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We study idealizations of the full nonlinear Schwinger-Dyson equations for the asymptotically
free gP theory in six dimensions iu its metastable vacuum. We begin with the cubic nonlinearity
and go on to all-order nonlinearities that contain instanton efFects. In an asymptotically free theory
the relevant Schwinger-Dyson equations are homogeneous and ultraviolet finite and perturbative
methods fail from the outset. We show how our toy models of the cubic Schwinger-Dyson equations
contain the usual diseases of perturbation theory iu the massless limit (e.g. , factorially divergent

P functions, singular Borel-transform kernels associated with infrared renormalons) and show how
these models yield specific mechanisms for removing such singularities when there is a mass gap.
The solutions to these homogeneous equations, in spite of being ultraviolet 6nite, still depend on
an undetermined parameter equivalent to the perturbative renormalization scale p, . In the all-order
nonlinear equation we show how to recover the usual renormalization-group-improved instanton
eKects and associated factorial divergences.

PACS number(s): 11.10.Jj, 11.10.St, 12.40.—y

I. INTRODUCTION

Asymptotically &ee theories appear to have perturba-
tively calculable properties in the ultraviolet (UV) where
the running coupling gets small. The well-known price
paid for this convenience of perturbation theory in the
UV is its complete breakdown at some low momentum
scale, usually thought of as being of O(AR~) where AnG
is the renormalization group (RG) mass. However, as one
goes to higher orders N in perturbation theory, the criti-
cal momentum scale grows exponentially in N essentially
because the number of graphs grows as N!. That is to say,
the contribution of the Nth order term in perturbation
theory behaves like N!(ag ) where g (lnk2) ~~2 is
the running charge; to keep this term small as N grows re-
quires an exponential increase in k2. There are also facto-
rial divergences associated with renormalons [1]. Conse-
quently, perturbation theory to all orders cannot be used
for any momentum scale, however large, in an asymp-
totically &ee theory without understanding how to deal
with non-Borel-summable factorial divergences. This is
currently not a practical limit on perturbation theory in
QCD, where the critical momentum does not creep into
the UV until N is rather large, say N ) 10.

A more practical issue is understanding QCD processes
at infrared (IR) scales k ARG and the attendant phe-
nomena of con6nement, condensates, renormalons, large
instantons, etc. [2] The purpose of the present paper is
to discuss the factorial divergences mentioned above, as
well as IR issues (except for confinement) in a toy model
of asymptotic freedom [3]: Ps theory in six dimensions
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(Ps theory). This theory is terminally ill because the
Hamiltonian is unbounded below but we can go quite far
before encountering pathologies. The idea is to study the
theory at all momentum scales &om the IR to the UV in
a connected way, without using the conventional crutches
of perturbation theory. Our study will use the machinery
of nonlinear Schwinger-Dyson equations [4] for gg theory.

Even without the spin complications of QCD, it is too
hard for us to solve the full Schwinger-Dyson equations
numerically, even if only the cubic nonlinearity is saved
in the Schwinger-Dyson equation for the vertex. So we
turn to toy models, Grst saving only the cubic term for the
vertex and later considering some aspects of the all-order
nonlinearities in the vertex equation. Although we have
no proof, we believe that these toy models fairly represent
qualitatively, but not quantitatively, all the diseases and
their cures we would encounter in the full Schwinger-
Dyson equations.

Of course, any study of Ps theory must ultimately
break down because the theory itself is ill defined; it
has no stable vacuum. We will see that the breakdown
occurs when we try to define the sum of the non-Borel-
summable N! divergences associated with vertex skeleton
graphs having 2N + 1 vertices. These sums contain the
contributions of instantons [5,6], which we need not add
as an explicit ingredient in analyzing the field theory;
they are already in the Schwinger-Dyson equations.

The Schwinger-Dyson equations of an asymptotically
free theory have a special feature: The renormalization
constants which appear in the renormalized Schwinger-
Dyson equations must vanish. This vanishing is clear
from the canonical form of the Ps vertex equation (or
its analogue in QCD), in which the vertex renormaliza-
tion constant Z~ appears only as an additive inhomoge-
neous term. At large momentum, asymptotically &ee-
dom requires the vertex and all the other terms of the
Schwinger-Dyson equation to vanish, as we will show;
this is inconsistent unless Zq ——0. However, one must be
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careful. The unqualified statement Zi ——0 is false and
leads to paradoxes. A more precise statement resembles
that of lattice gauge theory where the theory is first de-
fined with an UV cutoff AU~ and Zi ~ 0 at a specific
rate as AU~ —+ oo.

We will see that it is correct simply to set Zi ——0
in the canonical form of the vertex equation (or in an
analogous equation for the running coupling, which is
RG invariant). The resulting vertex equation is homoge-
neous, which completely disconnects it &om any pertur-
bative approach and vastly complicates the analysis in
some ways.

At this point we turn to toy models of the homogeneous
and nonlinear vertex Schwinger-Dyson equation. Not all
models that we have studied will be presented, since they
all show the same features. We believe that all these
features will occur in the full Schwinger-Dyson equation
as well. Our studies (both analytic and numeric) fall into
several categories:

(1A) Cubic nonlinearity: massless. The toy-model ver-
tex Schwinger-Dyson equation for the running coupling
can be converted to a (nonlinear) ordinary difFerential
equation. There are several types of solutions, all of
them having singularities at suKciently small momenta
and having undetermined parameters. One of them be-
haves as expected &om perturbation theory for large mo-
mentum where the running coupling varies as (ln k2)
other solutions vanish as an inverse power of k2 (mod-
ulo logarithms). We find a difFerential equation for the
P function whose power-series solution diverges like N!,
with all terms negative [4]; this divergence is associated
with IR renormalons. We use the Laplace transform of
the vertex equation in ink to find an equation for the
Borel transform of, e.g. , the P function, and find explic-
itly its pole structure at the IR renormalon singularity.

(1B) Cubic nonlinearity: massive. In this case, as
is well known, all the IR renormalon difhculties are re-
solved (at least for large enough mass), and the toy-model
Schwinger-Dyson equations are nonsingular. The only
solutions which are regular for all Euclidean momenta
behave like (lnk2) ~ for large k. All solutions depend
on a single continuous real parameter, equivalent to the
RG renormalization point p; this is somewhat of a sur-
prise, since all models yield UV-finite solutions needing
no cutoff or other regularization. Modulo this parame-
ter, the solutions show uniquely determined power-law
corrections to perturbation theory (e.g. , condensates and
other higher-twist terms). Generally, the toy models (as
well as the full Schwinger-Dyson equation) cannot be re-
duced to differential equations, but there is one notable
exception, which we analyze in some d.etail. As for the
massless case, this is a cubically nonlinear second-order
ordinary differential equation. The Laplace-transform
form of the vertex equation shows that the renormalon
pole singularity is canceled by another term vanishing
like an inverse power of k (modulo logarithms) at large
k.

