
PHYSICAL REVIEW D VOLUME 52, NUMBER 2 15 JULY 1995

Search templates for gravitational waves from precessing, inspiraling binaries
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Searches for gravitational waves with the LIGO-VIRGO-GEO detector network will require fam-
ilies of "search templates" with which to cross correlate the noisy detectors' output. This paper
introduces a Ptting factor (FF), as a quantitative measure of how well the best template in a family
"fits" a hypothetical gravitational waveform, in the presence of a specific detector noise spectrum.
An FF( 0.9 corresponds to a 2770 reduction in the event rate of the relevant signals; therefore
a family of templates that leads to FF's below 0.9 should be considered inadequate. The FF is
used to explore the adequateness of several families as search templates for gravitational waves from
compact inspiraling binaries. The binaries are taken to move in circular orbits, and the "advanced
LIGO noise spectrum" is assumed for the detectors. We first study the acceptability of the simplest
three-parameter template family, the so-called "Newtonian family. " From previous studies by Finn,
Krolak, Kokotas, Schafer, Dhurandar, and Balasubramanian, we infer that post-Newtonian effects
in the true waveforms of binaries with vanishing spins cause the Newtonian family to have an un-
acceptable low FF ( 0.6 to 0.8). We then study the influence of waveform modulations caused by
spin-induced orbital precession, and we isolate the modulation effects from other post-Newtonian
effects by pretending that the true signals are pure Newtonian with modulation. Many different
parameters influence the precession and then the waveform modulation. A wide range of parameter
values is explored, and intuition is developed into which parameters most strongly influence the FF.
It is shown that the unmodulated Newtonian template family works quite well (FF) 0.9 for almost
all parameter values) in searches for the modulated Newtonian signal from two 1.4MO neutron stars
(NS s) with one of them maximally spinning. By contrast, for a maximally spinning 10MO black
hole (BH) with a nonrotating 1.4M' NS, the Newtonian template family produces FF( 0.9 for more
than half of all the binaries orientations, if the spin and orbital angular momenta are misaligned
by 30 . We introduce a new four-parameter template family, which has the form of the nonmodu-
lated post -Newtonian signal from a zero-spin-binary. Although, there is a substantial improvement
of the FF's for a spin-modulated Newtonian signal, the FF's for nonmodulated post -Newtonian
waveforms are still very poor ( 0.5—0.8). Therefore we propose another four-parameter template
family that has the same form as a nonmodulated post ' Newtonian signal with all the spin-related
parameters stripped off. This template family works post ' -Newtonian modulated signals quite
well. These results suggest that, in a few years, when waveforms have been computed up to post-
Newtonian order, a good template family will be the four-parameter post -Newtonian waveforms
for zero-spin binaries, augmented by some appropriate modulations to deal with misaligned, rapidly
spinning BH-NS systems. Finally, we extend our investigations to the space-based low-frequency
LISA detector.

PACS number(s): 04.80.Nn, 04.30.—w, 97.60.Jd, 97.60.Lf

I. INTRODUCTION

The facilities to house the ground-based I IGO-VIRGO
laser-interferometer gravitational-wave detectors are al-
ready under construction or in the 6nal stage of their
design [I], and the GEO600 project for an intermediate
scale interferometer has good prospects for approval. At
about the turn of the century I.IGO-VIRGO-GEO will
probably be ready to start searching for gravitational
waves coming &om the most promising sources: neutron-
star —neutron-star (NS-NS), neutron-star —black-hole (NS-
BH), or black-hole —black-hole (BH-BH) binaries.

The detectability of these binaries depends on the fam-

*Present address: M.P.G. Arbeitsgruppe Gravitationstheo-
rie, Friedrich Shiller Universitat Jena, Max-Wien-Platz 1, D
07743, Jena, Germany.

ily of "search templates" that will be used as matched.
filters to extract a possible signal buried in the detec-
tors' noise. (For the method of "xnatched filters" see
Ref. [2].) More specifically, the output data stream of
each detector will be cross correlated with each template
Tp, p, of the chosen family, weighted by the inverse of
the detector's noise spectrum. If for some combination of
the templates' parameters Aq, A2, . . . the cross-correlation
output is above some threshold level, then a signal will
have been detected with great confidence. Therefore, we
should make sure that some member of the family of tem-
plates used for detection matches very well each of the
hypothetical incoming wave forms.

The true general relativistic signals kom inspiraling
binaries (including post-Newtonian and spin-induced ef-
fects) depend on a very large set of parameters (the
masses of the two stars, the eccentricity of their orbit,
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their spin, the relative geometry of their orbit and the de-
tector's location and orientation, and the time and phase
of the waves at coalescence). This large set of parameters
leads to a huge variety of chirplike waveform shapes and
a corresponding requirement for a huge number of tem-
plates in the search family. On the other hand, for two
reasons the number of templates should not be allowed
to grow too large: (i) The task of computing the cross-
correlations can become excessive [2] and (ii) the proba-
bility of a false detection can become excessive. Rough
estimates [2,3] suggest that 10 —10 discrete template
shapes might be needed and would be acceptable.

Throughout our analysis and discussion, we assume
that the binaries are orbiting around each other in circu-
lar orbits when their waves enter the frequency band of
the I.IGO-VIRGO-GEO detectors. This is justified since
long-lived binaries have sufBcient time to circularize by
radiation reaction, before they reach the LIGO-VIRGO-
GEO f'requency bands [4] (by contrast with the type of
binaries formed by capture events in dense galactic nuclei
which might be appropriate sources for the low-&equency
space-based Laser Interferometer Space Antenna (LISA)
detector [5)).

The most obvious, and perhaps adequate, way to con-
struct a suitable template family is to use approximate
waveforms that depend on a small set of parameters re-
lated to some special characteristics of the binaries. The
simplest such family is the Newtonian family, i.e., the
family of waveforms predicted by Newtonian gravity and
the quadrupole-moment formalism. These templates (as-
suming circular orbits) consist of three parameters alto-
gether: the coalescence time tc, , the phase of the waves at
coalescence Pc, and a certain combination of the masses,
called the chirp mass: M—:(MqM2) ~ /(Mq + M2) ~ .
The 6nal coalescence time t~ is a special parameter that
can be handled directly as an additive phase factor when
computing the cross correlation in the &equency domain
[2]. Fortunately only two values of Pc need to be consid-
ered, since Pc shows up only as a constant phase in the
signal: For convenience Pc = 0 and Pc = vr/2 (see [2]).

As a result, the Newtonian family has only one non-
trivial shape parameter: the chirp mass M. The Newto-
nian family can be handled easily, even with present-day
workstations, by spanning the whole range of M's under
consideration with a density b,M/M of 0.1% [6]. The
question that arises is, how adequate are the Newtonian
templates for identifying realistic waveforms in the noisy
detector output? As a tool for answering this question,
we introduce the fitting factor (FF) which is a measure
of how well any chosen family of templates fits some cho-
sen hypothetical gravitational-wave signal. Several peo-
ple have used a similar or even the same quantity for the
same purpose [7,8], but they have given it other names
and have discussed it &om other viewpoints.

