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Confinement and complex singularities in three-dimensional +ED
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The standard approximations of the Dyson-Schwinger equation lead to complex singularities of
the fermion propagator. In three-dimensional +ED one can show that this phenomenon might be
related to con6nement: a con6ning potential leads to masslike singularities at complex momenta,
and thus to the absence of a mass singularity on the real timelike axis. The correct treatment of
the vacuum polarization is essential for the confining nature of three-dimensional +ED.

PACS number(s): 11.10.Kk, 11.15.Pg, 11.15.Tk, 11.55.Bq

I. INTRODUCTION

Quarks are not observed as free particles, but only indi-
rectly inside hadrons; this confinement of the quarks is an
essential and very intriguing property of QCD, both from
a theoretical and from an experimental point of view. De-
spite a lot of effort, there are still a lot of open questions
about the confinement mechanism and confined parti-
cles. One of such questions is what the behavior of the
full propagator of a confined particle is: E.g. , does it have
the same kind of analyticity properties as a bare quark
propagator? If the full quark propagator has no mass sin-
gularity in the timelike region, it can never be on mass
shell and thus can never be observed as a free particle
[1—4]. So in this way the absence of a mass singularity
implies directly confinement, and thus the analytic struc-
ture of the full quark propagator might be connected with
confinement.

Since confinement is a nonperturbative phenomenon,
the analytic properties of the full fermion propagator in
a confining theory have to be studied in a nonperturba-
tive way. The Dyson-Schwinger equation is a very pow-
erful tool to study nonperturbative phenomena, and it is
commonly used for studying dynamical chiral symmetry
breaking, but it can also be useful in studies of confine-
ment [5]. The usual truncation schemes of the Dyson-
Schwinger equation show that the full fermion propaga-
tor in QED and QCD has complex branchpoints, instead
of the expected. mass singularity on the real timelike axis
[6—10]. Although this phenomenon might be an artifact
of the approximations, as believed about 15 years ago
when it was first discovered [6), it has been suggested
more recently that it might be a genuine property of
the full theory, connected with confinement, especially
in QCD [7—9]. If the quark propagator has a masslike
singularity at complex momenta, instead of a mass sin-
gularity in the timelike region, it can never be on mass
shell and is thus confined.

Not only in QCD the fermions are confined, also in
several other theories there is confinement. Quantum
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electrodynamics in two space plus one time dimension
[three-dimensional QED (QEDs)] is such a theory, with
a confining potential for the fermions, at least at the clas-
sical level; for the full theory it depends on the behavior
of the vacuum polarization [11]. It is also a very inter-
esting model to study dynamical mas generations, and
for this purpose the Dyson-Schwinger equation has been
extensively studied on the Euclidean axis [12—17]. The
theory is super-renormalizable, and does not sufFer from
the ultraviolet divergences which are present in the cor-
responding four-dimensional theories. That means that
we do not need to introduce any artificial cutofF, and
the only mass scale in massless QEDs is the dimension-
ful coupling. In this way we are provided with a very
interesting model, from which we can learn a lot about
the analytic structure of the propagator, and which is
mathematically easier to analyze than four-dimensional
theories. The result can be very useful as guidance for
other, more complicated, theories like QCD. Apart from
the interesting features connected with dynamical mass
generation and confinement in general, it might also have
some direct physical relevance, both in condensed mat-
ter physics (in connection with phenomena occurring in
planes) and as the high-temperature limit of the corre-
sponding four-dimensional theory.

In this paper we study the analytic structure of the
fermion propagator in QEDs, using the Dyson-Schwinger
equation and some difI'erent approximations for the full
photon propagator. We show that, if there is a confining
potential, the fermion propagator has complex masslike
singularities, but if there is no confining potential, the
mass singularities are located almost on the real timelike
axis, as we would expect. The presence or absence of the
confining potential depends on the particular approxima-
tion for the photon propagator.

This paper is organized as follows: In the next section
we review the analytic structure of the fermion propa-
gator in the context of perturbation theory and what we
would expect for the propagator of a confined particle. In
Sec. III we introduce the model we are considering and
its confining properties. Next, we discuss the Dyson-
Schwinger equation, the truncation scheme we are using,
and our numerical procedures. In Sec. V we present our
results, and finally we give some conclusions in Sec. VI.
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II. ANALYTIC STRUCTURK OF PROPAGATORS

A. Mass singularities
phys

d 2&i(1 ')+ p2(s')
p2 —@2+ ic

The analytic structure of the bare fermion propaga-
tor is well known: In momentum space, it has a single
pole at the bare mass of the fermion. In Minkowski met-
ric (which we will use in this section only, out of conve-
nience), we have, for the bare propagator,

S(p) = —mo + iE'

with a mass pole which is located at timelike momentum

pM,.„&
——mo. The integration contour one encounters

in all kinds of calculations goes around this singularity
due to the iE; prescription, and this ir also allows us to
perform the usual Wick rotation from Minkowski space
to Euclidean space.