(2) All order nonlinear-ity. First, we prove a theo-
rem (similar to another used recently [7] to study N!
divergences in P4 theory) that the imaginary part, in
Minkowski space, of every skeleton graph for the Ps ver-

tex has neither IR nor UV logarithms. The implication
is that the UV and IR behavior of the dressed graphs
is entirely determined by the dressed vertex itself, which
allows for an approach to the all-order problem by succes-
sive approximations, beginning by inputting the solutions
to the cubic Schwinger-Dyson equation. When we use
the (lnk2) i~2 behavior found earlier as input, we find
that the N-vertex graph has the asymptotic UV behavior

(ln k2) &~ 2l~2. Using some deep graph-theoretic re-
sults and other tools developed in an earlier P4 study,
we show that this momentum factor is multiplied by
a ¹!,where the positive constant a is rather close to
what would be expected &om a one-loop RG-improved
instanton analysis. The sum over all N is ambiguous, but
should have an imaginary part reQecting the instability
of gPs theory. The real part shows the usual power-law
behavior expected &om instantons.

We comment on some of these results in more detail.
Among our major results are our demonstrations of (i)
how the Schwinger-Dyson equation can be expressed as
a nonlinear integral equation for what would be called
the Borel transform in perturbation theory, (ii) how the
massless Schwinger-Dyson equation gives rise to poles
in this transform, and (iii) how the massive Schwinger-
Dyson equation gets rid of these poles by condensate
terms. In its simplest terms, the massless case yields a
Borel integral for the P function derived from the running
coupling of the form

H n
P(g) = const x do. e

p 2 —cx

where H(n) is regular at a = 2. This corresponds to
a P function with terms behaving like —g2~+i(b/2)~N!
at large N. Here b is the lowest-order coeKcient in the
P-function: P = bg + . . W—e show that, when masses
are included, Eq. (1) changes to

p(g) = const x go (s -&t's't —s-'&t's't),H A

p 2 —o.'

(2)

which has no singularity at o. = 2. The running cou-
pling has a similar expression, but with 1/(bg ) replaced
by ln(k2+ M ); this shows that the cancellation involves
terms vanishing like (k2) 2 at large k. Of course, the
perturbative expansion of the P function is the same as
before, but Eq. (2) shows how that sum is actually de-
fined by the Schwinger-Dyson equation.

Another interesting result is that all our toy models,
while perfectly finite in the UV and. requiring no cutoffs
or regularizations, still have a single real parameter in
the solutions, which is not fixed by the vertex Schwinger-
Dyson equation above. This parameter is equivalent to
the usual renormalization-point mass p of perturbation
theory, which arises precisely because perturbation the-
ory requires a cutoff. We believe that this parameter per-
sists even in the homogeneous, finite Schwinger-Dyson
equation because, as mentioned above, the categorical
statement Zi ——0 is not true. There are other forms
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of the vertex Schwinger-Dyson equation in which it is
essential to introduce a cutofF and cancel the cutofF de-
pendence of Z~ against that of various integrals involv-
ing the vertex. In other words, the homogeneous finite
Schwinger-Dyson equation we use recognizes its heritage
as a renormalizable, not super-renormalizable, theory.
It is, of course, possible that combining the study of
the Schwinger-Dyson vertex with some other Schwinger-
Dyson equation of the theory would fix the free parameter
we find, but we have no evidence for that.

A final result worth commenting on is the partial un-
covering of instanton phenomena in sums of graphs —not
just bare graphs, but dressed graphs, which leads to the
incorporation of what would be called one-loop RG ef-
fects at our level of investigation. It is not straightfor-
ward to deal with instantons in the usual way, improv-
ing semiclassical results with the perturbative RG. For
one thing, these perturbative corrections to instantons
are not under control any more than they are in other
sectors of the theory; there are IR renormalons which
must be tamed by masses as in Eq. (2). Furtherinore,
there are no exact instantons in the massive theory and,
perhaps most crucial, standard instanton techniques are
really only applicable when all external momenta vanish
[8]. Ultimately, instanton effects at all momentum scales
will have to be dealt with by Schwinger-Dyson methods.
What we leave completely open here is how unitarity or
some other physical efFect provides a definition for the
divergent sums associated with instantons. One would
not be surprised to find a modification like Eq. 2 enter-
ing for instantons as well as IR renormalons, at least in
a well-behaved theory such as QCD.

Which of our results might persist in the theory of real
interest to us, QCD'? Even forgetting about confinement,
the major complication which sets QCD apart from Pss

theory is gauge invariance. Using the pinch technique
[4,9], however, it is possible to define gauge-invariant
proper vertices and self-energies which are related by
naive (ghost-free) Ward identities. For these. special ver-
tices and self-energies Zq ——Z2, and both these renormal-
ization constants vanish like (lnAUv) ?2 as AUv —+ oo;
one can, in principle at least, write down finite homoge-
neous Schwinger-Dyson equations for the gauge-invariant
vertex corresponding to the running coupling, and these
should show phenomena similar to what we did for gg
theory. For example, generation of a QCD mass scale is
expected to yield a renormalon cancellation mechanism
such as that expressed in Eq. (2) for Borel-transform
renormalon poles; indeed, this mechanism has already
been invoked [10] on other grounds. It is also reason-
able to expect that we can find instanton phenomena in
graphical sums, just as for Ps theory.

As for persistence of a &ee parameter such as p, the sit-
uation is not so clear. The vertex and propagator are not
independent as they are in Psstheory, which might lead
to further constraints. One expects that QCD (without
quarks) has only one free parameter, the RG mass ARG,
in terms of which all physical quantities are determined.
This does not seem to be the case for &t)sstheory, which
has both p and the mass M &ee, at least at the level of
our investigation.

II. PRELIMINARIES

In this section we make some general remarks about
the nature of the perturbation series for gqP theories. We
encounter non-Borel-summable series in g of the usual
asymptotically &ee type, but in certain cases these series
define one or more entire functions of g. We also set the
stage for the investigation of Ps, discussing some aspects
of the Schwinger-Dyson equations for the proper vertex,
the proper self-energy, and a vertex formed &om these
which is RG invariant and corresponds to the running
charge.