The noise spectrum of the detector plays a significant
role in the FF, since a good resemblance between the
template and the incoming waveform is needed only at
&equencies where the noise is low. In this paper the
"advanced-LIGO-detector" noise spectrum will be used.
This spectrum has been introduced by the LIGO team
[1] as a guess of what the noise might look like some years

after LIGO goes into operation.
As we will show later, the FF is the reduction in signal-

to-noise ratio that comes from using some chosen inac-
curate family of templates instead of a larger family that
includes the true signal. Since the event rate for the true
signal scales like the cube of the signal-to-noise ratio, the
&actional reduction in event rate due to using the chosen
template family is 1—FF . A value of 0.9 for a family' s
FF thus means a 27% loss in the event rate. This loss
could be recovered by increasing the interferometers' arm
length by 10%, but the cost would be roughly 6 x 10 dol-
lars. It should be clear &om the numbers that FF values
below 0.9 mean that the chosen template family is in-
adequate, and one might want to insist on FF & 0.95 or
even 0.98 when designing a template family.

Several people [7,8] have recently investigated the ef-
fectiveness of the Newtonian template family in searches
for the nonmodulated waveforms produced by inspiraling
binaries with vanishing spins and circular orbits. The
numbers obtained in these studies correspond to a FF
well below 0.9. I have confirmed these numbers, and
I present them together with the results of some addi-
tional computations (discussed later in this paper) in
Table I. The signals discussed in this table are Newto-
nian, post -Newtonian or post -Newtonian approxima-
tions to the exact, general relativistic waveforms. (The
waveforms have not yet been computed to higher than
post~ s-Newtonian order, though an ongoing effort [9]
should ultimately bring them up to and including post—
Newtonian order, which is about the accuracy required
for LIGO-VIRGO-GEO [10].)

The main conclusion of Table I is that for the post
Newtonian signal, with vanishing modulation (because
the spin and orbital angular momenta are aligned), the
Newtonian template family is completely inadequate. To
achieve an acceptable FF & 0.9 requires the post
Newtonian family of templates (templates described by
the post~ s-Newtonian waveforms with zero spins).

In all previous template investigations, and in all en-
tries in Table I, the binary s spin and orbital angular
momenta are assumed to be aligned, or the spins are
assumed to vanish, and so the binary does not precess
and the waveforms are not modulated. The principal
objective of this paper is to study the effects of spin-
induced precession and modulation on the acceptability
of unmodulated template families. In these modulational
studies, as in most previous studies [7,8] (but not all [6]),
the discreteness of the template families is ignored; i.e. ,
the chirp mass M and other parameters that determine
the template waveforms are allowed to vary continuously
rather than taking on a discrete set of values.

In this continuum approximation, we begin by inves-
tigating the detectability of a modulated waveform with
the (unmodulated) Newtonian template family. The re-
sulting FF values are unacceptably low, not just because
of post-Newtonian effects, but also because of the mod-
ulational effects. To rectify this, we introduce the spin-
&ee, unmodulated post -Newtonian family described in
the previous paragraph, which has four parameters by
contrast with three for the Newtonian family. The extra
parameter is related to the binary's reduced mass. The
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new template family 6ts better the modulated waveforms
than the Newtonian one. From the sets of FF values that
we compute, we suspect that an adequate template fam-
ily, for abnost, but not quite all binary signals (modu-
lated and unmodulated) that LIGO-VIRGO-GEO seek,
will be the four-parameter post -Newtonian waveforms
of spin-&ee binaries, waveforms that will likely have been
computed within the next 3 yr [9].

The rest of this paper is organized as follows. In Sec. II
we briefIy review the equations for the spin-induced sim-
ple precession and its modulation of the relevant wave-
forms, based. on the stationary phase method, from the
work of Apostolatos et aL [ll]. More specifically, we ex-
press the waveforms as Newtonian signals with amplitude
and phase modulation. We assume for simplicity that the
precessing binaries consist of one spinning object and one
nonspinning object; this permits us to use the analytic
forms derived in Ref. [11]for the simple precession. This
is not a very restrictive assumption since the general case
with two spins leads to similar precession trails for the
orbital plane. We assume that the spinning object is the
more massive one; this maximizes the strength of the
precession.

In Sec. III A we define the fitting factor (FF) and show
its physical significance as a measure of the reduction of
the signal-to-noise ratio due to the use of an inaccurate
family of templates that cannot perfectly match the sig-
nal. In Sec. IIIB we derive a simple formula for the FF
when the template family is Newtonian and. the signal is
Newtonian with precession. In Sec. III C we discuss sep-
arately the effects of amplitude modulation (AM) and
phase modulation (PM) on the fitting factor and show
some analytic and numerical examples.

In Sec. IVA we briefIy discuss the code we have used
to compute the FF and its numerical errors, as well as
the difFiculties underlying our search for the FF's max-
imurn value over our template family. In Sec. IVB we
begin our study of the FF for the Newtonian template
family and precessing Newtonian signal by exploring the
dependence of the FF on the binary's location on the
sky and the orientation of the detector arms. We show
that a knowledge of the FF for a binary directly over-
head (or underfoot) is adequate to determine the com-
plete distribution of the FF for all other directions to the
source. In Sec. IVC we discuss the effect on the FF of
the direction of the binary's total angular momentum J,
around which the orbital plane precesses. In Sec. IVD
we show how the nonrandomly distributed parameters,
the binary's masses Mq, M2 and the opening angle LS
between its orbital and spin angular momenta, affect the
FF.

In Sec. V, for a few representative values of these non-
randomly distributed parameters, we compute the proba-
bility, over all the random parameters of Secs. IV B, IV C,
IV 0, to achieve FF values above some critical level. We
find that, for a 1.4Mo, 1.4Mo NS-NS binary, with one
of the NS's spinning near breakup, the FF is pleasingly
large () 0.9) for most (+ 90%) of the geometries But.
for a 10Mo, 1..4Mo BH-NS binary with the BH spinning
at its maximal rate, the FF can be unpleasantly low and
is very sensitive to the opening angle LS. For example,

for moderate and high values of LS (above 30 ) the FF's
are well below 0.9 in more than half of the -random ge-
ometries.

In Sec. VI we suggest the addition of one more param-
eter to the Newtonian template family, to improve its
ability to detect precessing waveforms. This extra term
has the same form as arises &om the nonprecessional
post -Newtonian correction to the waveform's phase, and
it turns out to improve substantially the FF values for
precessionally modulated Newtonian signals. For the
1.4Mo, 1.4Mo NS-NS binary, the FF values remain
above 0.9 for at least 90% of all the geometries. By con-
trast, for the BH-NS binary, the FF values still depend
strongly on the misalignment angle LS, but now for a
30 angle, there is ~ 75% probability to get a FF value
above 0.9 (an improvement froin ( 50%).

In Sec. VII we review, in the language of our FF, what
other people have already published for the detectability
of post-Newtonian nonmodulated signals by various tem-
plate families. The Newtonian template family is com-
pletely inadequate (FF generally well below 0.9). Far
better FF's are achieved by a template family based on
the waveforms for nonspinning post -Newtonian-order
binaries.

In Sec. VIII we explore the 6tting ability of these
post -Newtonian templates for post ' -Newtonian sig-
nals to which spin-induced modulation has been added.
The results were improved at least as much as in Sec. VI,
where spin-modulated Newtonian signals and. unmodu-
lated post -Newtonian templates were considered (i.e. ,
for the NS-NS binary the FF is above 0.9 for at least 90%
of all the geometries, and for the BH-NS binary there is
a 75% probability to get a FF value above 0.9 if the
misalignment angle is 30 ).

Finally, in Sec. IX we summarize our results and sug-
gest future research directions on the issue of search tem-
plates for detecting inspiraling binaries.

