) —h. (*)]
~

+O(g'),
6

rx

M, (g. , T) =M. + —"M„———,(h, (O) —h4(x)) +O(g } .g 1 3 4

(4.4)

(4.5)
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p v
A

(c)

FIG. 2. One loop diagrams for two- and three-point corre-
lation functions.

calculate the screening masses of the plasma. The electric
and magnetic screening masses, M, i and M z, are de-
fined via the polarization tensor II„(p,g, M„T) as [20]:

M, i(g, M„,T)b„sb s + M s(g„,M, T)b„;b„;
= —II„„(p=o, g. , M„,T) . (4.7)

Above, the renormalized (zero temperature) mass M,
is defined by M„= M —3,g A, in the regularization
by a naive ultraviolet cutoff A. In the brackets in Eqs.
(4.4) and (4.5), the bare mass M has been replaced by
the renormalized M„and the bare (zero temperature)
Chem-Simons coupling g replaced by the renormalized
g„(its definition will be given later). These replacements
affect only g and higher orders. Now, we see one of the
thermal effects on the vector mass is a lift of mass de-
generacy. The longitudinal effective mass of the vector
is different &om the transverse ones. Moreover, if the
chemical potential would be nonvanishing, it can be seen
that the mass matrix of massive vector Geld B~ develops
nondiagonal components of the form m(T, p) e;~. This re-
sults in a further lift of degeneracy of vector mass in the
transverse dimensions when the mass matrix is diagonal-
ized. The lift of degeneracy in the transverse dimensions
seems to have something to do with the asymmetry of
parity, though we do not discuss this issue further in this
paper.

The first terms in the brackets of Eqs. (4.4) and (4.5)
are the radiative inass corrections, and Mi = Mq ——(1+

g )M~ at zero temperature. The finite temperature
case is very interesting: due to the energy exchange with
the heat reservoir, the vector particles (or excitations)
"gain" weights in their longitudinal dimension, but "lose"
weights in transverse ones as Mi(g, T) and Mt, (g„,T)
are monotonically increasing and decreasing functions of
temperature T, respectively, as seen in Eqs. (4.4) and
(4.5). Moreover, there exists a critical temperature T,
at which Mq(g„, T) = 0.2 T, is determined by setting
Eq. (4.5) zero. A typical numerical solution at the next
leading order is

T. - 46.3M„, (4.6)
when g„= vr/100. Obviously, stronger Chem-Simons
interactions correspond to higher critical temperature.
The phenomenon around T seems to be an analogue of
the shift &om normal to anomalous dispersion of vec-
tor waves discovered in [16]. We would also speculate
that the vector Geld B„could be both "electrically" and
"magnetically" self-screened when T (T, while only the
"electric" self-screening happened when T ) T . This
might imply a phase transition between "conductor" and
"superconductor" only when static electric and magnetic
fields would be somehow induced by the vector field B„
itself.

Next, we consider the current-current correlation, and

An extrapolation of (4.5) to T ) T results in a negative
self-screening magnetic mass. Since a system with negative
boson mass is not bounded from below, this might imply one
more phase, which is very unstable, however.

Calculating the one-loop diagram Fig. 2(b) with the ex-
ternal p = 0,

2

llp". ( ) =g' ),p-na'. A(q) ~-G.'q(q)

=2g T q 2q~q —~ „(q +M
(2~)2 (q2+ M2)2 (4.8)

and using Eq. (4.7) we obtain the screening masses

M, i(g„M„,T) = —"M„~g„' ( 1

+&(g')
M (gs„, M, T) = 0 + 0(

Above we have set the renormalized zero temperature
masses of the gauge field to zero by using counterterms
(in the regularization by a large momentum cutofF), so
that the gauge symmetry is respected. We see now that
while the magnetic mass M s(g, M, T) vanishes iden-
tically to at least the next leading order, the electric one
M,i(g, M„, T) is a monotonically increasing function of
T. Therefore, as in QED and QCD, only the static elec-
tric field is screened by the plasma thermal anyon exci-
tation, and therefore the plasma thermal excitation acts
like a conductor, instead of a superconductor.

In 2+1 dimensions, due to the parity and time re-
versal asymmetries, the current-current correlation may
have antisymmetric (in the space-time index) compo-
nents. Namely, the polarization accepts a decomposition

II„(p) = e„ppgil (p) + other terms, (4.11)

r„„„(p,I., T) = ) g'"+'r„"„"„'(p,k, T) . (4.13)

with IIo(p = 0) contributing to the Chem-Simons coeffi-
cient. A simple calculation gives

2
II(')(0) = "

~
1+M. J(M„T)

g,' (= ——'~1+ + —ln(1 —e *)
~

271 ( e —1 x
(4.12)

Since the effective Chem-Simons coefFicient, together
with the efFective Chem-Simons coupling (to be consid-
ered below), afFects the statistics of anyons, temperature
dependence of these quantities implies the statistics' be-
ing temperature dependent as well.

