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A general covariant quantization of a superparticle, Green-Schwarz superstring, and a supermem-
brane with manifest supersymmetry and duality symmetry is proposed. This quantization provides
a natural-quantum mechanical description of curved BPS-type backgrounds related to the ultra-
short supersymmetry multiplets. Half-size commuting and anticommuting Killing spinors admitted
by such backgrounds in quantum theory become truncated k-symmetry ghosts. The symmetry of
Killing spinors under dualities transfers to the symmetry of the spectrum of states. A GS super-
string in the generalized semi-light-cone gauge can be quantized consistently in the background of
ten-dimensional supersymmetric gravitational waves. Upon compactification they become super-
symmetric electrically charged black holes, either massive or massless. However, the generalized
light-cone gauge breaks S duality. We propose a new family of gauges, which we call black hole
gauges. These gauges are suitable for quantization both in flat Minkowski space and in the black
hole background, and they are duality symmetric. As an example, a manifestly S-duality symmetric
black hole gauge is constructed in terms of the axion-dilaton-electric-magnetic black hole hair. We
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also suggest the U-duality covariant class of gauges for type II superstrings.

PACS number(s): 11.25.Hf, 11.30.Ly

I. INTRODUCTION

For many years one of the main goals in the quan-
tization of superstrings, superparticles, and supermem-
branes was to perform the quantization-preserving mani-
fest ten-dimensional supersymmetry and Poincaré invari-
ance. This proved to be an extremely complicated prob-
lem; its formal solution involved operations with an infi-
nite number of ghosts for ghosts. It may happen that
eventually we will find a simple way of working with
this formalism. However, it is not inconceivable that
the requirement of ten-dimensional Poincaré invariance
is excessively strong, since it prevents us from study-
ing string theory in the self-consistent gravitational back-
ground created by string excitations.

Indeed, the main idea behind the standard approach
was to use perturbation theory near the flat Poincaré-
invariant background. However, recently it was conjec-
tured that among the string eigenstates there are extreme
black holes. These black holes in some respects behave
as ordinary elementary particles. A consistent quantiza-
tion of string theory should describe such states as well.
Meanwhile, black holes certainly cannot be represented
as small perturbations of the flat Minkowski space. Some
eigenstates of the string theory, which look like extreme
black holes in d = 4, can be considered as gravitational
waves in d = 10. However, these gravitational waves
are not the usual plane waves obtained by solving equa-
tions for small perturbations in the linear approximation
(which could be associated with gravitons), but rather
exact solutions of the full nonlinear gravitational equa-
tions.
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These solutions have many interesting properties.
First of all, the bosonic configurations have unbroken
supersymmetries related to the existence of the Killing
spinors. This leads to a supersymmetric nonrenormal-
ization theorem [1] in gravitational theories. This theo-
rem implies that all perturbative quantum gravity cor-
rections to the on-shell classical action vanish in these
backgrounds. This is very unusual, since previously the
only background with such a property was the trivial
flat Minkowski space. Also, these solutions, which are
called Bogomolny-Prasad-Sommerfield (BPS) states, sat-
urate the supersymmetric positivity bound

M=|z|. (1)

They have some (nonperturbative) duality symmetries,
which relate to each other, e.g., electric and magnetic
black holes. There are strong indications that under-
standing of such states will be essential for the investiga-
tion of nonperturbative properties of string theory.

One may try to find a generally covariant string quan-
tization procedure which will preserve such nonpertur-
bative symmetries as duality invariance. This will be
the main goal which we will try to pursue in the present
paper. If successful, such a program may provide a max-
imally symmetric quantization compatible with the non-
perturbative structure of the theory. Simultaneously, it
may give us an adequate quantum-mechanical descrip-
tion of extreme black holes, gravitational waves, and
other BPS states in terms of string theory.

Investigation of the BPS states it the key feature of
recent activities in string theory. However, these states
have a dual status. To obtain the corresponding solu-
tions one is using purely classical concepts of space and
time and classical fields, including the metric of extreme
black holes or fundamental strings and membranes. On
the other hand, one is attributing a certain quantum-
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mechanical meaning to these states. One would like to
get a coherent description of these “geometry states”
from the point of view of string theory. As a step to-
wards understanding the quantum-mechanical meaning
of the states describing various geometries, we suggest
finding the place of the BPS states in the quantization of
Siegel’s k symmetries.