A. General @s theories

Theories of Ps type are well defined, in general, only for
purely imaginary coupling where they sometimes make
sense physically [11,12]. It is sometimes possible to con-
tinue the theory to real g by imposing definitions (typi-
cally, the order in which integrals are to be done) which
may or may not make sense physically. Consider as an
example a zero-dimensional model with two fields x and
y with a partition function given by

Z(g) = f dedy e " +e' ",

which is well defined if g is imaginary. We can give two
forms to Z depending on which order the integrals are
done; integrating over y first gives

Z(g) = ~ee f de e +e (4)

which is a wrong-sign P4 theory. Expanding Eq. (4) in
powers of g gives rise to a typical asymptotically free
series with terms behaving like N! N (ag ) where a
and 6 are fixed constants with a & 0. It is not obvious
how such a divergent series is to be defined.

If we instead perform the integral over 2: first in Eq. (4),
we get

This appears to be singular at y = 1/g (the classical
saddle point) of Eq. (3) but in fact Z(g) as defined by
Eq. (5) is an entire function of g: As g changes from a
pure imaginary value to the real axis, or anywhere else
in the complex g plane, the contour can be deformed to
avoid the potential singularity. Actually, Eq. (5) defines
two entire functions, depending on whether one begins
with g on the positive or negative imaginary axis. One
or the other of these possibilities may be singled out by
physical considerations, or a linear combination may be
used (e.g. , the average of the two entire functions is real
for real g).

These remarks can be generalized to d = 6 theories of
the type gP~@~ where P is a single-component Hermitian
field, and @ is a single-component complex field. The
Euclidean partition function is
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Z = d d d exp — d z B~ + 2 0„+g +mass terms

The functional integral over P is free, and when done reveals a wrong-sign nonlocal ~@~ theory for @, analogous to
Eq. (5). But doing the (free-6eld) functional integral over @ gives

Z~ d exp — d x — 0 + —M —Tr ln — +m +g

Superficially this would appear to define an entire func-
tion of g, since the quadratic terms in the action domi-
nate the logarithm. However, the argument of the log-
arithm may vanish (when P M2/g) and no firm con-
clusion can be drawn. Moreover, dimensional transmu-
tation tells us that g must disappear, to be replaced by a
running coupling. Still, it is intriguing to speculate that
asymptotically &ee theories in general may have matrix
elements and Green's functions which are entire func-
tions of the running charge. If some such speculation is
correct, it can only be developed by methods completely
divorced &om perturbation. theory.

B. Schwinger-Dyson equations for Ps theory

Throughout this paper (except for Sec. IV) we work
only at Euclidean momenta; the action for our theory is

M2s= jd'x —(8„$) + P'+ —,4'

We initially focus our attention on the Schwinger-Dyson
equations for the renormalized propagator 4 and proper
vertex I'. Later we will construct the running coupling
&om a particular combination of these quantities. The
equation for I' can be written in several equivalent ways.
In Fig. I we express I' in terms of a four-point function
which is two-particle irreducible in the k» channel. The
four-point function can then be decomposed in terms of
skeleton graphs and three-point functions. In this and
other figures, a small blob denotes I', a line denotes L

k2

k3

(both of which are renormalized quantities), and Zi is
the vertex renormalization constant. Figure 2 shows the
analogous equations for I' in terms of the one-particle-
irreducible four-point function and Fig. 3 shows the equa-
tion for the inverse propagator.

One of our major concerns will be that Z» vanishes
in an asymptotically &ee theory. This is not entirely an
elementary matter since uncritically setting Z» ——0 in
Fig. 2 or the first equation for 4 in Fig. 3 appears to
give zero. The resolution, of course, is that the theory
is defined first with an ultraviolet cutoK AU~ which ren-
ders Z» finite. In reality, as AU~ ~ oo the product of
Z» with a quantity involving a single bare vertex actually
remains finite since the AU~ dependence of such quanti-
ties cancels that of Z». It is permitted, however, to set
Z» ——0 in those forms of the Schwinger-Dyson equations
in which no bare vertex appears (e.g. , for I' in Fig. 1 and
the second form for A i in Fig. 3). The reason is that
in an asymptotically free theory the remaining dressed
graphs of the Schwinger-Dyson equation are all individu-
ally finite. This does not mean that the Schwinger-Dyson
equations are unambiguously finite, since the Schwinger-
Dyson equation for I', expressed in terms of I' and 4, has
infinitely many terms and the sum actually diverges, as
we discuss in Sec. IV.

Let us concentrate for the moment on the lowest-order
Schwinger-Dyson equations for I' and 4, shown in
Fig. 4, where we have now set Z» ——0. Introduce the
notation

where M is the renormalized mass. We anticipate,
guided by one-loop RG-improved perturbation theory [3],
that the solutions to the Schwinger-Dyson equations of

Zi + Z~+Z

Zl + Z] +Z] Z$ Z]

FIG. 1. Bethe-Salpeter equation for the renormalized
three-point function (small blobs) expressed in terms of the
two-particle-irreducible (in the ki channel) four-paint func-
tion (large blob) and the vertex renormalization constant Zi.
All propagators are fully dressed.

FIG. 2. Bethe-Salpeter equation for the renormalized
three-point function (small blobs) expressed in terms of the
one-particle-irreducible (in the ki channel) four-point func-
tion (large blob) and the vertex renormalization constant Zq.
All propagators are fully dressed.
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1 = p 1 + z
0 1

—1 +
0

FIG. 5. Cubic Schwinger-Dyson equation in g~Q~ P theory.

FIG. 3. Bethe-Salpeter equation for the renormal-
ized inverse propagator in terms of the renormalized
three-point-function and the vertex renormalization constant
Zq. All propagators are fully dressed.

Fig. 4 behave in the UV (k2 )) M2) as various powers of
a logarithmic function D(k2):

D(k ) = 1+ bg ln(k /M ),
r ~D--, Z, ~D-~.

(10)
(ll)

In Eq. (10), b is a positive number given below; it is
the same coefficient as in the one-loop P function P =
—bg + . . Any finite mass may be used to set the
argument of the logarithm in Eq. (10) and in consequence
the 1 on the right hand side of this equation is irrelevant;
we will drop it.

Insert these forms into the equation for I' of Fig. 4(a)
using a simplified form suitable for finding the UV be-
havior:

Doing the integration reveals consistency, provided that

1 —2o, +3p= 0,
2(4~)'nb = i .

(13)
(14)

Note that if the condition of Eq. (13) is satisfied, g drops
out of the equation, and so we might as well drop it in D
of Eq. (10), along with the 1 previously dropped. That is,
there really is no coupling constant in an asymptotically
&ee theory, only mass scales.