In perturbation theory, the full fermion propagator has
a similar structure, at least on the first Riemann sheet: a
single pole at the physical mass of the particle and a more
complicated structure for momenta beyond some thresh-
old energy for multiparticle production; see Fig. 1. If we
are dealing with massless particles, as in @ED, where we
have massless photons, this single pole becomes a loga-
rithmic branchpoint; see, e.g. , [18].

In general, we expect a similar structure for the full
fermion propagator in a nonperturbative calculation, at
least if the fermion corresponds to a stable physical par-
ticle. In a theory of interacting particles neith asymptotic
states we have the Kallen-Lehmann representation

with the spectral weight functions p, (p ) real and non-
negative, and m & mphy, the threshold for multiparticle
production. We therefore expect a full electron propaga-
tor with a mass singularity at the physical mass of the
electron, which is located on the real axis in the timelike
region at pM,.„k

——mphy and a logarithmic branch cut
along the real axis, beyond this singularity.

However, the derivation of the Kallen-Lehmann repre-
sentation breaks down in the absence of the asymptotic
states; the above argument only holds in cases where the
fermion is indeed a stable, physically observable particle.
If we are considering a theory with confined fermions,
which means that there are no asymptotic states for these
fermions, we do not have a rigorous proof of the existence
of a Kallen-Lehmann representation, and so we do not
know a priori the analytic structure of the propagator of
such a confined particle.

The mass singularities of the propagator at the phys-
ical mass of the particle are crucial for the existence of
observable asymptotic states. Without such mass sin-
gularities, the particles can never be on mass shell, and
thus never be observed as real particles. In other words,
confinement might very well be related to the absence
of such mass singularities, and thus to the absence of
a Kallen-Lehmann representation for the propagator of
such a particle [1—4].

B. Complex singularities

—V((m+p) 2+ p )
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If the propagator of a confined particle does not have
a Kallen-Lehmann representation, what (other) analytic
structure can we expect? Writing the full fermion prop-
agator as

p+ m(p')
p2 —m2(p2) '

(m+p)

FIG. 1. The analytic structure of a full, stable, physical
observable particle, in (a) the po plane and (b) the p plane
(in Minkowski metric).

we can now ask the question: What analytic structure is
possible? In principle there are the following possibilities:
the propagator has complex singularities (at zeros of the
denominator); the propagator is an entire function; the
propagator has compensating zeros [both the denomina-
tor and the wave function renormalization Z(p) are zero
at the same point, which might be located in the timelike
region].

During the last couple of years, analyses of the fermion
propagator using the Dyson-Schwinger equation in the
complex momentum plane show complex masslike sin-
gularities in a variety of models and truncation scheme.
This phenomenon was first discovered by Atkinson and
Blatt [6] in quenched ladder QED4, and it was generally
believed to be an artifact of the approximations. How-
ever, in a theory with confined particles, it might very
well be a genuine property of the full theory: The absence
of a mass singularity at timelike momenta will effectively
confine the particles, in the sense that they will not be
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observable as physical stable states. Recently, it has been
suggested by several authors that the complex singular-
ities one finds by solving the Dyson-Schwinger equation
for complex momenta are indeed a signal for confinement,
especially in a confining theory like QCD [7—9]. In this
paper we show that there is indeed a connection between
a confining potential and complex masslike singularities
in QEDs.

Note, however, that also other analytic structures, like
a fermion propagator which is an entire function, will
effectively confine the fermions, and. in principle there
are also other confinement mechanisms possible which do
allow for a physical mass pole for the fermion propagator.

S—'(p) = Z(p) [i P+ m(p)], (5)

and the full photon propagator is

q'[1 + II(q)] ( q' p q4

in a general covariant gauge. In this equation, II(q) is
the vacuum polarization, a the gauge parameter, m(p)
the dynamical mass function of the fermion, and Z(p)
the fermion wave function renormalization. For sake of
simplicity, we use the Landau gauge (a = 0).

The exact Dyson-Schwinger equation for the fermion
propagator is

III. QEDs

A. Formalism

In Minkowski space, we need the artificial ic descrip-
tion, in order to define the path integrals, and to se-
lect the integration path around the mass singularities
in all kinds of calculations. Alternatively, we could set
up our field theory in Euclidean space, in which case the
integrals are well defined from the beginning. In princi-
ple the Wick rotation allows us to go from Euclidean
to Minkowski space and back, and both formulations
seem to be equivalent, but in the presence of complex
singularities this easy connection between Euclidean and
Minkowski space is d.estroyed. Since the theory is better
defined in Euclidean metric, we will use that formalism.
Once we know the Euclidean Green's functions, we can
obtain the Wightman functions in coordinate space by an
analytic continuation in the time coordinates, and from
them the physically relevant Minkowski Green's func-
tions [19]. In this way we can (in principle) extract all of
the physically relevant information in Minkowski space,
even after setting up the formalism in Euclidean space.