All of this analysis assumes the noise spectrum of
"advanced" high-&equency ground-based LIGO detec-
tors. In the Appendix, we extend the analysis to vari-
ous kinds of signals and templates in the context of the
low-&equency, space-based LISA gravitational-wave de-
tector. The extrapolation to this type of detector and its
relevant binary sources (supermassive black holes with
smaller-mass black holes or neutron stars) is straight-
forward, since the corresponding noise spectrum has the
same shape as the LIGO noise spectrum, but shifted to
much lower &equencies (10 —1 Hz compared with 10—
1000 Hz for LIGO). This similarity suggests the use of the
same kind of search templates for LISA as for the ground-
based detectors, but with parameters corresponding to
much more massive objects.

Throughout we use units where G = c = 1.

II. REVIEW OF FORMULAS FOR SIMPLE
PRECESSION AND ITS WAVEFORM

MODULATION

As was shown in the work of Apostolatos et al. [11],a
binary consisting of a spinning object with mass Mi and
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spin S, and a nonspinning object M2 orbiting around
each other with angular momentum L will conserve the
angle LS between L and S through the whole inspiral
phase. The binary's orbital plane will precess around
the total angular momentum J = L + S, which remains
almost fixed in direction. By using the notation

v —= L.S, cosAL, = L.J,

p /Mr(t) + S[icos AL, -2
p JMr(t) + S~~ + S~ )

(2)

Here carets denote unit vectors (e.g. , L = L/~L~), M and
p are the total and reduced masses, respectively, r(t) is
the distance between the two stars, and S~~ = SK and

S~ = Sgl —tc2 are the components of S parallel and
perpendicular to the angular momentum L, respectively.
The evolution of the angular position n of L (see Fig. 1)
around the constant J is given by

96p3M3
2Y —

3S~~ (Itv Mr + S~[) ~Y

the opening angle for the precession of L was shown to
evolve due to radiation reaction and hence shrinkage of
L according to

(rr2 f2) (4)

This completes the formulas needed to describe the
simple precession of the orbital plane of a binary when
Mi, M2, S, e, and J are given. It should be noted,
however, that if the quantity

16 (M/r) ~2

5 (1+ —,'M, /M, )(1+2 &+&2)

(where p = S/L) is not « 1, then all the above expres-
sions for the simple precession break down and instead
the binary undergoes a diferent type of precession, called
transitiona/ precession [11].Fortunately (for this paper),
this happens only for a tiny, presumably rare range of
parameters, L . S & —0.94 (LS & 160 ), and a rather re-
strictive combination of masses (see Fig. 10 of Ref. [11]).
In the following examples we avoid any situation where
transitional precession is involved, since no analytic ex-
pressions exist then.

We now move on to present the equations that de-
scribe the modulation of the waves due to simple pre-
cession. We write down directly the Fourier transform
h(f) of the modulated waveforms, since our calculations
will be performed in the frequency domain. As shown in
Eq. (38) of Ref. [11], by following the stationary phase
method this h(f) is given by

~ f @+Mr + S~[)sinh + const,
s~ h(f) = —A(t)hc(f) + .„„—2~ithc(f)

1 - 1 dA dhc(f)

where (6)

Y = p, Mr +2S~[p+Mr+S . (3b)

Because the computational search for the modulated sig-
nal will take place in the frequency domain, it will be
useful to know the dependence of the binary's orbital di-
ameter on the frequency f of the gravitational waves:

for positive f, and the complex conjugate of this for neg-
ative f Wheneve. r we write t we simply mean t(f), the
time at which the carrier frequency is f, given by

t(f) = tc —5(8rrf) i M

In Eq. (6), hc (f) is the Fourier transform of the unmod-
ulated "carrier" signal,

2i4c (t)—
D r(t) (8)

where @c(t) = jDdt is the carrier phase, 0 is the orbital
angular velocity, and D is the distance to the binary. This
Fourier transform is

(f) t X f—7/6 i[2mftc —Pc+ 4 (Swarf) j

where the "const" represents everything that does not
depend on &equency, such as the geometry, the masses,
etc. ; Pc, not to be confused with 4~, stands for the
phase of the waveform at coalescence, t~ for the time of
coalescence, and M for the chirp mass. A(t) in Eq. (6)
is the modulation factor defined as

I IG. 1. The geometry for a binary's simple precession rel-
ative to an Earth-based detector's Cartesian axes.

A(t) = AM x PM,

where AM and PM are the following amplitude modula-
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tion factor and phase modulation factor,

AM = (4[L N] E„(8,P, Q)

+[1+(L N)']'++'(0 & &)k'~'

1-
h(f) = —hc(f) x AM x PM

2

7 . 7i AM
x 1+ (28@+.p) +

12vr 12m AM

PM —i[2h4 (t)+(P(t) j

Here, as before, t = t(f), and

2L N E&& (0, $, $)
([1+(L.N)']E (0, $, $))

(i2)
where an overdot represents d/dt. Expressions for AM
and PM can be read f'rom Eqs. (11), (12). The quantity in
the square brackets in Eq. (17) can be approximated by
1 since the remaining terms are corrections of order (or-
bital period)/(precession period) Oz/7r f [see Eq. (42)
of Ref. [11]],which'is a very small quantity except maybe
at high frequencies near the final stages of inspiral, where
the detectors are almost "deaf" due to large shot noise.

Lfinai (
b4(t) = —

l „(Lx N) dL . (14)
I, 1 —(L N)2)

I'+(8, P, Q) = —(1 + cos 0) cos 2P cos 2@

—cos 8 sin 2P sin 2g, (15a)

The two phases in Eqs. (13), (14) represent phase modu-
lations that have diferent physical origins: p arises from
changes in the polarization axes due to precession of the
orbital plane, and b4 is something similar to the Thomas
precession of the electron's spin in a semiclassical model
of the hydrogen atom. The rest of the parameters in
Eqs. (11)—(14) are connected to the orientation of the
detector and the direction to the binary. Thus N is the
unit vector pointing to the source and 0 and P are its
spherical polar coordinates (see Fig. 1), I'+ and I'&& are
the detector's "beam-pattern" coeKcients given by

III. FITTING FACTOR (FF)

A. Definition and physical significance

Let us imagine a detector receiving a gravitational sig-
nal &om a precessing binary with a waveform represented
by W(t). Then because of the detector's noise n(t), the
output s(t) of the detector will be

s(t) = W(t) + n(t) .