We need one more equation to determine o., p, and 6,
which is furnished by the 4 equation. This is slightly

7t g dpI'(k ) = (bg inp') ~ = (bg'ink')
2(2vr) s „. p2

(i2)

ticklish because it has a quadratic divergence, subsumed
by mass renormalization. In a gP~Q~ theory one may
avoid direct consideration of the 4 equation by cou-
pling g to the electromagnetic field in the usual way, com-
puting the lowest-order electromagnetic vertex shown in
Fig. 5, using the Ward identity

g"r„"(g,p, p') = s '(p) a'(—p')

2 2 —1and then setting p' = M; so A i(p' ) = 0. It turns out
(see below) that Z2 ——0 also, and so the I"(» equation is
homogeneous of Baker-Johnson-Willey-type. We leave it
to the reader to conduct an analysis like that which led
to Eq. (12); it gives the same result as Eq. (16) below.

Either as sketched above or by analysis of the 4
equation in Fig. 3 one finds a new condition

(4~)'qb = i/12 . (i6)

Then one finds

3
cr = 2/3, p = 1/9, b =

4(4~)"

which are the usual results [3] of one-loop RG-improved
perturbation theory, with P function bg + . . —These
constants also appear in the cutoff dependence of the
perturbative renormalization constants

Z, = [i + bg' ln(A2vv/P')]

Z2 —[1 + bg' in(AUv/p')]

both of which vanish as the cutoff AUy -+ oo.
At this point it is convenient to introduce a special

combination of I' and Z2, corresponding to the running
charge

r(ki, k2, ks)

gz, (k, )z, (k, )z, (k.)

We keep the explicit g only to observe that, with D =
bg ink, I' D /, Z2 D /, all the g's cancel in
Eq. (19). We now find the asymptotic behavior, when all
k,. scale like a large momentum A::

~—1 p—1

0
—2 1

gin A
2

FIG. 4. Lowest order approximations to the
Schwinger-Dyson equations for (a) the three-point function
and (b) the inverse propagator.

This is the usual one-loop running coupling. If con-
structed in perturbation theory, g would be explicitly
independent of the renormalization point p.

With Zi ——0, the Schwinger-Dyson equation for g (the
solid blob in Fig. 6) looks like that for I' with the im-
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FIG. 6. Schwinger-Dyson equation for the running charge
(solid blob). All propagator lines are free propagators with
renormalized masses.

portant difference that now the propagator lines corre-
spond to free propagators with the renormalized mass.
This seems to lead to a quite remarkable circumstance in
which the Schwinger-Dyson equation for g is completely
self-contained. However, this is misleading since the infi-
nite series of terms in Fig. 6 does not have a sum which is
well-defined. In fact, this series contains the basic instan-
ton phenomenon of Ps theory, as we will see in Sec. IV,
but we will never need to invoke instantons explicitly. We
will also see in Sec. IV that Schwinger-Dyson graphs for
g having 2N + 1 insertions of g behave at large momen-
tum like (ink ) ~, so that the leading UV behavior is
correctly captured in the cubic graph.

In the next section we will investigate toy models of
the Schwinger-Dyson equation somewhat similar to the

integral of Eq. (12). If we uncritically write such an equa-
tion for g with free propagators (p = 0) and test whether
g = (bink 2) ~2 is a solution, we find that everything
works except that the integral is 4/3 larger than it should
be. This is because the simple form assumed for g does
not distinguish the momenta on the legs of g which are in
general different; this distinction matters for g with its
separate powers of Z2(k,.) id'2, not all of which involve
momenta which are integrated over. In the toy models
of the next section we will compensate for this by mul-
tiplying the right hand side of integrals cubic in g by
3/4.

Why do we need toy models at all? The answer is that
even without the spin complications of @CD, and saving
only cubic nonlinearities, the full Schwinger-Dyson equa-
tion for Ps theory is quite complicated. Here we set up
this cubic equation schematically, before going on to the
toy models in the next section.

The proper vertex I'(ki, k2, ks) depends on three scalar
variables kz, k2, k3 in a way which is constrained by
causality and spectrum conditions. These may be en-
forced with the Nakanishi representation [13], which is
derived &om the Feynman-parameter representation of
graphs but which is expected to hold even for non-
perturbative processes. For the vertex it reads

h(0, zi, z2, zs)I'(k„k, k ) = f dz dz dz d d(1 —z —z —z ) 0 + Zykl + Z2k2 + Zsk3
(21)

The spectrum is expressed through the support of h. In
a massive theory, the lower limit of the cr integral de-
pends on masses and z; whereas the upper limit is in-
finity. The asymptotic behavior I" (ln k2) ~ requires
that h (incr) s~s at large o [in perturbation theory
h ~ constant, and Eq. (21) needs the usual subtrac-
tion]. One then uses Eq. (21) and the Lehmann repre-
sentation for the propagator to write out the Schwinger-
Dyson equation of Fig. 6. If the loop momentum is
called p, the momentum integral depends on three scalars
(p, p.ki, p.k2). One might then try to solve the equations
numerically, but it is a substantial project. If each k,.
takes on 100 values, one has to do 10 three-dimensional
integrals numerically for every iteration. We have not
attempted this, but have studied some toy models which
we are convinced have the qualitative features of the real
(cubic) Schwinger-Dyson equation. We now turn to those
models.

III. TOY MODELS

We have examined several models based on simplifying
the cubic Schwinger-Dyson equation of Fig. 1; we will
describe a few here. A simplification common to all the
models is to assume that I'(ki, k2, ks) depends only on
ki + k2 + ks which corresponds to fixing all z; = 1/3 in
the Nakanishi represeritation of Eq. (21).