The Lagrangian in Euclid. ean space is

l:(@,g, A) = vP (p" (0" + ieA~) + mo) g
+ i P Pv+Pv + 1 (gP, AP) 2

4 2G

In QEDs, only three anticommuting p matrices are
needed, which can be realized by taking a two-
dimensional representation for these matrices, e.g. , the
Pauli spin matrices. In that case we also have two-
dimensional spinors, instead of the four-dimensional
spinors one would use in four-dimensional theories. How-
ever, here we will use the formulation with a four-
dimensional spinor space, and use the same p matrices as
in four space-time d.imensions. In order to study dynam-
ical mass generations, and its inBuence on confinement,
we take the bare fermions to be massless: mp = 0. In
QEDs with four-dimensional spinors one can have two
types of mass terms for the fermions, namely, a parity-
breaking and a parity-conserving mass term. We will
only consider the dynamical generation of a parity-even
mass [13]; it has been shown that there is no dynamical
breakdown of parity [20].

The full fermion propagator can be written as

with the unknown full vertex I (p, k), and the full photon
propagator D„„(p—k). In analyzing the fermion Dyson-
Schwinger equation, we have to truncate this equation.
In this paper, we discuss both the so-called quenched
ladder approximation (bare photon and bare vertex), and
two approximations based on the 1/N expansion.

B. 1/1V expansion

A very popular truncation scheme in QEDs is the 1/N
expansion. Consider N massless fermion Qavors, and use
the large N limit in the following way: Let N ~ oo and
e —+ 0 in such a way that the product e N remains
6xed. It has been shown that massless QEDs is in&ared
finite order by order in such a 1/N expansion [21]. For
convenience we choose the coupling, which defines our
mass scale, to be

So.

N '

and keep o. fixed.
Such a 1/N expansion means that we have to take into

account the one-loop vacuum polarization: The coupling
is of order 1/N, but there are N fermion loops contribut-
ing to the vacuum polarization tensor

d~k
II""(q) = —e N Tr[p"S(k + q)

(2vr) s

x I'" (k + q, k) S(k)] . (9)

This vacuum polarization tensor has an ultraviolet di-
vergence in its part proportional to b", which can be
removed by evaluating it using a gauge-invariant regular-
ization scheme. Defining the vacuum polarization II(q)
by

II""(q) = (q h" —q" q") II(q), (10)

we can get the regularized vacuum polarization by con-
tracting the vacuum polarization tensor with [5,11]

(q 6""—3q"q") /q

d3k
S (p) =i P+ e p"S(k)I'"(p, k)D""(p —k),(2') s

(7)
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which is orthogonal to b~ and thus projects out the di-
vergent part. Note that this regularization gives the same
result as dimensional regularization, but this projection
is much easier to perform if we take into account dynam-
ical fermions, in Sec. VC. Using bare, massless fermions
and a bare vertex, we have, for this vacuum polarization,

e2 % o.
II(q) = (12)

whereas the one-loop vacuum polarization with massive
fermions gives

' —4m'II()=, i2 + qar csin
gq'+ 4m')

The crucial difFerence between the vacuum polarization
with massless and with massive fermions lies in the in-
frared region: With massless fermions the vacuum polar-
ization blows up at the origin, II(0) m oo. With massive
fermions, however, with a constant mass m, the vacuum
polarization is finite in the infrared:

This behavior can be derived assuming that the vacuum
polarization is bounded and continuously difFerentiable
for Euclidean momenta, and that it falls of at least as
1/q as q ~ oo.

From this equation, we can see immediately that, de-
pending on the behavior of the vacuum polarization in
the infrared region, there are two possibilities: a confin-
ing potential if II(0) is finite; no confining potential if
II(0) -+ oo. If we now look at the one-loop perturba-
tive vacuum polarization, we see that there is an essen-
tial difFerence between massless and massive QEDs. For
massive fermions, the vacuum polarization at the origin,
II(0), is finite as can be seen &om Eq. (14). Therefore
there is a logarithmically confining potential in leading
order in I/N for massive fermions.

On the other hand, if the fermions are massless, there
is no confining potential to leading order to I/K; the
one-loop vacuum polarization blows up at q $ 0 [see
Eq. (12)], and the photon propagator is softened in the
infrared region. Perturbatively, to leading order in 1/1V,
the fermion propagator is just the bare propagator, with
a single pole at the origin, corresponding to an observ-
able massless fermion. However, a dynamically generated
fermion mass might very well change this leading-order
behavior.