= (W
I

W)'~', (i9)

If we had used the exact waveform W(t) as our search
template, then we would have achieved the highest pos-
sible signal-to-noise ratio, given by Eq. (2.5) of Ref. [12];

E&& (0, P, g) = —(1 + cos 0) cos 2P sin 2g
2
+ cos 0 sin 2P cos 2@, (i5b)

where the inner product of two waveforms (hi I h2) is
defined by Eq. (2.3) of Ref. [12]:

and @ is the polarization angle given up to an arbitrary
multiple of m by

(h. I
h. ) = 2

hi(f)h2(f) + hi(f)h2(f) d
S-(f)

t'L p —(L N)(p. N) )
vj = arctanI

N (L x p) ) (16)

where p is the normal to the detector plane.
By combining Eqs. (6), (9), (10), (12), h(f) turns out

to be

Here S (f) is the spectral density of the detector's noise.
Henceforth we will assume for S (f) the following ana-
lytic fit to the "advanced" LIGO noise spectrum, which
has been published by the LIGO team as an estimate of
what might be achieved some years after LIGO turns on
(see Refs. [1,12]):

for f (10Hz,
for f ) 10 Hz,

where Ss ——0.6 x 10 4s Hz and fo ——70 Hz.
The signal-to-noise ratio will be reduced below (S/N) „whenever the template is not the exact waveform but

some ether approximate one. In this paper we are interested in searches performed with some family of templates
Tp, p, (t) that depend on a set of parameters Ai, A2, . . . . Then by definition the signal to noise achieved in the
search will be

(Sl (s I T~„~„... )max
i,N) &.,&. , rms (n I Tp, p, )

' (22)

For an ensexnble of realizations of the detector noise, the expectation values of (n
I

Tg, ~, ) and (n I Tp, p, ) (n
I
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Tp, p, ) are 0 and (Tp, p, ~
Ti, g, ), respectively. Thus the ensemble-averaged signal-to-noise ratio turns out to

be

(~
~
T~„~., )

g(T~„~„.. . I T~„~„.. .)(~
~
~) &~)

We give the name fitting factor (FF) to the reduction in signal to noise that results from using the chosen template
family, rather than the true signal R', in the search:

(24)

This FF or its square root is a quantity that has already been used by various authors (see [7,8]) as a measure of the
adequateness of a template family, but previous discussions have not shown explicitly how this intuitively well-formed
function is connected with detectability. Previously this FF has sometimes been called the "correlation, " a name that
is often used in so many diIII'erent ways that we prefer to avoid it. The new name we have adopted comes IIrom the
fact that, by maxiinizing the quantity in Eq. (24), we essentially adjust the parameters of the templates to best fit
the true waveform.

B. Form of the FF for the Newtonian template
family searching for a precessionally modulated

Newtonian signal

In this section we will construct an explicit expres-
sion for the FF when a "Newtonian template family" is
used to search for the modulated Newtonian waveforms
of Sec. II.

The Newtonian temp/ate family has been introduced
and studied previously by a number of researchers [7,8].
Each Newtonian template is the waveform predicted in

the Newtonian, quadrupole moment approximation, for
some circular, inspiraling binary, and it therefore has the
same form hc(t) [or hc(f)] as the carrier signal (8). Of
course the parameters const, tc, P~, and M of the New-
tonian template are not in general the same as these of
the "true, " Inodulated signal's carrier. Rather, the tem-
plate parameters must be adjusted to make the Newto-
nian template resemble as well as possible the modulated
waveform.

By using Eq. (17), the FF for a Newtonian filter takes
the form

FF = max
ate, &4c,&(~ '~3)

Re I df e'+~tlAM x PM~-(f)

f df ~s f df ~ (AM) 2

(25a)

@(f) = 2~fAt& —AP&+ (8~f) '~—'A(M '~'),3
4

(25b)

and Etc, AP~, and A(M s~s) are the differences in the parameters between a chosen template and the modulated
signal s carrier. Note that all multiplicative factors not depending on frequency, such as the distance to the binary,
have been canceled out because of the specific form of the FF, which automatically normalizes the template and the
signal. Fortunately, one of the maximization parameters APc affects the FF value trivially, and there is no need
to fine-tune it. To maxiinize the FF over APc, one need only compute the values for the FF with APc = 0 and
APc = 7r/2 and then add them in quadrature. Therefore Eq. (25a) for the FF simplifies to

FF = max
~~c,Z (~-»3)

df ~ e*+~f1AM x I M

J df f df (AM)

(26a)

0(f) = 27' fAt&+ (8~f) '~'A(M— '~') .
3

(26b)

where @(f) is the same as in Eq. (25b) but with AP~
eliminated,

This is the expression that we have used in a computer
code, described later in Sec. IVA, to compute the FF
for various modulated signals. In addition to the obvious
parameters in the FF, shown explicitly in Eqs. (26a),
(26b), there are a few others hidden inside the AM, PM
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functions: the four angles 8, $, m, g (see Fig. 3 below)
de6ning the orientation and direction of the binary on
the sky and the direction of its total angular momentum,
the angle cos ~ between the orbital angular momentum
and the spin, the masses Mq and M2 of the two objects,
and the magnitude S of the spin.

j, sin(x) dx

j dx j sin (x) dx
= 0.900 . (28)

changes rather slowly during one precession (see Fig. 2
of Ref. [12]), one can infer that

C. How do the amplitude and phase modulation
afFect the FF?

FF = jo df ~~ (~)AM

jo df s Iy) je df s y) (AM)

The e' ~f~ term has disappeared because, with PM=0,
the FF is maximized by Etc = E(M ~ ) = 0. It is
straightforward to see that if AM were also a constant
(no amplitude modulation), the FF would be 1, meaning
no signal-to-noise reduction at all. But what if the am-
plitude has a large depth of modulation such as the A„
in Fig. 6 of Ref. [11]. For the sake of simplicity, we will
assume that the form of AM during one binary preces-
sion is approximately given by AM=~ sin(k f) ~

for some
I(, which very much resembles the plot of A&&~ in Fig. 6
of Ref. [11]. Bearing then in mind that f ~ /S (f)

Before we present the numerical results that we have
obtained for the FF in various cases, it will be helpful to
seek some intuition into the roles that AM and PM play
in the value of the FF. We will begin with the effect of
AM alone without any phase modulation. For vanishing
PM, the FF takes a much simpler form than Eqs. (26):

Of course this is a lower limit on the FF due to AM, since
it corresponds to the deepest possible modulation.

To get a feeling for realistic minimum values of the FF
due to AM, consider a binary with a maximally spinning
10Mo black hole and a nonspinning 1.4Mo neutron star
with an I S angle of 30 and choose its location and ori-
entation to produce the worst possible amplitude modu-
lation. Then the FF with no PM turns out to be 0.907, in
very good agreement with our rough approximate value
of Eq. (28).

'I'urn, now, &om AM with vanishing PM to PM with
vanishing AM. The analysis in this case is somewhat more
complicated, since the two parameters Bt~, A(M s~s)
have to be suitably tuned, to cancel out as well as possi-
ble the effects of p, and b@ given in Eqs. (13), (14). It can
be easily veri6ed that a perfect cancellation is not possi-
ble: The simple frequency dependence of 4(f) [Eq. (26b)]
cannot perfectly correct for the oscillating behaviors of y
and b4. If the amplitude of phase modulation is high,
then 4(f) is totally unable to keep the FF at high levels
(& 0.9).

There is another effect (for some cases the main effect)
that causes PM to produce low values of the FF. As has
been shown in Eq. (45) of Ref. [11], the number of pre-
cessions for the two extreme cases I )) S, S )) I can be
inferred &om the following expression for the precession
angle:

3M~ 10Mo 10Hz
~(&) 4Mi M f

2/327r 1 9 4Mi M~ Mi~ M f

for I )) S,

for S )) L.
(29)

Now, in the case of secular evolution of rp (see Fig. 7
of Ref. [11]),p varies like n(f) on top of the additional
oscillation we talked about in the last paragraph. But the
frequency dependence of n(f) is very different (oc f
to f ) f'rom that of 4'(f) Therefore, . 4'(f) cannot follow
the evolution of y+2L4 for long &equency intervals, and
the FF remains at low levels.