In this section we restrict ourselves to the special mo-
mentum configuration kq —— 0, k2 —— —k3 —— k, and
we will be interested in the whole (Euclidean) range
0 ( k ( oo. We will always use &ee propagators
in the model Schwinger-Dyson equation, which can ei-
ther be interpreted as an approximation to the propa-
gators in the Schwinger-Dyson equation for the proper
vertex I', or as a special kind of simplification of the
Schwinger-Dyson equation for the running coupling g,
where free propagators are required [see the discussion
around Eq. (19)], but where the assumption of depen-
dence of g only on P k; cannot really be correct because
of the [Z2(ki)Z2(k2)Z2(ks)] ~ factor in its definition in
Eq. (19). We choose to present our results as referring
to g; the error committed in assuming g depends only
on g k2 is quantitative but does not affect our major
qualitative conclusions. The reason for our choice of in-
terpretation is that all model solutions behave like g in
the UV region, that is, like (ln k2)

Various models differ &om each other by further sim-
plification of the momenta appearing in internal vertices.
The Schwinger-Dyson equation with correct momentum
assignments is shown in Fig. 7, and corresponds to the
integral equation

G 2k
dsp G(2(p+ k)2)G2(p2 + k2 + (p+ k)s)

[(p+ k)'+ m']'(p'+ M')
(22)
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0
p~+k

0 n p

p+k ,

FIG. 7. Momentum assignments for the truncated
Schwinger-Dyson equation for the running charge.

equation of Eq. (22).
There are at least two fundamental types of large-t

solutions to Eq. (26), and another which is a hybrid of
the first two. In the first type, the G term in Eq. (26),
is treated as a perturbation to the equation 2G = —G
which has a solution G = t ~ = lln(k2/p2)] i~2, as
anticipated from field-theoretic perturbation theory. In-
cluding the G term as a perturbation, we exhibit several
more terms of this solution:

where the normalization is chosen so that G
(lnk2) i~~ for k2 )) M2, m2 so that we interpret G
as 6+ ~2g. Later we will present numerical solutions of
Eq. (22), but for now it is much more important to have
an analytic understanding of simplified. versions of this
equation. The reason for using two masses M and m will
be made clear later.

A. Massless model

The first model to be considered is the massless model
(M = m = 0) where, to make things more tractable, we

set k = 0 in the arguments of G on the right hand side
of Eq. (22) to get

3 iS(D = t+ — inc, t ——
l

1 ——inc, t
l4 8t ( 10

+ ~ ~ ~ (27)

Here the c, are constants not determined by consideration
of large t alone.

The behavior of Eq. (27) is, except for the numeri-
cal coefFicients, precisely what the RG and perturbation
theory would give for the running coupling. In fact, it is
possible to find the P function for the vertex g by noting
that

P(y) = 2y = 26 '~'G, (28)

which leads immediately Rom Eq. (26) to a first-order
difFerential equation for P(g):

(23) X dPI
Pl &+—

4 dg)
(29)

t = 1n(k'/p') t' = ln(p'/p'), (24)

where p is an arbitrary mass scale, we obtain the one-
dimensional integral equation

OO
y

t

G(t) = — dt'G'(t') + — dt'e" ' 'G'(t'). (2S)
—OO —OO

Difr'erentiating twice, one finds that G obeys the equation

G+2G = —G,

It can be shown, by an uninteresting argument bounding
G from above and below, that the solutions to Eq. (22)
and Eq. (23) have the same behavior for large k.

Performing the angular integrations in Eq. (23) and
introducing the variables

The power series solution beginning with bg shows a
non-Borel-summable factorial divergence associated with
renormalons:

N

P( )
' ) +i

l l

2N+i
&2)

(30)

where, for large N, =' means equality up to fixed powers
of K and overall multiplicative constants. %e will return
to this solution and the associated g shortly, showing how
to set up Eq. (26) directly as an integral equation for a
Borel transform.

There is another class of solutions to Eq. (26) which
shows no relation to perturbation theory; this class arises
from by treating the —G term in Eq. (26) as a pertur-
bation. The solution reads

where G—:dG/dt. This same equation could be obtained

by noting in Eq. (23) that —4vrs(p+k) is the inverse
of the d'Alembertian operator in six dimensions.

We must point out that Eq. (26) actually makes no
sense if we require G(t) & 0 (as physical considerations
suggest). Perhaps the most intuitive way to see this is to
think of Eq. (26) as the differential equation governing
the "position" G of an anharmonic oscillator as a function
of "time" t: Except for the trivial solution (G = 0) all
solutions to this equation inevitably develop unbounded
oscillations as t + —oo. The problematic region t + —oo
corresponds to an IR divergence at k = 0. It is this
divergence which is responsible for the renormalon be-
havior we will shortly encounter. The t —+ +oo solutions
are candidates for the large-k behavior for the massive

Ae"
D

A2 A—4t + —St

24 5760
A6 e—12t

967680

where A is an arbitrary positive constant. Note that this
solution behaves as inverse powers of k4, powers which
one would like to associate with condensates and higher-
twist terms.

Finally, there is a hybrid solution combining the pre-
vious types of solutions of Eq. (27) and Eq. (31):

G = D2, D2 ——t+ —lnc1t+ . + 2At e +-
4

(32)



52 TOY MODELS OF NONPERTURBATIVE ASYMPTOTIC FREEDOM. . . 6081

G(t) —= dn E(n) e (33)

Since in the lowest order of approximation t (bg2)
the Laplace transform I" (n) can also be interpreted as
the Borel transform. At this order this appears to be
a trivial matter, since G = b~)' g, t = (bg2) ~ leads to
F(n) = (urn) )' . But as one goes on more interesting
phenomena appear.

By recognizing e = (k jp ) and using standard
integration formulas, one can express the massless inte-
gral equation Eq. (23) in the form

~(~) =, f)e) ~(~y )+(~u )+(~ll ) (34)

where [dy]—:fo dy) dy2 dys h(1 —P y, ). Here y; are Feyn-
man parameters used to express the Laplace transform
variables (n; = ny, ) of the three vertices on the right
hand side of Eq. (23). Perturbation theory corresponds
to o. « I, in which instance we replace 2 —o. by 2, and
verify that I" = (em) ) (i.e. , G = t ~ ) is the small-
o. solution. But there clearly is some sort of singularity
at n = 2, which actually causes Eq. (22) to be mean-
ingless (just as integrals leading to IR renormalons are
meaningless). Consider the "approximation" of replac-
ing the I' (ny;) by their perturbative values on the right
hand side of Eq. (34); the result is an E(n) behaving like
n ~) 2/(2 —n). We can then construct the Laplace trans-
form for P(g) G, and m e replace t by (bgz) ~. The
result is a Borel-transform representation of P(g):

1/2

P(g) dn e
0 2 —o.'

(35)

The pole at n = 2 is, of course, what gives rise to the
factorially divergent behavior of P shown in Eq. (30).

A major theme of our work is the demonstration of
how such Borel-transform singularities are cured in the
massive theory, as we know they must be. So now we
turn to massive models.

where again cq and A are arbitrary. The solutions of
the real Schwinger-Dyson equation also ought to have
a combination of perturbative powers of logarithms and
powers of A: . The existence of such hybrid solutions show
that mere numerical analysis is not very revealing, since
it is hard to separate powers and exponentials of t (i.e. ,
of ln k2).