II(0) m

C. Con6ning potential

(14)

IV. DVSON-SCHWINGER EQUATION

One of the interesting properties of QEDs is that it
exhibits confinement [22]. We can define a "classical"
potential for the fermions in coordinate space [11],

In order to determine the analytic structure of the
fermion propagator nonperturbatively, we use the Dyson-
Schwinger equation. In general, after reducing the p al-
gebra, the Dyson-Schwinger equation, Eq. (7), becomes

V(x) = —e' g - 1
(2vr)' q [1+II(q )]

' (15)
d3k

Z (p) m(p) = e 4 Tr[p&S(k)I'"(p, k)Di" (q)],

where II(q) is the vacuum polarization. In lowest order
in perturbation theory, we can neglect the efFects of the
vacuum polarization and simply calculate the potential.
This leads to a logarithmically rising potential

e2 dk
Z '(p) =1——

p (2vr)
-'T [P~~S(k)

xl'"(p, k)D" (q)],
2

V(x) = —ln(e ~x~) .2' (16)

e2 ln (e2~x~) f 1 lV(*-) =
[ ( )]

+ const+ O (17)

Because this potential increases at large distances, it
efFectively confines the fermions, and there are no free
asymptotic one-fermion states possible.

Of course, this potential will change under the infIu-
ence of the vacuum polarization. As our results show,
the correct inclusion of the vacuum polarization is in-
deed essential for confinement. The relevant region for
the question whether or not there is a confining potential
is the infrared region, corresponding to large spatial sep-
arations in configuration space. As is shown by Burden
et ol. [11],under quite general and natural conditions for
the vacuum polarization, the potential associated with
the full photon propagator behaves like

with the photon propagator D~" (q) as defined by Eq. (6),
with the unknown vacuum polarization, and the un-
known full vertex function I' (p, k). The general ap-
proach to solve this equation is to choose a specific trun-
cation scheme for the vertex and the photon propagator,
and then to solve the resulting equations numerically.

A. Truncation scheme

Here, we will adopt the bare vertex approximation, re-
placing the full vertex by the bare one p~. We also neglect
the efFects of the wave function renormalization, and so
we put Z(p) = 1. This truncation is based on the leading-
order behavior of the vertex and the wave function renor-
malization in the 1/X expansion. Such an approximation
scheme is also consistent with the requirement following
f". om the Ward-Takahashi identity that the wave func-
tion renormalization and the vertex renormalization are
equal. It is usually referred to as the ladder or rainbow
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approximation, and it leads to a finite critical number of
fermion flavors below which the chiral symmetry is bro-
ken dynamically. Note that in the Landau gauge, with
a bare photon propagator and bare vertex (the quenched
ladder approximation), Eq. (19) gives Z(p) = 1 exactly.

For the photon propagator we use some different ap-
proximations, to determine the influence of the infrared
behavior of the vacuum polarization on the analytic
structure of the fermion propagator and on the (con-
fining) potential. We compare in detail the results as

obtained in (1) the quenched approximation, a bare pho-
ton propagator, (2) the 1/N expansion using the analyt-
ical formula for the one-loop vacuum polarization with
bare, massless fermions, Eq. (12), and (3) the I/N ex-
pansion using the one-loop vacuum polarization with full
fermions, with the dynamicatly generated fermion mass
function. In both (2) and (3), we take a bare vertex in
the expression for the vacuum polarization.

This truncation scheme gives us the following expres-
sion for the mass function:

k' m(k)
dk „„K(p,k),m(p) =

2 7r2

K(p, k) = sin 0 d0

(p2 —2pkcos0+ k2)[I + II(p —2pkcos 0+ k )]
'

(20)

with the kernel K(p, k) depending on the particular ap-
proximation we use for the photon propagator.

B. Numerical calculations

Once we have truncated the equations, we can solve
the resulting integral equation for the mass function nu-
merically. We start by solving the equation for Euclidean
momenta 0 & p ( oo. However, we are not really inter-
ested in the result on the Euclidean axis (for a more de-
tailed discussion about the existence of a critical number
of fermion flavors for dynamical chiral symmetry break-
ing we refer to the literature [13—17]), but we want to
know the behavior of the propagator in the complex mo-
mentum plane. For that purpose we have used two differ-
ent approaches: One is a direct analytic continuation of
the integral equation, Eq. (20), into the complex plane.
This can be done by deforming the integration contour
and solving the integral equation along this new contour.
Note that it is not possible to keep the integration vari-
able k real, and take only the external variable p com-
plex (after solving the integral equation on the real axis),
because of the analytic structure of the kernel K(p, k).
With massless photons, and thus a photon propagator
which has a singularity at the origin, there is a pinch sin-

gularity at p = k, and we are forced to integrate through
the point p = k. So for comple~ momenta p we have to
solve the integral equation along a deformed contour in
the complex plane.