It is known that the gauge x symmetries on the world
line of the superparticle, on the world sheet of the Green-
Schwarz (GS) superstring, and in the world volume of the
supermembrane share the following important property:
the spinorial parameter of the gauge transformation has
to be somehow broken into two parts. Only one-half of
the spinor has to take part in the transformations, the
second part has to be thrown out to comply with unitar-
ity principle. This implies that the BPS-type geometries
with one-half of supersymmetry unbroken may help us to
perform the quantization of k-symmetric objects. In ad-
dition, the procedure of quantization via such geometries
may help us to reveal the hidden symmetries of classical
supergravities [2] in the spectra of the quantized string.

Another important feature of x symmetries is that for
the classical (not quantized) superstring to be invariant
under the x symmetry in a nontrivial background re-
quires the background to satisfy classical equations of
motion. Thus even the classical k-symmetric string lives
only in configurations which solve equations of motions,
in particular, in the soliton-type configurations. We will
find that for the quantized string the constraints on the
background are even stronger.

Thus we propose to implement the structure of BPS
states and the hidden symmetries of classical supergrav-
ities [2] into the quantization of the gauge symmetries
of the superparticle, of the Green-Schwarz superstring
and of the supermembrane. Upon quantization one may
expect that only the S, T', and U dualities [3—-6] will sur-
vive. We would also like to reveal via quantization the
spectrum of the black hole multiplets with states classi-
fied by USp(4)xSU(2) and the value of the left-moving
charge for the heterotic string, and by USp(8) xSU(2) for
a type-II superstring.

Our approach will be very closely related to the
method of quantization in the generalized semi-light-cone
gauge suggested some time ago by the author and by
Morozov [7,8]. Semi-light-cone gauge is the gauge where
the two-dimensional metric is in the conformal gauge and
the spinor in the light-cone gauge v*6 = 0. Generalized
semi-light-cone gauge has a more general constraint on
the spinor in terms of a null vector n,vy*8 = 0, n? = 0.
Also an alternating set of gauges with two null vectors
n? = 0,m2 = 0, 2mn = 1 was used.

The formalism of Ref. {7, 8] was further developed by
Grisaru, Nishino, and Zanon [9] and by Candiello, Lech-
ner, and Tonin [10] for the heterotic o model in a curved
background. The most recent results are described in [10]
where also the reference to previous work can be found.
Both groups have found the constraints on possible back-
grounds where the heterotic string can be quantized con-
sistently in the generalized light-cone gauge. It remained
unnoticed, however, that their constraints are satisfied,
in particular, by the background of extreme electric black
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holes. We describe the backgrounds in which the already
existing quantization is valid and pay special attention
to the unusual properties of massless black holes.

The generalized light-cone gauge, in which the het-
erotic GS string was already quantized, breaks S duality
since the above-mentioned constraints on Killing spinors
are not satisfied by magnetic black holes. The basic rea-
son for this is the fact that the Killing spinors of electric
black holes are constrained by the null condition whereas
in magnetic case the constraint is chiral.

In this paper we will introduce a more general class
of gauges, which will allow us to perform a consistent
string quantization without an infinite number of ghosts
in an arbitrary half-supersymmetric background. In par-
ticular, quantization can be performed in backgrounds
including all known types of extreme electric and mag-
netic black holes and gravitational waves which could be
obtained by the black hole uplifting to d = 10. We will
be able to go from an electric black hole background to
a magnetic one simply by changing a gauge.

Note that we will be able to use these gauges even
in Minkowski space, i.e., even in the absence of black
holes. Thus one can use our method of quantization
even in the limit when the background becomes trivial.
However, this method becomes especially adequate for
investigation of physical processes in the nontrivial back-
grounds corresponding to the eigenstates of the string
theory, in particular when the background is given by
massive and/or massless black holes. The saturation of
the supersymmetric positivity bound in the limit

M=|Z|—=0 (2)

to the massless states will be included in our analysis.

The paper is organized as follows. In Secs. I-III we
formulate the general covariant quantization scheme for
k-symmetric theories in arbitrary half-supersymmetric
backgrounds. In Secs. IV-IX we apply the new quanti-
zation rules mostly in case of the four-dimensional black
hole backgrounds.