An interesting way of looking at our models is to in-
troduce the Laplace transform of G(t):

tion in one variable) just as we did when both M and
m were set to zero. As long as M g 0, there is no IR
singularity in Eq. (22), as one easily checks by looking at
A: = 0. We will, using the Laplace transform technique,
translate this lack of IR divergence into a cancellation
mechanism for the poles of the Laplace-transform kernel
which appeared in the massless case [see Eq. (34)].

We have actually looked at several variants of Eq. (22),
which differ in the choice of m and of the arguments
of the t 's under the integral. These are conveniently
summarized via

G ( k') = I'(p, k)
z' [(p+ k)'+ m']'(p' g M') (36)

(k2+ M2)
t =in/ M'

Fpz ~Mzlt' = ln/ M' (37)

where we have fixed the analog of the arbitrary mass
scale p in Eq. (24) to be equal to M. In terms of these
variables, Eq. (36) for model (A) reads

, (e' —1)
G(t) = — dt' G'(t')+ — dt'

~

o 2 o (e' —1)
xG (t') . (38)

The models we will discuss are, for M g 0, (A) m =
0, E' = G'(2q'), (B) m = M, I' = G'(2p'), and (C)
m = M, S' = G(2(p + k)') G'(p' + k' + (p + k)').
The k independence of I" in models (A) and (B) gives
rise to one-dimensional integral equations, which we an-
alyze both analytically and numerically. Model (C), on
the other hand, is Eq. (22) with m = M which gives
rise to a two-dimensional integral equation which we at-
tack numerically. In addition to models (A)—(C) we have
also examined intermediate cases where, for example,
I' = Gs 2(p+ k)2 with m = M or F = Gs[2(@2+ k2)]
with m = M. These additional cases introduce a A: de-
pendence into E which is still mild enough to yield one-
dimensional integral equations. However, since these ad-
ditional models have all the same qualitative features as
models (A)—(C) but yield little extra insight, we will not
discuss them further.

Only model (A) will be discussed in much detail. One
can show that all models lead to the same leading UV be-
havior [G + (ink ) )'2], and numerical work displayed
later shows that the models dier quantitatively but not
qualitatively in the IR. All have the curious feature, men-
tioned in Sec. I, that the solutions to each model depend
on a single real parameter.

Consider now model (A). Similar to our treatment of
the massless model, we introduce the variables

B. Massive models
which is equivalent to the differential equation

(1 —e )G+ (2+ e )G = —G, (39)
We now return to the massive equation, Eq. (22). If

m g 0, it is no longer possible to find a local difFerential
equation as we did for the massless case, and analytic
progress beyond the leading UV behavior seems impos-
sible. However, when m = 0 we can convert Eq. (22) to
a difFerential equation (or a corresponding integral equa-

with the boundary conditions

1
G(O) = — dt'G'(t'),

2 0
G(oo) = 0 . (4o)

This di8'erential equation divers &om the massless equa-
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G(t, a) = a —— dt'G(t', a) + — dt'
~2o ' 2o (e& —1)

x G(t', a) (41)

For t )) 1 the factor (e —1) /(e —1) is exponentially
peaked at t' = t, and so it is a good approximation to

tion, Eq. (26), by the appearance of e ~ in the coeffi-
cients; it can, of course, be derived directly &om Eq. (36),
just as we did for the massless equation, Eq. (26).

It is not hard to see that G(oo) = 0 is not really a
boundary condition since all solutions of Eq. (39) vanish
at t = oo. Moreover, Eq. (40) does not constrain G(0); as
long as G(0) ) 0, there is a solution to Eq. (39) satisfying
Eq. (40). So G(0) itself can be chosen as the parameter of
the solution. Once G(0) is picked, the solution is unique.
All of the models listed above have this feature.

To see how this parameter arises for Eq. (38), consider
a slightly diferent equation with an explicit parameter
a:

evaluate the relatively slowly varying G(t', a)s at t' = t
and pull it outside the integral to get

If we use the fact that G(t )) 1, a) 1+t and let t go to
infinity, we find

a = — dt'G(t', a)
2 0

(43)

In other words, if G(t, a) is a solution to Eq. (41), then
G(t, a) automatically satisfies Eq. (38).

We do not know how to solve Eq. (39) analytically, and
so yet another presentation of its contents is needed to
understand the taming of IR renormalons. We proceed
as in the massless case by introducing the Laplace trans-
form Eq. (33), with t given by Eq. (37). Introducing a
Feynman parameter x for the p2 + M2 propagator and
performing the momentum-space integration, one gets

))&
G(t )) l, a) = a —— dt'G(t', a) + —G(t )) 1, a)

0

(42)

OO 1

G(t) = d~ o. [cy]F(~yi)F(oy2)F(oys) c~
() () 1+x ei 1 (44)

The x integral is elementary, and gives

G(,) f ~ f(~ )
( u ) ( ~*) ( v. ) (,—. ,-*)

(1 —e ~)2 2 —o.

1 —(~+a)t
1 —0! (45)

This is essentially the massive version of Eq. (34) for
F(n), which is singular at n = 2. But there is no singu-
larity in the integrand of Eq. (45) for any positive n. We
now see the qualitative (even though quantitatively inac-
curate) solution to the IR renormalon problem, expressed
as the cancellation by what amounts to condensate terms
of poles in the Laplace transform. It is evident that the
same sort of cancellation takes place in the P function,

—2 6replacing e ~ g —e ~ g [and, given Eq. (45), another
term is added involving a canceled pole at n = 1].

Note, by the way, that it is elementary to derive the
difFerential equation Eq. (39) from Eq. (45): Just form

(46)

One can look for solutions in the IR or UV by the same
method as for the massless equation. There are always
well-behaved power-series solutions in t, with G(0) as an
undetermined parameter; these are useful in the IR. In
the UV, there is the same solution in powers of t
(modulo logarithms) as for the massless case Eq. (27),
but with exponential corrections. There is also an expo-
nentially vanishing solution based on treating the —G
term as a perturbation; the leading term is (e —1)
[cf. the inassless case Eq. (31)]. But it appears from
numerical studies that this exponentially vanishing so-
lution develops a singularity for some t & 0, which we

C. Numerical solutions

We have used numerical techniques to solve the inte-
gral equations associated with the three models (A)—(C)
discussed above. Of these only model (C) gives rise to a
two-dimensional integral equation; the others can be put
in the one-dimensional form

G(t) = Ck'K(t, t') G'(t'),
0

(47)

with different kernels K. To solve Eq. (47), we put it in
the form

G(t) = a+ Ck' K(t, t')G'(t'),
0

(48}

where K = K —1/2 and we treat a as a &ee parameter,

exclude. Thus the only possibility is the usual UV solu-
tion of Eq. (27), at least for generic values of the vertex
momenta k;.