In practice, we change the integration contour by rotat-
ing it in the complex plane, multiplying both the internal
and the external variables by a phase factor e''It', and so

1
k'+ m'(k) ' (22)

where the numerical integration procedure becomes un-
stable. The location in the complex plane of the actual
singularity itself can be obtained by extrapolating the
numerical results to the "physical" mass p, defined by
the zero of this denominator:

—p'+ m'(Q —p') = 0. (23)

For more details about our numerical proced. ure and the
analytic continuation, we refer to [23]. In this way we can
in principle find the singularities in the complex plane,
but it is a very time-consuming numerical process, and
does not always converge to a stable solution.

Therefore we also used another method, based on
the Euclidean-time Schwinger function, to determine
whether or not the propagator corresponds to a physi-
cal observable state [5,24]. We define

we get the complex variables k = e'~k and p = e'~p;
see Fig. 2. Since in QEDs the integral falls off rapidly
enough in the ultraviolet, there is no need to take into
account the contribution coming &om the arc at infin-
ity, in contrast to theories with a finite cutoff like QED4.
This procedure works quite well, until one comes close to
a singularity caused by a zero of the denominator of the
integration kernel,

Using this approximation, the equation for the wave func-
tion renormalization, Eq. (19), is formally satisfied up to order
1/N. It is known that the effects of the wave function renor-
malization (together with a more sophisticated ansatz for the
vertex) will change the results found in this 1/N truncation
scheme [15—17], but we will not address that problem here.

FIG. 2. The analytic continuation into the complex mo-
mentum plane of the integral equation (in Euclidean mo-
menta).
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m(p)0' p p2+ m2(p)
'

a(t) = d'x " e'(~"+~'i („').
(2vr) '

(24)

(25)

A(t) - e

Using this Schwinger function, one can show that if there
is a stable asymptotic state associated with this propa-
gator, with a mass m, then

0
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one loop vac pol +

d
lim —ln(A(t)) = m, —

~—+~ dt (27)

for large (Euclidean) t, and so for the logarithmic deriva-
tive we get

-2

-3
0 10

whereas two complex conjugate masslike singularities,
with complex masses p = a + i 6, lead to an oscillating
behavior such as

quenched &&

op vac. pol. +

A(t) e cos (bt + h) (28)

for large t. This method is much less time consuming
to see whether or not the propagator has a real mass
singularity or not, but it is less accurate than solving
the Dyson-Schwinger equation for complex momenta in
determining the (complex) mass singularities.

V. RESULTS

-6

-8

-10

-12

C

00
0

~+ 0
W+ 0+ ~+C+

+
I

8 10

A. Quenched QEDs

In massless quenched QEDs, there is no free parame-
ter: The coupling in QEDs is dimensionful and thus de-
fines the energy scale, and there are no other parameters.
By choosing the Landau gauge, we satisfy the require-
ment that the wave function renormalization and the ver-
tex renormalization be exactly equal: From Eq. (19) it
follows directly that in quenched QED using the Landau
gauge, Z(p) = 1, and the equation for the mass function
reduces to

2

m(p) =, m(k) k (p+ k)'
k'+ m'(k) 2p (p —k)' (29)

A(t) e cos (bt + b), (30)

Solving this equation on the Euclidean axis shows that
there is dynamical mass generation in this case, and the
infrared mass m(0) is proportional to the dimensionful
coupling, as expected.

Next, we have calculated the Schwinger function, us-
ing the mass function on the Euclidean axis; see Fig. 3.
This figure clearly shows that there is no stable asymp-
totic one-fermion state associated with this propaga-
tor; in other words, the fermions cannot be observed as
free particles and are thus confined. The oscillations in
this figure strongly suggest that the fermion propagator
has complex masslike singularities, corresponding to two
complex-conjugate masses. Using

FIG. 3. The Schwinger function for quenched QED3
(K = 0, diamonds) and with the one-loop vacuum polariza-
tion (N = 2, pluses): (a) the logarithmic derivative, (h) the
logarithm of its absolute value; the energy scale is defined by
requiring m(0) = 1.

to extract such a complex mass, we estimate this to be

p = (0.80 + 0.71i) m(0) . (31)

However, this method might be not very accurate in
determining the actual value of the (complex) masses,
since Eq. (30) only holds for large values of t, whereas
for large values of t the numerical noise in calculating
the Euclidean-time Schwinger function destroys the sig-
nal. So we have used values of t up to t 10/m(0) [we
rescale all dimensionful quantities by m(0) ], and use only
the first oscillations to determine the imaginary part of
the complex mass. Furthermore, Eq. (30) is based on
the assumption that only these (complex) singularities
contribute to the Schwinger function (at least at large
t), but if there are complex singularities, there might be
more than just two complex-conjugate masslike singular-
ities.

Therefore we also used the other method to determine
the analytic structure of the propagator, and have solved
the integral equation in the complex plane. This leads to
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two complex-conjugate singularities, located at

]p] = 0.104 e = 1.01m(0),
0„= z

—Q = 0.819 .
(32)
(33)

This result confirms the estimate based on the Schwinger
function, given the inaccuracy of the estimate of the com-
plex mass.