In Sec. II we introduce a new principle of a general
covariant quantization of the xk-symmetric objects in ar-
bitrary half-supersymmetric curved backgrounds. We
also identify the background in which heterotic GS su-
perstring in generalized light-cone gauge is known to be
quantized consistently, in compactified theory, with the
extreme electrically charged black holes. By passing, we
describe the unusual singularities of massless supersym-
metric black holes. In Sec. III we formulate the general
duality covariant constraint on the ghosts, which provides
a truncation of infinite reducibility of kx symmetry. The
constraint is given in terms of the zero mode of the super-
charge of the background. The central charge of the back-
ground is used for algebraic constraint on spinors. Sec. IV
displays the algebra of supercharges describing the BPS
states. In Sec. V we present duality covariant gauges
for the heterotic string. Sec. VI is devoted to the proce-
dure of quantization of k-symmetric objects in flat back-
grounds, for which the gauge-fixing condition is defined in
the limit of the vanishing background. In Sec. VII we de-
scribe the path integral for the Green-Schwarz heterotic
superstring in duality-symmetric gauges. Section VIII
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contains a detailed description of the S-duality covariant
class of gauges in terms of the axion-dilaton black hole
hair. In particular, we show that the spinorial part of
the black hole gauge behaves as a modular form of the
weight (%, — i) for the left-handed part and as the modu-
lar form of the weight (—i—, %) for the right-handed part
under S-duality transformations. This is the condition
under which the partition function on the torus is dual-
ity invariant. In Sec. IX the U-duality covariant class of
gauges is described.

In Appendix A we present some details on supersym-
metric gravitational waves in which the GS string can
be quantized consistently in the generalized light-cone
gauge. We also display the four-dimensional electrically
charged black holes related to these waves. In Appendix
B we discuss massless four-dimensional multi-black holes
related to ten-dimensional supersymmetric waves.

II. GENERAL COVARIANT QUANTIZATION
OF x SYMMETRY

Consider the Green-Schwarz superstring (as well as
other objects as superparticle and supermembrane which
have local kK symmetry) coupled to a most general on-shell
background! whose bosonic part has one-half of unbroken
supersymmetries. This means that the supersymmetric
variation of gravitino? vanishes,

dsusy P, = V,ex = 0, (3)

for some nonvanishing values of the supersymmetry pa-
rameter €, which is called Killing spinor. For the super-
membrane we are looking for the Killing spinors of 11-
dimensional supergravity. For type-II string theory the
background gravitino is given by two d = 10 Majorana-
Weyl spinors (of opposite chirality for ITA and same chi-
rality for IIB string) and by one Majorana-Weyl spinor
for the heterotic string and for the superparticle. In all
cases the background defines the split of the full spinor
€ into two parts, which we will call Killing spinor €; and
anti-Killing spinor eg:

€= € + €f - (4)

In terms of this split the concept of one-half of unbroken
supersymmetry means that for a given background only
the Killing spinor is the nonvanishing covariantly con-
stant spinor, and its dimension is equal to one-half of the
dimension of the full spinor, or, equivalently, the dimen-
sion of the Killing spinor equals that of the anti-Killing
one:

V“Ek = 0, €k 75 0 , (5)

'Under the on-shell background we mean the background
satisfying the classical field equations, which however may
have to be corrected to avoid k-symmetry anomalies.

2For configurations solving field equations and admitting su-
percovariantly constant spinors defined in Eq. (3) the super-
symmetry variations of dilatino and gluino with the Killing
spinor parameter €x vanishes, as will be explained later.
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and

Ve =0, ¢g=0. (6)
In addition,
dim [ex] = dim [ez] - (7

Typically, for the opposite sign of electric and magnetic
charges of the background the role of the Killing and
anti-Killing spinors is reversed:

q— —q, € — €k , (8)

P — —D, € > E€g,

i.e., in the “antibackground,” characterized by the oppo-
site charges, the anti-Killing spinor is the nonvanishing
covariantly constant spinor.3

We will treat separately the backgrounds with all su-
persymmetries unbroken (like flat space or Robinson-
Bertotti-type geometries), where

Vuek =0, e 96 0, (9)
and
Vg =0, e #0. (10)

For the purpose of quantization in flat background or
in any other maximally supersymmetric background (9)
and (10) the role of the half-supersymmetric background
(5) and (6) is to motivate the choice of the gauge fixing of
k-symmetric theories even when the curved background
is already absent: there will be still some special trace
of it in the system, like magnetization in the absence of
a magnetic field. In particular, even in the flat back-
ground we will basically use the black hole hair which
carries the duality property of the theory and represents
the property of the curved space at infinity.