It might happen that Pss theory has a bound state with
the quantum numbers of the P field, for some particular
value of k2i g 0. In that case, the Schwinger-Dyson equa-
tion for the bound-state wave function might decrease
exponentially in the UV; we have not studied this possi-
bility in detail.
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1.5
model A

F=G (2p ); m=O

model B

arguments of the G's in the Schwinger-Dyson equation.
For the same a value (1 in this case) the difFerences are re-
markably small throughout the entire range of momenta.
Results such as these give us confidence that toy models,
such as models (A) and (B) which can be studied analyti-
cally to some extent, are likely to be representative of the
full Schwinger-Dyson equation, even at zero momenta.

The next question to ask is what happens when one
goes beyond the cubic term in the Schwinger-Dyson equa-
tion.

0
0

I

10 20

IV. APPROACH TO SCHWINGER-DYSON
VERTEX GRAPHS OF ALL ORDERS

FIG. 8. Numerical solutions of the toy-model
Schwinger-Dyson equation for models (A) and (B) for a = 1, 2

where a = —j dt'G (t').

as in Eq. (41). For all kernels, K falls off rapidly when
t )) t' and one shows a =

2 j dt Gs, as before. The
two-dimensional integral equation associated with model
(C) is treated in a completely analogous manner, with a
similar definition of a. We have explored thoroughly the
range 0 & a & 2, and we will show results for a = 1, 2. All
results were calculated to 16-digit precision. For a & 2 it
takes progressively longer for our numerical routines to
converge, and so we cannot exclude the possibility of an
upper bound to a above which solutions cease to exist.

Figure 8 compares models (A) (m = 0) and (B) (m =
M). For model (B), G(0) = a [see Eq. (40)] which is
larger than G(0) for model (A), increasingly so as a gets
larger. This comparison shows the eKects of varying mass
assignments.

Figure 9 compares models (B) and (C), which have all
masses set to the same nonzero value but di8'er in the

0.8

0.7

0.3
0

FIG. 9. Numerical solutions of the toy-model
Schwinger-Dyson equation for models (B) and (C) for a = l.

In this section we take the first incomplete steps to-
wards an analysis of graphs of all orders in the Schwinger-
Dyson equation for g or for the proper vertex I'. These
Schwinger-Dyson graphs are expressed by writing all per-
turbative vertex graphs which have no vertex or self-
energy insertions; a few such graphs are shown in Fig.
6. Then in the full Schwinger-Dyson equation each such
graph is replaced by one of the same topology but with
full vertices and propagators. In what follows we do not
need to consider the cubic graph which was the concern
of previous sections.

All remaining vertex skeleton graphs have the property
that the minimum number of lines in any closed loop is
at least four; graph theorists say that such graphs have
girth four. It turns out that such bare skeleton graphs, in
perturbative Pss theory, have exactly one UV logarithm
[lnA&~v, where AUv is a UV cutoff] and no IR logarithm
(lnM ). This follows straightforwardly &om an elemen-
tary remark about $44 graphs, as we now show.

Every perturbative skeleton graph of N loops (3N
lines, 2N + 1 vertices) has the following Feynman-
parameter form in Minkowski space, which is for the mo-
ment convenient:

[dx] ( P/U+ g x,M—,2 —illI'~ ——const x g ln
UV

(49)

where [dx] = h(1 —g x, ) Q,. i d2:, . U is the graph's de-
terminant (a positive sum of monomials of order N in the
x;), and P (not to be confused with the field P) is a sum
of positive polynomials in the x, times scalar momentum
functions A: kb. The single UV divergence is explicit,
and can be removed by taking the imaginary part of I'~,
replacing the logarithm by a 0 function. Any other diver-
gences in the imaginary part must come &om the vanish-
ing of U. But, as is well known, U can vanish only when
at least all the parameters of a loop in the graph go to
zero. I.et (x,) be the paraineters of one and only one
such loop of n lines, and replace x; by Ax;, A ~ 0. Then
U vanishes like A. But [dz] behaves like A" dA times ir-
relevant factors, and the integral is finite if n & 4, that is,
for girth-4 graphs. If all the parameters of two complete
(possibly overlapping loops) are scaled with parameters
Aq, A2, then U vanishes like AqA2, and the argument can
be repeated, with some necessary variations. The reader
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may easily check that only for skeleton graphs the total
number of distinct lines in Z complete loops is at least
31+ 1 for any skeleton graph of order N ) E. Then the
one-loop scaling argument given above can be repeated,
and one shows there are no singularities in the Feynman
parameter integral. (The case N = 8 is trivial, since not
all the x; can be scaled to zero. )

The Minkowski-space imaginary part of I'~ in Eq. (49)
is, when all masses are equal to M,

Iml'~ ——const x g s 0
~

——M0 [dx] ( P
U' qU ) (5o)

(51)

where i runs over all the Nth order skeleton graphs. This
problem (with U,. ~ U, ) has been addressed for P4
[7], using the following steps which we will repeat here.

(1) Count all the Nth order graphs, and note that the
number of these which are not skeleton graphs vanishes
at large N relative to the number of skeleton graphs. We
denote this number as Q~.

(2) Find, by a combination of analysis and numerical
work, the number C; of monomials in U, This number
is called the complexity of the graph, and is equal to the
number of spanning trees.

(3) Show that

j[dx]U; (3N —1)!
j[d2:] (4N —1)! (52)

That is, every monomial in U; contributes exactly the
same to (U), .

(4) Use a Holder inequality to show

(5) Observe that the distribution of C, for all the N
loop graphs centers around an average value (C).

We then have, inserting the usual powers of 2',

(54)

Now Bender and Canfield [14] have shown, in a deep
graph-theoretic result, that

q)v=
(

—
[

N!
r'31

(55)

and we have made a numerical analysis of large-N graphs
to find

Consider now the kinematics of Fig. 1 where k1, —k2, and
—kq are forward timelike, with k1 = 8 ) 4M, k2 ——k3 =
M . One easily shows ki . k2 ——ki . ks ——s/2, k2 ks ——

s/2 —M2, which is enough to show that the argument of
the 0 function is positive (trivially so at M = 0) and thus
the 0 function can be replaced by unity. We then reduce
the problem of ending ImI'~ to summing the integrals:

N

(56)

(Here A)v = B~ if A~, Bev are each of the form
co(N!)"c2 ¹'1+ O(1/N) at large N, and the con-
stants ci and cq are the same for Ae() and Bev.)