So both the Schwinger function and a direct search for
masslike singularities show that there is a complex mass
singularity, which makes it impossible for the fermion
propagator to become on mass shell, and thus effectively
confines the fermion. This is in agreement with the fact
that in quenched massless /ED& there is a confining po-
tential.

B. One-loop vacuum polarization

4n m(k) k ]p+ k]+ a
m p N~z kz+mz(k) p ]p —k]+ndk —ln 34

Next, we include the one-loop vacuum polarization,
using bare massless fermions, Eq. (12). As already men-
tioned before, perturbatively the I/K expansion gives to
leading order no confining potential, and a full fermion
propagator which is the same as the bare one, and thus
corresponding to a massless stable asymptotic state. In
the case of dynamical mass generation, which we con-
sider here, the situation is more complicated. Since the
number of fermion flavors is the only free parameter in
this case, we present our results as a function of N.

For simplicity we use Landau gauge, as in the quenched
approximation, and we can perform the angular integra-
tion in the Dyson-Schwinger equation analytically to ar-
rive at the equation for the mass function

equation show that there is dynamical mass generation
if N ( N, = 3.24; see Fig. 4. This critical number is in
agreement with analytical calculations using bifurcation
theory, leading to N, = 32/z

We have calculated the Schwinger function, using the
mass function on the Euclidean axis; see Fig. 3. This
figure strongly suggest that there is a stable asymptotic
one-fermion state, which means that the fermions are not
confined and can be observed. Up to the largest values of
t at which the Schwinger function gives a numerically sta-
ble result, we find an almost constant logarithmic deriva-
tive. Prom this Schwinger function we have derived a
value for the asymptotic mass for some difFerent number
of fermion flavors, and the results are listed in Table I.
%'e do not find any evidence for oscillations which would
signal a complex mass, as there were in the quenched
approximation.

We have also solved the integral equation in the com-
plex plane. This reveals that the mass singularities are
not exactly on the real timelike axis, but that they do
have small imaginary parts; see Table I. In Fig. 5 we
have plotted the phase of these singularities as a func-
tion of N, by numerically solving both the integral equa-
tion and the difFerential equation which can be derived
from Eq. (34), and those results almost coincide. Given
the fact that we have only solved the truncated Dyson-
Schwinger equation, it is not unreasonable to expect a
small deviation of the physical mass from the real axis,
and given the relative smallness of the imaginary part
this could very well be an artifact of the approximations,
especially since the singularity tends to move toward the
real timelike axis if the number of flavors goes to the
critical number.

The reason for not finding this imaginary part of the
mass singularities using the Schwinger function lies in

This can be solved numerically as an integral equation,
or after expanding the logarithm and some further ap-
proximations reduced to a second-order nonlinear difFer-
ential equation [13j. Both the integral and the difFerential 1 4 one-loop vac. pol.

+

int. eq. +
diff. eq.
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full vac. pol. &&
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FIG. 4. The infrared mass m(0) with the one-loop vacuum
polarization of massless fermions (solid line) and with the full
vacuum polarization (diamonds), as a function of N.

FIG. 5. The phase @ of the mass singularity obtained with
the one-loop vacuum polarization of massless fermions [both
the results of using the integral equation Eq. (34) directly, and
that of using a differential equation which can be derived from
it, after some further approximations; see [23]], and with the
full vacuum polarization (diamonds), as a function of N; for
completeness we have included the value for quenched QEDz
at N = 0. The dotted line corresponds to P = vr/2, which
means a mass singularity on the real timelike axis.
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TABLE I. Estimates for the mass singularities in the quenched approximation, with massless
fermions in the vacuum polarization and with the full vacuum polarization, using both the Eu-
clidean-time Schwinger function and a direct search in the complex momentum plane.

Direct searchSchwinger function
N Re(p) Im(p) Re(p)
quenched QED3 (y, in units of e )
0 0.082 0.073 0.0715
massless fermions in the vacuum polarization (p in units of o.)
1 0.13 0 0.128
2 2.6x 10 0 2.67x 10
3 1.8 x 10 0 1.9x 10
dynamical fermions in the vacuum polarization (p in units of cx)

1 0.25 0.2 0.23
2 0.008 0.007 0.008

Im(p)

0.0760

2.88 x 10-'
1.4x 10

x 10

0.21
0.006

its smallness: Since the imaginary part is of the order of
10/0 of the real part (or even less), we will not find a clear
signal for it at t ( 10/m, where m is the typical infrared
mass scale; however, the numerical noise destroys the
signal completely at these (or larger) values of t.

So our conclusion is that this approximation, using the
one-loop vacuum polarization of bare massless fermions,
leads to (almost) stable observable asymptotic states,
with an (almost) real physical mass. This agrees well
with the fact that in this case we do not have a confining
potential.