Finally, there is a third PM effect that can lead to low
FF values. If the PM changes behavior, &om oscillatory
to secular or conversely, especially at a &equency near

50 Hz where f ~~s/S (f) is maximal (see Fig. 2 of
Ref. [12]), then 4(f) can only attempt to follow the PM
evolution during one of the two evolution phases; it will
fail during the other. This leads to even lower values of
the FF. Later on, in Sec. IV, we will check with realistic
examples how important these three factors are in low-
ering the FF and what are the chances for each one of
them to play an important role.

For the moment, we will give an example of the FF
due to PM alone. For the same BH-NS binary as we
discussed a few paragraphs above, when we were exam-
ining the efFect of the AM on the FF, the lowest value
the FF can take for the worst kind of PM is 0.564. This
is much lower than the worst FF for the AM alone. It
should be noted that the FF values due to PM alone and
AM alone cannot be trivially combined to obtain the FF
value when both PM and AM are present. For instance,
for the above example, where PM alone gives FF=0.564,
if the AM alone had been used, then the FF would have
been 0.922, but with both AM and PM on, the FF would
have been 0.653. Instead of driving the FF to lower val-
ues (below 0.564), the AM effect has reduced the bad
behavior of the PM effect by strongly suppressing some
parts of deep PM modulation. But this is not a general
rule. Sometimes AM combines with PM constructively
and sometimes destructively.
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IV. NUMERICAL INVESTICATIONS
OF THE FF

A. Numerical code

The code written to compute the FF is based on
Eqs. (26a), (26b). The integrands are numerically in-
tegrated &om 10 Hz up to the &equency of the final sta-
ble orbit, 4383.45 (Mo/M) Hz. Actually this upper liinit
is rather unimportant for binaries with small total mass
(( 30MO) because the detector's high shot noise S (f) at
high &equencies strongly suppresses the integrand. The
number of steps used is such that the precession angle n
does not change by more than 0.1 rad in each step; this
keeps the error in the calculated FF smaller than 10
and therefore negligible since we compute the FF only to
three significant digits.

We have also checked the error due to approximating
the square brackets in Eq. (17) by unity. As we expected,
the extra factors next to the 1 change the FF by a tiny
amount (( 10 ) even for rapidly modulated phases and
amplitudes.

The only difhculty in computing the FF is to guess the
right pair of parameters Etc, b, (W ~ ) that produces
the maximum in Eqs. (26a), (26b). Of course, the code is
able to climb up at a maximum, but there is no guarantee
that this is the global maximum. The form of the function
to be maximized on the two-parameter Etc, b, (M)
space is very complicated; see Fig. 2.

We have roughly guessed the region of the
global maximum by computing the average value of
d(modulating phase)/df around 50 Hz and adjusting the
parameters of d4(f )/df so that the two slopes are almost
opposite. Then, starting &om this point the code climbs
up to the neighboring maximum. By searching a little
bit around this peak we can be quite sure that it is the
highest peak.

This procedure becomes more complicated in cases like
the one where PM changes behavior at some &equency.
Then, there may be more than one candidate place for
a global maximum. In the examples that follow we have
carefully examined all such candidate places.

It is worthwhile to note that the improved template
families we introduced in Secs. VI and VII produce lower
values of ~Etc ~, ~A(M s~s)

~

than the Newtonian family
because the extra parameter itself corrects for PM and
AM.

Throughout, we have used a grid on the two-parameter
space with a spacing of 1 msec for Lt~ and 2 x
10 sMO for A(M ~ ). This choice is such that
the difference for two nearby grid points in the overall
change of jd4(f), over the band of low detector noise
(10—100 Hz), is less than 1 rad. Hence the FF changes
very smoothly from point to point.

B. Dependence of the FF on the direction to the
binary

In order to study the dependence of the FF on the bi-
nary's direction we performed the following search. We
assumed that the merging compact binary is located di-
rectly above the North Pole of the Earth (of course this
choice is only a matter of convention since any other point
on Earth would be equivalent). We fixed the direction of
the binary's total angular momentum J and let it precess.
Then we filled the whole Earth's surface with identical
detectors having the same noise spectrum, described by
Eq. (21), and computed the FF for their outputs.

There are three angles related to the location of the
detector: the standard 8' and P' spherical coordinates
related to the geographic longitude and latitude of the
detector's location [not to be confused with the angles 0
and P used in Eqs. (15a), (15b)j and an angle to defining
the orientation of its arms. In the following we define m

to be the angle that one has to rotate the detector on the
Earth's surface, for the arms to coincide with the local
parallel and meridian (see Fig. 3). Note that tv is only
defined modulo z/2 due to the quadrupolar behavior of
gravitational waves.

By keeping m fixed and moving the "rotated" detector
around the Earth, we notice the following features of the
FF. (i) The FF has the same form, as a function of longi-
tude at any latitude, but with some shift p that depends
on the latitude and on the rotation angle m:

FF(0', P', to) = FF(8' = 0, Q' + p, to), (30a)

where

p = p(0', to) . (30b)

FIG. 2. This is an example of the complicated landscape
of the FF on the parameter space of Etc, A(M ~ ) where
many local maxima can be observed. The geometry used here
is the one that provided the overall lowest FF value for the
case of a maximally spinning 10Mo black hole and a 1.4Mo
neutron star with LS = 30 .

This dependence is depicted in Fig. 4 for three different
8' values. It can be explained by the following argument.
If the detector's plane is not perpendicular to the waves'
propagation direction, then the signal is the same as if
the two arms were the projections of the original ones
on the plane perpendicular to the propagation direction.
The equivalent arms, orthogonal to the direction of the
binary, are no longer equal to each other and they form
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FF(8' = 0, p'„tpg ——0) = FF(8' = 0, Q2 = 0, tp2 ——Q', )

(31a)

and

FF(8' = rr/2, Q~, tpg) = FF(8' = 0, Q~, rrr2 ——0) . (31b)

The former corresponds to the fact, easily seen in Fig. 4,
that for 8' = 0 the detector's orientation depends only
on P' + tp and not separately on P' and tp. The latter
can be easily understood, since at the equator a detector
is equivalent to a one-arm detector perpendicular to the
incoming waves.

This dependence of the FF on the location of the de-
tector on Earth simplifies our investigation of the FF a
lot. Equation (30a) makes it possible to restrict ourselves
to detectors orthogonal to the propagation direction (de-
tectors at the North Pole) without any loss of generality.

FIG. 3. This is the geometry that we have used to investi-
gate the dependence of the FF on the various random angles
O', P', rrr, g.

some angle between 90 and 180 . If we now lengthen
the shorter arm to give them equal lengths and move
them by equal amounts toward the bisector to make them
perpendicular, we will change the linear combination of
h+(t) and h&& (t) (the two waveforms) that they measure,
but this change is not important because we could get
all the difFerent combinations of polarizations, even with
orthogonal detectors (detectors at the North Pole in our
case) by rotating the detector in its plane. (ii) For the
two special cases of detectors at the North Pole (and
equivalently at the South Pole) and at the equator it is
easy to verify analytically that

C. Dependence of the FF on the direction of the
binary's total angular momentum J

f
—2rl cos AL,

da =
& 2rr( —cos AL, + 1)

p (LA
, 2rr( —cos AL, —1)

if /Jp. L/ ( /Jp N
if Jp L) /Jp N/,
if Jp L ( —/Jp ' Nf.

As for p, its evolution can be deduced using an intu-
itive tool introduced in Ref. [11],the cell diagram (which
is reproduced in Fig. 5). There are six special "singular"

We assume, now, that the binary is overhead at the
detector and we move the total angular momentum J
around to see how its direction J affects the FF.