The Killing—anti-Killing split of the full spinor in half-
supersymmetric backgrounds (5) and (6) is described as
a specific algebraic relation of the type

€k = Xk€ »
Xk€ > (11)

where the projectors xr and xj have the properties

€

B
I

xeXr =0,
XXk = Xk
XEXE = XF - (12)

The covariantly constant spinors may or may not depend
on space-time coordinates (depending on the configura-
tion and on the frame) but in all cases the algebraic re-
lation of the type shown above is valid for the constant
part of the spinors which they approach at infinity (for
asymptotically flat space-times).

The basic problem in quantization of k symmetry for
the superparticle, for the Green-Schwarz string theory

3In presence of SL(2, Z ) symmetry, as we will see later, trans-
formation (8) is a part of SL(2, Z).



and for the supermembrane is the following. The gauge
symmetry starts with the classical fields of the action,
but after it is fixed by using the first generation ghosts,
the ghost system also requires a gauge fixing, etc. The
origin of the problem is in the fact that the generator
of the gauge symmetry of the first-generation ghosts in
these theories is nilpotent on shell [7].

A procedure to truncate this infinite set of gauge sym-
metries was suggested in [7] on the basis of Batalin-
Vilkovisky [11] quantization method. We have proposed
to use some algebraic constraint on the mth generation
of the ghosts of kx symmetry, which makes the dimen-
sion of the truncated ghost equal to one-half of the non-
truncated one. The untruncated ghost is a gauge field
which requires a next generation of ghosts, whereas the
truncated one does not require a gauge fixing, or, to be
more precise, it does nor require the next generation of
the propagating ghosts. The truncation was presented in
Eq. (22) of [7] in the form

a“aCa(m) =0, a=1,...,8, a=1,...,16,

Ca(m) = &"‘aC"(m), Uaa&ab = 0. (13)
The issues of gauge independence as well as independence
on the truncation procedure were clarified in this paper.
It is clear now that despite many years of existence of
this formal quantization in terms of arbitrary orthogonal
projectors 0,6 we were lacking many interesting exam-
ples of such projectors which we know now. Moreover,
as we will see later in various examples, duality symme-
tries are the symmetries which rotate these projectors, or,
in other words, make all of them possible. The algebraic
constraint in our new quantization will come out from the
algebraic constraints which the Killing spinors of the half-
supersymmetric backgrounds satisfy. From this point of
view there will be no preference to any constraint: they
will appear on equal footing in the quantized string.

At the time when the quantization [7] was performed
the set of algebraic constraints which was available was
not very rich. In addition to the standard light-cone con-
dition y+t8 = (v° + 7v°)8 = 0 we have introduced a gen-
eralized light-cone condition, in which the constraint on
spinors was realized in terms of two null vectors:

nyn* =m,m’ =0, m,n = -21— . (14)
In particular, we have imposed the algebraic constraint
on the first-generation ghosts C(;) in the form

i Cay =0, Cu) =miCq, .

When constraint of this type is imposed, the theory can
be quantized as an irreducible theory with one genera-
tion of ghosts of x symmetry. The gauge, in which the
two-dimensional metric was considered in the conformal
gauge and the the fermionic coordinate of the GS string
@ in the light-cone gauge, was called the semilight cone
gauge. When the fermionic variable § was constrained in
terms of two-null vectors, as explained above, this gauge
was called the generalized semi-light-cone gauge.

We have also considered a less restricted differential,

(15)

52 DUALITY SYMMETRIC QUANTIZATION OF SUPERSTRINGS

6023

nonalgebraic gauge for 6 in which besides the stan-
dard Faddeev-Popov (FP) ghosts also the propagat-
ing Nielsen-Kallosh (NK) ghosts (related to Nakanishi-
Lathrup fields) had to be taken into account. The role
of these ghosts in Becchi-Rouet-Stora-Tyutin (BRST)
quantization was clarified in [12]. In this gauge the space-
time supersymmetry is realized linearly, as different from
the one with the algebraic constraint.