C. Full vacuum polarization

Finally, we include the one-loop vacuum polarization,
Eq. (9), with dynamical fermions and a bare vertex. In
other words, we consider the coupled Dyson-Schwinger
equations for the photon and propagator, in the bare
vertex approximation. This leads to two coupled integral
equations to solve

4o.
m(p) =

-„„k'm(k) dz
k' + m'(k), (p' —2pkz + k ) [1 + II(p —2pkz + k )]

'

d k 2k —4k q —6(k q)/q
(2~)s [k2+~2(k)][(k+ q)2+ m2(k+ q)]

' (36)

Again, this can be solved numerically: We start by solv-
ing the mass equation for a given vacuum polarization,
and use that resulting mass function to calculate the vac-
uum polarization numerically and iterate this procedure.
Just as in the previous case, it leads to dynamical mass
generation if the number of fermion Qavors is below a
critical number; see Fig. 4. The behavior of the infrared
mass is quite similar, and also the critical number is the
same as in the previous approximation, % = 3.24, as
could be expected on grounds of bifurcation theory.

Also in this case we have calculated the Schwinger
function; see Fig. 6. This shows that there are no stable
asymptotic one-fermion states associated with this prop-
agator, just as in quenched QEDs, but in sharp contrast
to the previous case. We have also shown the result with
a fixed mass [m = m(0)] in the analytical formula for
the vacuum polarization, Eq. (13). This gives qualita-
tively the same result as when using the dynamical mass
function. In both cases the oscillations indicate complex
masslike singularities, and we have given estimates for
these complex masses in Table I.

We have also solved the integral equation in the com-
plex plane, which con6rms the observation based on the

I

Schwinger function that there are complex masslike sin-
gularities. The phase of these singularities is plotted in
Fig. 5, and for some diferent values of N we have given
our result in Table I. Given the inaccuracy in the esti-
mates based on the Schwinger function, there is a good
agreement between both methods.

It is clear that the the eQ'ects of the fermion mass in the
loop for the vacuum polarization con6nes the fermions:
The potential becomes confining, the mass singularities
move into the complex plane, and there are no stable
observable asymptotic states.

D. Discussion of the results

Our results show that the correct treatment of the vac-
uum polarization is essential in a nonperturbative calcu-
lation of the fermion propagator. Based on bifurcation
theory, one can argue that the inQuence of the dynami-
cally generated mass function can be neglected in study-
ing the chiral phase transition. Although this is indeed
true for the value of the critical coupling, and maybe also
for the behavior of the infrared mass m(0) close to the
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FIG. 6. The logarithm of the absolute value of the
Schwinger function with N = 2 and some different approxi-
mations for the photon propagator: with the one-loop vacuum
polarization of massless fermions [Eq. (12), pluses], with that
of fermions with a fixed mass m(0) [Eq. (13), crosses], and
with the full vacuum polarization with dynamical fermions
(squares); for comparison, we also included the quenched re-
sults (diamonds).
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critical coupling, it is certainly not true for the behavior
of the physical mass, defined at the zero of p + m (p).

On the real axis, the dynamical mass function in
quenched QEDs is qualitatively quite similar to the
mass function in the I/N expansion, both with massless
fermions and with massive fermions in the vacuum polar-
ization; see Fig. 7(a). There is a scale difFerence between
the different approximations, but all mass functions are
almost constant in the (far-)infrared region, and fall of to
zero as 1/p in the (far-)ultraviolet region. Only in the
intermediate-energy region there are some differences due
to the inclusion of the vacuum polarization.

In contrast, in the complex plane the behavior is not
similar at all, leading to a drastic different analytic struc-
ture. This difference can bc traced back to the difFer-
ence in the infrared behavior of the photon propagator:
With a confining photon propagator there are complex
masslike singularities, whereas with a deconfining pho-
ton propagator these singularities are located almost on
the real timelike axis. Surprisingly, this difference can be
seen very clearly by using the Euclidean-time Schwinger
function, which can be calculated using the mass function
on the real Euclidean axis only. So although the behav-
ior of the mass function in the Euclidean region looks
quite similar, there are essential differences which can be
shown explicitly by calculating this Schwinger function.
This means that this method is indeed a useful way to
determine whether the propagator corresponds to a con-
fined particle or to a physical observable particle.

FIG. 7. The mass function (a) and vacuum polarization (b)
as obtained by taking into account the one-loop vacuum po-
larization of massless fermions (dotted line), that of fermions
with a fixed mass m, (0) (dashed line), and that of dynamical
fermions (solid line), all for N = 2 and in units of o.; for coxn-
pleteness we included the mass function for quenched QEDs
(dashed-dotted line) in (a).