Recall that the modulational phase is the sum of two
terms, PM = e ' '+~ ' [cf. Eq. (12)]. From Eq. (65)
of Ref. [11] we know that during one precession b4'

changes by

0.9
FF 0, 8

0.7
0.

(b) (c)

0.9
FF 0.8

0.7
0.

0.9
FF 0.8

0.7
0.

FIG. 4. This is a series of 3 three-dimensional plots show-
ing the FF for a binary of fixed orientation as one moves a
detector on the Earth's surface keeping rrr fixed. (a) rv = 0
(b) rrr = 25, (c) rrr = 40 . The plots verify Eqs (30a), (30b),
(31a), (31b).

FIG. 5. This cell diagram, reproduced from Ref. [11], is a
useful tool for understanding how the phase y evolves while L
precesses, for a detector positioned as shown in the diagram.
Each wall in the diagram is labeled by the value that y takes
when L lies in that wall. The lines at which black and white
walls intersect are singular directions; when L passes near
such a line, p changes rapidly.



614 THEOCHARIS A. APOSTOLATOS 52

directions in the cell diagram: the six intersections of
the black and white cell walls. If the binary's precession
cone (the cone on which its orbital angular momentum
L precesses) encloses one of the singular directions, then
y evolves secularly; otherwise, it oscillates. We expect p
to behave in the most irregular way and thus cause the
FF to assume its lowest values for the cases where L's
spiraling precession barely touches one of these singular
directions at a frequency near 50 Hz, where f i' /S (f)
is maximum (see Fig. 6).

Actually, for the two singular directions where
changes by 4' with each precession that encloses them,

2h4 changes by —4vrcosAL, (which is —40r if LS
is smail), thus moderating the total phase modulation.
Correspondingly, as we will see later, these two direc-
tions produce fairly high values for the FF, when LS is
small.

By contrast, for the other four singular directions,
around which y changes by 2m with each precession, 2 b4
changes only by 4vr(1 —cos AL, ), a small angle if the open-
ing angle LS is small. Thus these four directions will
typically produce the lowest values of the FF.

It should be emphasized that it is not J itself that
leads to low FF values by pointing along these singular
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FIG. 6. This is a series of density plot dia-
grams showing the FF distribution in a grey
scale (black represents the lowest values) for
a detector at the North Pole as one rotates
its arms (variable m) and changes the incli-
nation g of the binary's total angular mo-
mentum J to the z axis (the Earth's rota-
tion axis) while keeping J in the y-z plane
(see Fig. 3). We have arranged the figures
in pairs. The left column corresponds to a
1.4Mo, 1.4MQ NS-NS binary and the right
column to a 10Mo, 1.4Mo BH-NS binary.
For both types of binaries the more mas-
sive object is maximally spinning (S, = M, ).
The ring with the low FF around the singu-
lar direction (g = 90, ur = 45 ) can be easily
recognized. Actually only one-eighth of the
whole (g, to) space is displayed here since the
same pattern is repeated.
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directions, but L. Thus, to produce low FF's J should
find itself in ringlike areas around these singular points;
see Fig. 6.

The situation is much more complicated if the opening
angle LS is big than if it is small (but excluding the ex-
treme value of = 180 which would lead to transitional
precession). In this case the cone of L can encompass
more than one singular direction, leading to multiple be-
havior of the phase evolution and low values of the FF.

In general in the parameter space [Etc, E(M ~ )]
there are at most as many candidate regions, for expres-
sion (25a) for tl - FF to acquire its global maximum, as
the number of singular directions encompassed by the
cone of L. This happens because, when the evolving pre-
cession cone passes through each of the singular direc-
tions, the behavior of the phase evolution changes. This
information enables us to initiate our numerical search
for the FF for various geometries.

10
5

50'

D. Dependence of the FF on the masses
and the LS angle

Up to this point, we have investigated the dependence
of the FF on all the randomly distributed variables de6n-
ing the geometry of the source-detector system. These
are the variables over which we must average to obtain a
probabilistic picture of the FF. In the present section, we
discuss the effect of the other, nonrandomly distributed,
variables Mq, M2, S, and LS. In the following, as in
Sec. IV C, we assume that the larger mass is maximally
spinning:

FIG. 7. (a) This three-dimensional plot shows how the
opening angle Az, of L changes with frequency (from 10 Hz up
to the frequency of the last stable orbit) for various LS angles,
for two representative binaries: (a) a 1.4MO, 1.4Mc NS-NS
binary with one of the stars maximally rotating, S, = M~~, (b)
a 10MO, 1.4MO BH-NS binary with the black hole maximally
rotating.

is small the values of the FF stay at a high level for most
of the various geometries, whatever the masses may be.

5=M~ . (33)
V. DETECTABILITY OF PRECESSING

BINARIES

As we showed in Sec. IVC the FF value depends
greatly on the opening angle Ap of the precession cone,
and the singular points it encompasses. The angle Ag
itself is a function of the binary's masses, the LS angle,
and the gravity wave frequency [cf. Eqs. (2), (4)]. It is
easy to show that

—= 40.088
r. (Mi rM fi"
S qM, ) gMo Hz)

From Eq. (2) with L = /Mr we see that the opening
angle Ar, is larger if L/S is lower, i.e. , if the total mass
M is higher and the ratio of masses is lower [Eq. (34)].
Restricting ourselves to our two typical combinations of
masses, one with a 10MO black hole and a 1.4MO neutron
star and the other with two 1.4MO neutron stars, we can
see that in the NS-NS case the AJ. opening angles are
much smaller than in the BH-NS case; cf. Fig. 7. Hence
we expect, and it is true as we shall see in examples in
Sec. V, that the NS-NS binaries produce overall higher
values of the FF than NS-BH or BH-BH binaries with
unequal masses.

Of course the LS angle plays also a crucial role. If LS

We have thoroughly analyzed how the various random
variables, such as the position on the sky and the ori-
entation of the binary's plane, affect the FF values. We
have also checked how the nonrandom variables such as
the masses and the LS angle affect the worsening or im-
provement of the FF. But ultimately what is important
is the probability of detecting these modulating signals.
In this spirit, for a number of typical values of the non-
random parameters, we have integrated all the random
variables to investigate what is the probability to have
a FF value above some level and therefore to be able to
detect the gravitational waves coming from (Newtonian)
precessing binaries using the nonprecessing Newtonian
template family. In Fig. 8, the probability P(FF(FFp)
of getting a FF value below some level FFo is depicted.
Part (a) of the figure shows this probability for our stan-
dard 1.4MO, 1.4MO NS-NS binary for various LS angles.
Things look very optimistic in this case; only a very small
portion of the geometries produce FF's below 0.9 with a
corresponding reduction in the event rate. In Figs. 8(b),
by contrast, one can see that for our standard 10MO,
1.4MO BH-NS binary, if the LS angle is large enough
(& 30 ) the FF is below 0.9 for more than half of the
various randomly distributed geometries.
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FIG. 8. By compiling the values of the FF for all the cases
shown in Fig. 6, we obtain the probability over all the random
variables for the FF to stay below some critical value FFO.
The curves in this figure show that probability for various
values of the opening angle LS. Plot (a) is for NS-NS binaries
and (b) for BH-NS binaries with the same masses and spins
as in Fig. 7.

FIG. 9. The same kind of plots as in Fig. 8 but for the
(unmodulated) post -Newtonian family of templates used to
search for modulated Newtonian signals. Again (a) is for
NS-NS and (b) for BH-NS. Only a few (the worst) cases are
shown here, for comparison with the ones in Figs. 8.