Finally, we consider the three-point function and de-
termine the effective Chem-Simons coupling to the next
leading order. The three-point function is defined in the
perturbation expansion as
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Then the effective (finite temperature) coupling constant
is defined through the three-point; function at p = k = 0:

e„„~hpob„sgg(T) + e„orb„sb„og2(T) = I'„p(0, 0, T),
(4.14)

I

where p and v refer to the indices of the charged vector
Gelds B& and B„*, and A for that of the Chem-Simons
gauge Geld ap.

Calculating the one-loop diagram Fig. 2(c),

d2

n
2) d q 1 eg~qqoq„— ep„oqoqp

(2~)2 M q2 (q2 + M2)
(4.15)

and using Eq. (4.14), we obtain the effective coupling

gs 1 1 3
gg(T) = g ——" ———

~

h2(x) ——[h4(0) —h4(z)]
~

+ O(g ),
7r 6 2x g X )

(4.16)

gg(T) = g, ——' ———[h4(0) —h4(x)] + O(g ),g 1 3 5

vr 6 x3
(4.17)

where the renormalized zero-temperature coupling g„=
g(1+ ss, M), when a cutofF is used. From Eqs. (4.16)
and (4.17) we see gq ——g2

——g„(1 —
s g ) at absolute

zero. At finite temperatures, the components of the efFec-
tive coupling, gq(T) and g2(T), are monotonically slowly
increasing functions of the temperature T (to a reason-
ably high T). In particular, at the critical temperature
T 46.3M„, given in (4.6), we have

g (T,) 1.4g„,

g2(T, ) = 2g„,

(4.18)

(4.19)

with g = vr/100. Therefore, as long as the zero tem-
perature coupling g„ is small, in a range from zero to a
reasonably high temperature, the efFective Chem-Simons
coupling is small.

V. SUMMARY

We have set up a &amework to investigate the ther-
mal behavior of a relativistic dynamic anyon theory with
a Chem-Simons field coupling to a massive spin-1 field.
We have verified that the Chem-Simons kinetic term has
no contribution to the &ee energy and all other ther-
modynamic quantities, but the Chem-Simons coupling
characterizes these quantities. Our calculation in pertur-
bation expansion over a small coupling at Gnite temper-
atures supports the point of view that the sole role of
Chem-Simons interaction is to afFect the statistics of the
matter field coupled.

Our results suggest that, responding to an external
static electric-magnetic field, the anyon system acts like
a conductor, instead of a superconductor. However, if
self-induced static electric-magnetic Geld would some-
how come up (via higher order loop corrections to the

B„self-energy, probably), the system might experience a
conductor and superconductor transition at some critical
temperature that depends on the Chem-Simons coupling
and the vector mass. The observation of finite tempera-
ture correction to the Chem-Simons coefficient (and the
effective Chem-Simons coupling) might be useful to un-
derstanding the finite temperature quantum Hall efFect
in a Chem-Simons matter model, as an efFective Chern-
Simons coefFicient determines a Hall conductivity.

Since the components of the efFective Chem-Simons
coupling are slowly increasing functions of temperature,
as seen in the last section, a perturbation expansion
seems to be reliable in a region &om zero to a reason-
ably high temperature, as long as the zero temperature
Chem-Simons coupling is small, or as long as the statis-
tics of anyons is close to that of the vector boson.

Finally, since we expand the anyon system around a
&ee charged boson with nonvanishing chemical potential,
there seems to be a concern on Bose-Einstein condensa-
tion which happens in some free (and interaction) boson
theories [10]; and if so, how the (Chem-Simons) interac-
tion that transmutes bosons into anyons afFects the con-
densation. We would like to argue that while this may
be an interesting issue in a model with charged scalar
coupled to Chem-Simons Geld, the &ee B theory stud-
ied in this work does not exhibit a Bose-Einstein con-
densation. Let us recall that our model involves only
first derivative. This makes it quite difI'erent &om any
conventional boson theory. In particular, it does not al-
low a zero-momentum term in the Fourier series of the
B„ field, while such a term is a key for the conden-
sation. To show this, let us assume the complex Geld

B„(p= 0) = q~e' &, p = 1, 2, 3. Then the mass term in
the action contributes to the partit.'on function a term
exp[MrI2/2]. Accordingly the chemical potential term
contributes exp[i pgqrl2 (e ' ' e' ' —e 'e' e's')]. However,
because of the U(1) global symmetry of the Lagrangian,



52 THERMODYNAMICS OF AN ANYON SYSTEM 6129

there must be Oq
——02, so that O„does not appear in the

final results. Then the term with chemical potential van-
ishes. To determine rl (= ~rl]), one sets 0(lnZo)/Brl = 0,
and obtains rlM = 0. Namely, rl = 0 if M P 0. This
completes the argument that there is no Bose-Einstein
condensation in the B theory.
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