The difference in analytic structure is due to the dif-
ference in the in&ared behavior of the photon or, more
precisely, due to the difFerent behavior of II(0) in the dif-
ferent approximations. In Fig. 7(b) we have plotted both
the one-loop vacuum polarization, for massless and mas-
sive fermions, and the full vacuum polarization calculated
numerically with dynamical massive fermions. Only in
the infrared region is there a difFerence, and it is exactly
this difference that causes the different behavior of the
fermion propagator in the complex plane; it is also this
infrared behavior which makes the potential confining or
not. Therefore our conclusion is that (at least in this
model) confinement is caused by the infrared behavior of
the photon propagator, and is connected with complex
masslike singularities of the fermion propagator, thus pre-
venting the fermions 6.om being on mass shell.

Finally, we should remark that these calculations are
all done in the bare vertex approximation in the Lan-



6096 P. MARIS 52

dau gauge. It is known that the efFects of vertex correc-
tions, together with the wave function renormalization
Z(p) which we have set equal to 1, can change the re-
sults quite drastically [15—17]. Another question is what
happens in other gauges, whether or not our results are
gauge independent. As a qualitative indication whether
or not our conclusions about confinement in QEDs also
hold beyond the bare vertex approximation and in other
gauges, we could compare our numerical vacuum polar-
ization with the vacuum polarization as obtained by Bur-
den et al. They solved the Dyson-Schwinger equation
for the fermion propagator in quenched @ED& with the
Ball-Chiu ansatz for the vertex, and used this propaga-
tor to calculate the vacuum polarization, again with the
Ball-Chiu vertex. Qualitatively our result for the vac-
uum polarization agrees with theirs, both in the infrared
region, where we find a finite value of II(0) if we take into
account the fermion mass, and in the ultraviolet region.
In the infrared region there is a quantitative difFerence,
but this can be explained by the fact that the value of
II(0) strongly depends on the infrared value of the mass
function m, (0), which is quite different in difFerent ap-
proximations. Of course, we should keep in mind that
if the behavior looks similar on the real axis, it does not
necessarily mean that they are indeed similar in the entire
complex plane. However, the fact that they also found a
finite value of II(0) indicates that also beyond the bare
vertex approximation there is a confining potential, and
we would expect complex singularities as well. Whether
or not these singularities are gauge independent (with a
suitable vertex ansatz) will be addressed in the future.
Note that also the vacuum polarization itself should be
explicitly gauge independent.

VI. CONCLUSIONS

Our results show very clearly that there is a relation be-
tween a confining potential, the absence of stable asymp-
totic states, and complex masslike singularities. Both in
quenched QEDs, and in massive QEDs using the 1/K
expansion (with a dynamically generated fermion mass),
there is a logarithmically confining potential, and we
show that there are no stable asymptotic states. The
Euclidean-time Schwinger function has an oscillatory be-
havior in these cases, indicating complex masslike sin-
gularities. By solving the Dyson-Schwinger equation di-
rectly in the complex momentum plane, we show that
there are indeed such complex singularities.

On the other hand, using massless bare fermions in
the one-loop vacuum polarization, there is no confining
potential. In this approximation, the Schwinger function

indicates a stable asymptotic state. A direct analysis
of the Dyson-Schwinger equation in the complex plane
reveals that there are complex singularities even in this
case, but that they are located very close to the real
timelike axis. Given the approximations made, it is not
unreasonable to assume that this small (less than 10'Po)

deviation from the real timelike axis is caused by the
truncation of the Dyson-Schwinger equation.

These results are obtained with a dynamically gener-
ated fermion mass, starting with massless bare fermions.
For N ) N, in the chirally symmetric phase, there is
no dynamical fermion mass, and the fermion propagator
has a singularity at the origin, just as the bare one. This
also agrees with the fact that in there is no confining
potential in this massless phase (in the 1/K expansion),
due to the infrared softening of the photon propagator in
the presence of massless fermions. Thus the chiral phase
transition is a confining phase transition as well, at least
in this model.

Interpreting the absence of a mass singularity on the
real axis in the timelike region as confinement does not
completely explain the phenomenon of complex masslike
singularities. If they are indeed a genuine property of
the full theory, it leads automatically to confinement,
but it has more consequences. One of the consequences
is that the naive Wick rotation is not allowed, and one
should take into account the contributions coming from
the complex singularities in going from a Euclidean to a
Minkowski metric (and back). Another problem is con-
nected with questions of unitarity and causality; however,
one should keep in mind that these are requirements for
the S matrix of physical processes, and not necessarily
for the propagator of an unphysical (confined) particle.

Another question is whether or not these complex sin-
gularities have a physical interpretation. Naively, the
real part (or the absolute value) could be interpreted as
the "constituent" mass, and the imaginary part as some
"hadronization length, " in terms of @CD and quark con-
finement. Such an interpretation is analogous to the in-
terpretation of the poles of instable particles in terms of
mass and decay width. A crucial requirement for such
an interpretation is that the singularities be gauge inde-
pendent, which has to be studied in detail.
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