VI. POST-NEWTONIAN TEMPLATE FAMILY

3
@pN(f) = 27rftc —Pc + —(8~~f) + A f4

(35b)

TpN(f) = const x f e' (35a)

with

Of course an obvious way to improve the detectability
is to use the full family of modulated theoretical wave-
forms in the search for signals; then, the FF would be
unity and we would obtain the maximum possible signal
to noise. But this solution is rather undesirable since the
modulated waveforms are a very large family containing
many parameters, and this would greatly increase the
computational task and seriously reduce the statistical
significance of any discovered signal. What we need is a
variation of the Newtonian filter with only one or two ex-
tra parameters that can improve the FF values by better
matching the complicated phase evolution of the signals.

As we have seen in Sec. IIIC, the main reason that
a Newtonian template cannot follow the evolution of the
PM is that the only &equency evolution of its phase 4(f)
is (3/4)(8vrM f) s~s [cf. Eq. (26b)], while n(f) [the pre-
cession angle; see Eq. (29)] evolves oc f 2~s or f ~ de-
pending on the relative sizes of L and S. A simple way,
then, to solve our problem is to add an extra term onto
the phase evolution of the Newtonian template, a term
with a softer than f s~ dependence on f, for example
an A f term, where A is the new template parameter:

Since this A f term is also exactly the correction to the
phase that is required to match the binary's nonmodu-
lated post~-Newtonian effects in the waveform [12], this
template family (henceforth, we shall call it the "post~-
Newtonian template family" ) might well be the best one
can construct with four parameters (t cP cM, A) alto-
gether. Our code is able to handle the new parameter in
the maximization process to compute the FF. We have
attempted a few runs with the extra term for the worst
cases we presented in the previous section. It turns out
(see Fig. 9) that this extra term helps a lot in matching
the modulated Newtonian waveforms, but it still leaves
the FF below 0.9 for most of the geometries of our stan-
dard BH-NS binary when LS is greater than 45 .

VII. NONMODULATXONAL POST-NEWTONIAN
EFFECTS AND A POST~'~-NEWTONIAN

FAMILY

Up to this point we have assumed modulated Newto-
nian waveforms as signals. But what about the nonmod-
ulational post-Newtonian e6'ects? We neglected them so
as to explore the inBuence of precession-induced modu-
lation on the FF in isolation Rom other post-Newtonian
eKects. Now we are ready to consider these other e8'ects.
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As we said in the Introduction, Kokotas, Krolak, and
Schafer [7] and Balasubramanian, and Dhurandhar [8]
have investigated the importance of all the higher non-
modulational post-Newtonian corrections currently avail-
able, namely, the post — and post -Newtonian correc-
tions in the signal, and have found that the Newtonian
template family produces rather low FF values for such
signals. We have repeated their calculations and con-
Grmed their results. In addition, we have calculated the
FF values for all the possible combinations between New-
tonian and post-Newtonian nonmodulated signals and
templates, and have incorporated the effects of spins,

hp. .sN(f) = const x f e' (36a)

where

with LS =0 (and thus no precession), into the calcu-
lations. Of course, when we use signals and templates
of the same post-Newtonian accuracy, we get FF values
equal to 1.

Before we present our general results, let us write down
the form of the most accurate nonmodulated waveform
currently available (see Refs. [12,13]), with all the post-
Newtonian effects in the amplitude ignored:

@p~'N(f) = 2'rrftc —Pc + ('IrMf) 1 + —
~

+
~

x —(16vr —4P) x
3 20 (743 lip) 3/2

128 9 g 336 4M)
(36b)

and

x = (7rMf) ~ (36c)

l'113 25M2 l (113 25M' l

(36d)

One can easily identify the O(x) post -Newtonian cor-
rection in (36c) as the A f ~ post~-Newtonian term that
we introduced in the previous section as an improvement
to the Newtonian family.

Table I shows the results of our calculations. Here, by
contrast with Secs. IV and V, the signal in each column
is unique. The many signal parameters that we faced
in Secs. IV and V (LS, detector orientation, direction
of J, direction to source) vanish &om the signal in this
section's nonprecessing limit, LS=O. From Table I, one

can see that the FF values for the post ~ -Newtonian
signal (without precession) and the Newtonian or the
post -Newtonian template family are much too low for
these families to be adequate for detection. These low
FF's can be explained by the fact that the signal term
xs~2 (which is left out of the templates) is comparable
with the x term (which the post~-Newtonian templates
include), and has the opposite sign.

Because the Newtonian and post -Newtonian fami-
lies are so inadequate, it is necessary to include higher-
order, nonmodulational effects in the waveforms. This
can (and should) be done up to the highest available
post-Newtonian order, without introducing any new pa-
rameters, in the case of vanishing spins. However the
waveforms are not yet known beyond post ' -Newtonian
order; so for now we only go that high.

More speci6cally, we introduce a post -Newtonian
template family whose form is that of Eqs. (36a)—(36d)
but with the new spin parameter P set to zero:

TABLE I. We present here the FF values for a Newtonian, a post -Newtonian, and a
post -Newtonian signal with maximal spin [maximal P; where P is given in Eq. (36d)] but no
precession, being searched for by three families of templates: the Newtonian family [Eq. (9)], the
post -Newtonian family [Eq. (35a)], and the post -Newtonian family [Eq. (37a)]. Note that the
post ' -Newtonian templates are assumed to have P = 0 in order to keep the number of parameters
low. The post ' -Newtonian signals though are chosen to have the maximum possible P parameter
by aligning the big object's maximal spin with the angular momentum of the binary (the small
object is assumed to have no spin). For every case, two FF values are given, corresponding to a
10Mo —1.4Mo BH-NS binary and a 1.4Mo —1.4Mo NS-NS binary. Since modulational eKects are
absent (the spin and angular momenta are aligned), the binary's orientation does not affect the FF
values. The numbers quoted in this table are discussed more extensively in Sec. VII.

N template

P -N template

P -N template
(p = o)

N signal

1.000 (BH-NS)
1.000 (NS-NS)

P -N signal

0.559 (BH-NS)
0.465 (NS-NS)
1.000 (BH-NS)
1.000 (NS-NS)

P -N signal
(P maximal)

0.692 (BH-NS)
0.594 (NS-NS)
0.6gg (BH-NS)
0.546 (NS-NS)
0.987 (BH-NS)
0.985 (NS-NS)
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Tpx. sN(f) = const x f e (37a) (a)

where

3+' "(f)= 2~ft~ O~—+ (~~y)-'~'
128

20 (743 llpix I + —
~

+ I

—16
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Again we ignore all the post-Newtonian effects in the
amplitude. Note that the O(x) correction is equivalent
to the A f term of the posts-Newtonian template.