Putting everything together,

2-N
Iml'~ & N!

4z s a= 211
0.312 . (57)

As expected for an asymptotically free theory, this is not
Borel summable.

Even though extracted from a high-energy process in
Minkowski space, the result of Eq. (57) looks exactly
like what one would expect from a lowest-order (semi-
classical) instanton calculation which requires zero ex-
ternal momenta and masses. There is no sign of external
momenta or masses in Eq. (57), which renders this for-
mula compatible with the Lipatov procedure. So let us
compare the coefficient a in Eq. (57) to the instanton re-
sult. As is well known [5], there are instantons in massless
Ps, of the form

4.e = 48p

g (x —a)'+ p2
(58)

whose action is

(12) (4~)'

t)(k;) = f dap(a) e (6o)

Anticipating that the leading UV behavior of the Nth-

This means that using the Lipatov procedure one would
find an expression of the form of Eq. (57) for Iml'o~, with
a = 5/12 = 0.417. Our lower-limit value 2 /3 is about
3/4 of this (presumably correct) value, and further nu-
merical work, which we have not done, would bring this
lower-limit value closer to the true value of a.

The fact that there are no logarithms in Iml'~ (or
only one in I'~) is of vital importance for analyzing the
Schwinger-Dyson equation, when full propagators and
vertices are used to dress the bare skeleton graph. This
amounts to inserting 2N + 1 factors of g [see Eq. (19)],
where every g behaves like (b ln k2) ) for the appropri-
ate momentum k. One should then not be surprised to
find that the N-loop full skeleton graphs behave, for large
external momentum k, like (ink~) 2! + &+ and that
the suin of full skeleton graphs is of the form Eq. (57),
with g replaced by the (one-loop) running charge g .
The Schwinger-Dyson equation thus yields the results of
RG-improved instanton calculations, with no explicit in-
troduction of instantons.

We will not show the derivation of this result in detail,
but merely sketch it. As in Sec. III we make the ap-
proximation that every g depends only on g k;, where
k; are the vertex momenta, and introduce the Laplace
transform
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order graphs is dominated by the UV behavior of the
cubic graph studied in Sec. III, we choose

E(n) = (vrbn) (61)

corresponding to g m (bin k2)
As before, the factor exp( —ning k2) is written as

(g k;) and the momentum integrations are done af-
ter Feynman parametrization. A tedious analysis, not

given here, shows that one need not introduce 2N+ 1 new
Feynman parameters for the new denominators P k2; in-
stead, one shows that the correct asymptotic behavior is
also found by replacing such denominators by those of
neighboring propagators. The result is that many of the
propagators in a bare skeleton graph appear to powers
—(1+a;), where n; is the Laplace transform variable of
a neighboring vertex. Finally one finds, setting the mass
M to zero, and going to asymptotically large k as in Sec.
III,

- N

g~ = Qnr f IIa,. da, I' () a, ) III'(1+n;), Ilx, '
i „

[dx] .
t'

(62)

where P and U are the appropriate functions for the bare skeleton graph, and an irrelevant constant factor has been
dropped. In the result of Eq. (61), Q~ is the number of Kth-order skeleton graphs, given in Eq. (55).

In the kinematics of Fig. 7, P is of the form of k times a function of y;. We scale the a; by n; = ay, , with P y; = 1,
and get

yN = dn e '"" H(n),
0 I' N ——

2

(63)

where

- N

H(a) = I'
~

N ——
~ Q~ [dy]lly I'(1+ n) ll[d~]

2) ~4~'b (64)

In Eq. (63) and Eq. (64) we wrote I'(P n, ) = I'(n) as
a ~I'(1+n) and removed a factor I'(%—2) for simplicity.
This allows us to assert that H(n) is regular at a = 0,
and in fact one checks easily that

H(0) =' 1

~(4~)sb

- N

QN f
which is just the function appearing in the sum of bare
skeleton graphs. It is clear from Eq. (63) that the leading
asymptotic behavior of gN comes from o. 0, which gives

~N —32

d
o' 2 ~'"A2 = N~

- N

V. CONCLUSIONS

In the long run, perturbative QCD must fail because
of its IR singularities, and some sort of nonperturbative

(66)
using the previous result for H(0).

This is as far as we will carry the analysis. We have
no particularly good ideas for extending the toy models
of Sec. III to all orders in a controllable way. Nor will
we attempt to And some physical way to sum the series
of Eq. (66) (based, e.g. , on decay of the metastable vac-
uum). If the sum of terms is represented by a (formal)
Borel transform, there arises an ambiguity of the form
(k2), where c = (47')sb/a This is of .the usual type
associated with RG-improved instantons.

analysis of Schwinger-Dyson equations will have to be se-
riously attempted. This is much more difficult than Ps
theory, because of the complications of spin, gauge de-
pendence, and confinement. Still, we believe that some
of our results will hold for QCD, in particular, the can-
cellation of poles in Borel transforms as in Eq. (2). Cur-
rently there is considerable phenomenological interest [2]
in renormalon problems, and it would be valuable to test
the mechanism we identify as relevant, versus other pre-
scriptions such as principal part integration.

A similar mechanism may well hold for Borel trans-
forms associated with instantons, although we are unable
to say in Ps theory because of its instability. In QCD
(or a similarly stable asymptotically free theory, such as
the d = 2 nonlinear o model), it is quite important to
learn how to deal with phenomena canonically associated
with instantons (e.g. , the Lipatov technique) by other
means than the usual RG-corrected semiclassical results,
because the perturbative corrections to semiclassical in-
stanton physics involve IR singularities such as renor-
malons. Understanding such phenomena directly f'rom

the Schwinger-Dyson equations is a worthwhile thing to
do. Moreover, at the moment Schwinger-Dyson equa-
tions are the most straightforward way of dealing [7] with
the non-Borel-summable divergences at large Minkowski-
space external momenta. We hope to report in the future
on future progress in this direction, going well beyond the
first steps of Sec. IV.

We have seen that all the toy models of the Schwinger-
Dyson equation have solutions with a &ee parameter,
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equivalent to the renormalization mass p, . Since p comes
in as a tool in dealing with amplitudes needing regular-
ization, and since asymptotically &ee Schwinger-Dyson
equations in their canonical form need no such regu-
larization, this is a bit of a surprise. On the other
hand, one would be surprised if a single Schwinger-Dyson
equation —in our case, that for the running charge de-
fined in Eq. (19)—had a single solution for the three-
point function, making no reference to higher-point func-
tions as the usual hierarchy argument specifies. It re-

mains to be seen how this is settled by consideration of
further Schwinger-Dyson equations.
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