We have explored the adequacy of this four-parameter
(tc, P~, M, A) family in searches for waves &om non-

precessing but maximally spinning (LS=O) posts. s-

Newtonian binaries. The resulting FF (0.987 for BH-NS,
0.985 for NS-NS; see Table I) is excellent. The unirnpor-
tance of the spin effects (the P factor in the signal) is due
to the small value of P compared to 4z [see Eq. (36a)].
The situation becomes worse (lower FF) for an extreme
ratio of masses (FF 0.895 for M2/Mi ——0.05), since
for a maximally rotating large black hole (with mass
Mi) and a small nonrotating black hole or neutron star
(with mass M2) P grows like the ratio Mi /(Mi + M2) .
(The FF values quoted in Table I for a posti s-Newtonian
signal and template assume that only the more massive
bod.y is spinning with S, = M; L; the more massive was
chosen in order to obtain the maximum value for P.)
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FIG. 10. The same kind of plots as in Fig 9 but for the
zero-spin post ' -Newtonian family of Eq. (37a), and a signal
in which the Newtonian-order precession e8ects are added on
top of the more realistic post ' -Newtonian signal. Again (a)
is for NS-NS and (b) for BH-NS. Only a few (the worst) cases
are shown here, for comparison with the ones in Figs. 8.

IX. CONCLUSIONS

VIII. MODULATED POST~'~-NEWTONIAN
SIGNALS SEARCHED FOR WITH THE

POST~ ~-NEWTONIAN FAMILY'

We now consider the suitability of this post
Newtonian family (37a) for detection of spin-modulated
signals. For this purpose we have used as signals the
nonmodulated post~ 5-Newtonian signals for our typical
NS-NS and BH-NS binaries and have modulated. them
according to the AM and PM introduced in Sec. II:

h(f) = AM X PM X hpx. sN(f) (38)

Although the modulational effects are based on Newto-
nian orbits and quadrupole wave generation, this arti6-
cial composition of signal will surely give us a more re-
alistic kind of signals than just the nonmodulated post-
Newtonian or the modulated Newtonian signal.

The FF values we have obtained with our four-
parameter post Newtonian templates and. the modu-
lated post -Newtonian signals were at least as good as
the values we obtained in the previous section for un-
modulated post -Newtonian templates and modulated
Newtonian signals; see Fig. 10. This was to be expected
since the two terms a / and x in the templates' phase
[Eq. (37b)] have the exact frequency dependences that
the precession follows for the two extreme cases of Eq.

This paper is an initial exploratory work on the issue
of search templates which will be used by the ground-
based LIGO-VIRGO-GEO and space-based LISA detec-
tors, for detecting gravity wave signals from inspiraling
black hole and/or neutron star binaries. We have in-
troduced a measure of adequateness of a template fam-
ily (the fitting factor) and have shown (in agreement
with other people's work) that the Newtonian and the
post Newtonian template family are inadequate to de-
tect nonmodulated post ' Newtonian signals. We have
then suggested the use of the post -Newtonian fam-
ily with one more parameter than the Newtonian fam-
ily. The post -Newtonian family produces higher FF's
than the Newtonian family not only for nonmodulated
post -Newtonian signals but for precessionally modu-
lated signals too.

The understanding of FF's gained from our study sug-
gests that for most binaries, but not all, an adequate
family of search templates will be the four-parameter
family (P~, tc, M, A), or equivalently (Pc, tc, M,
p/M), based on the waveforms for circular-orbit, zero-
spin binaries at the highest post-Newtonian order n
that is available when the searches begin. This is likely
to be post -Newtonian order, i.e., n „=3. It may
well be, however, that as at present (n „=1.5), and
so also then, binaries with moderately large mass ratios
and mod. erately large LS, i.e., with large precessions, will
have unacceptably low FF's when this four-parameter
family is used. In preparation for that possibility, an
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efrort is needed now to expand the n „=1.5, four-
parameter family to include some form of modulation
that raises the FF above 0.9 in these large-precession
cases. This also might be done for the extreme mass-ratio
p, /M « 1, n „=8, four-parameter template family
based on the Teukolsky-formalism waveforms of Sasaki
and Tagoshi [14].

Throughout this paper we have restricted ourselves to
template families with continuously varying parameters.
Now is the time to abandon that restriction and focus
on discrete template families. The goal must be building
on the continuous-family insights of this paper and on
Refs. [7,8] to devise a discrete family with as small a
number of members as possible, which gives FF ) 0.9 (or
some other threshold) for all plausible binary waveforms.
A 6rst exploration of discrete template families has been
carried out by Dhurhandhar and Sathyaprakash [6].
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FIG. 11. The same kind of plot as in Fig. 8 but for a
10 Mo, 1.4 x 10 Mo BH-BH binary, with LS= 60 and a
noise spectrum given by Eq. (Al) (thick line). The cor-
responding plot for a 10Mo, 1.4MO BH-NS binary, with
LS= 60 and a noise spectrum given by Eq. (21) is copied
here from Fig. 8 for comparison (thin line).

ACKNOWLEDGMENTS

I am grateful to Kip Thorne for suggesting this prob-
lem, and for many helpful discussions and comments. I
would also like to thank Eanna Flanagan for many helpful
discussions with respect to signal analysis and Eric Pois-
son for pointing out that the extra term A/f introduced
to improve the Newtonian filter is the same as the post—
Newtonian nonmodulational correction to the waveform.
This work was supported in part by NSF Grant No.
PHY-92135082 and (in view of its auxiliary implications
for space-based gravitational-wave detectors) by NASA
Grant No. NAGN-2897.

APPENDIX: EXTENSION OF THE RESULTS TO
LOW-FREQUENCY SPACE-BASED DETECTORS

Preliminary designs for a space-based antenna (LISA)
to detect gravitational waves from supermassive black
holes have been developed, and LISA has been proposed
for a future space mission (see Refs. [16]). The noise
spectrum for such a detector has been estimated to have
roughly the following shape; this is an analytic 6t to Fig.
2 of Ref. [15]:

(f/1 mHz) 4 for f & 1 mHz,
S„(f)=Sox& for 1 mHz & f & 0.1 Hz,

10 4(f/1 mHz)2 for f ) 0.1 Hz,
(Al)

with Sp = 10 Hz . Actually, there is one more
branch of the noise spectrum for &equencies below 10
Hz, which grows with decreasing f even faster than
oc f 4, but since the noise levels are already so high
at these low frequencies, we can ignore this branch and
restrict ourselves to the above approximation when com-
puting the FF for binary signals.

There is a great similarity between the shapes of the
noise spectra of the ground-based [Eq. (21)] and the
space-based [Eq. (Al)] detectors. There is a big dif-
ference, however, in the range of &equencies over which
these detectors have high sensitivity: 6ve orders of mag-
nitude. The equations describing the precession of a
binary and its waveforms depend only on the ratio of
masses and the product fM [see Eqs. (2), (3a), (34)].
Therefore, if we use as examples binaries with masses
10 times larger than for the binaries considered for the
ground-based detectors, and keep the same mass ratios,

we should get approximately the same FF values as for
the LIGO-VIRGO-GEO detectors. The only differences
will come &om the modest difI'erences in the shapes of
the noise spectra (21) and (Al), and since the spectra
are so similar, the FF's should be nearly the same.

We verify this in Fig. 11 for the case of a Newtonian
template family and a maximally rotating 10 Mo and a
nonrotating 1.4 x 10 Mo BH-BH binary, with LS= 60'
and a noise spectrum given by Eq. (Al). The correspond-
ing plot of the FF probability distribution over the ran-
dom variables for a 10MO, 1.4MO BH-NS binary, with
LS= 60' and a noise spectrum given by Eq. (21), is
copied here &om Fig. 8 for comparison. The fairly good
agreement is obvious. Thus, all the results derived in
this paper for LIGO-VIRGO-GEO search templates can
be carried over essentially without change to LISA, and
this paper can be regarded as an initial exploratory study
of templates for LISA as well as for LIGO-VIRGO-GEO.
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