The partition function for the GS heterotic superstring
was constructed in [7, 8]. It was shown to be indepen-
dent (at least formally) on the choice of the truncation
condition on the ghosts and on the choice of the gauge
condition on the fermionic variable 6. In particular, in
this way one proves the independence on the directions
n,m in the choice of constraints. The contribution of the
second-class constraints was taken in the form in which
it was derived for the first time in the series of papers by
Fradkin and collaborators [13].

If one makes a special choice of the vectors n,, m, one
can recover the standard light-cone gauge. This corre-
sponds to the choice 7 = v° + +°. However, for arbi-
trary choice of the vectors there is no need to pick up
the direction 9, it could be any directions in the nine-
dimensional space 1,2,3,4,5,6,7,8,9. Using the mod-
ern language one can summarize this presentation by the
statement that our generalized light-cone gauge has a T'-
duality symmetry, SO(6) part of it, whereas the standard
light-cone gauge (7° + 7°)8 = 0 breaks T duality. A re-
markable thing about the proof [7, 8] of the independence
of the physical states on the choice of the direction n,m
is that it suggests a proof of the T duality of the states
which arise in the quantization of the string.

Comparing our old truncation condition (15) with the
properties of Killing spinors of the half-supersymmetric
backgrounds in general, given in Egs. (11) and (12), we
see that we have used one particular example of the gen-
eral projectors. Our projectors in (15) obviously satisfy
the relations

) eid) =0, ti1)’ =6i), @d)* =@d) . (16)

Therefore, the generalized (m,n) light-cone-type trunca-
tion of fermionic symmetry, which was used in [7, 8], is
associated with the Killing spinors of the backgrounds
for which

xx(GLC) =op , xz(GLC) =ngif .

The heterotic GS superstring o model was constructed
in [9]. It was discovered there that the quantization of
the heterotic string in generalized (m,n) light-cone gauge
is consistent only when the background is constrained in
a specific way, the constraint being stronger than the
requirement that the background satisfies classical equa-
tions of motion. The most recent quantization of the GS
heterotic & model was performed in [10]. Both groups
have studied the issues of kK anomalies.

We would like to reformulate here the constraint on
the background as given in [9,10] in a form which is suit-
able for the generalization to most general BPS states.
These states correspond to backgrounds of the super-
string, which have fermionic isometries related to Killing

(17)
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spinors of dimension equal to one-half of the full spinor.
To classify those isometries we will introduce the follow-
ing definitions.

Supersymmetric gravitational waves are the superge-
ometries whose bosonic part admits a supercovariant
Killing spinor and a null Killing vector.

Supersymmetric gravitational waves of electric type
are the supergeometries whose bosonic part admits a su-
percovariant Killing spinor satisfying the null constraint
7tex, = 0 where n is a null Killing vector.

Supersymmetric pp waves are the special set of su-
persymmetric gravitational waves of electric type whose
bosonic part admits a covariantly constant null Killing
vector.

Supersymmetric gravitational waves of magnetic type
are the supergeometries whose bosonic part admits a su-
percovariant Killing spinor satisfying a chiral constraint
(1 —T%)ex, = 0, where 1 — I'® is a chiral projector in any
SO(4) subspace of the full SO(1,9) tangent space of the
supergeometry. They also admit at least one null Killing
vector.

Supersymmetric gravitational waves of electromagnetic
type are the supergeometries whose bosonic part admits
at least one null Killing vector and the supercovariant
Killing spinor satisfies the constraint which is neither null
nor chiral.

The constraints on the backgrounds in which the het-
erotic string can be quantized consistently in the gen-
eralized light-cone gauge were presented in [9, 10]. It
remained unnoticed that these constraints require the
background to correspond to electric BPS states. In more
precise form our analysis shows the following.

The heterotic GS string can be consistently quantized
in (m,n) light-cone gauge in the background of ten-
dimensional supersymmetric gravitational waves of elec-
tric type or in any compactified form of it. In partic-
ular when the supersymmetric wave is reduced to four-
dimensional theory, one gets the most general electri-
cally charged extreme black-hole-type solutions of het-
erotic string.

Indeed, the background has to admit algebraically con-
strained covariantly constant spinors to comply with the
requirements of truncation of gauge symmetry. When
the algebraic constraint on the ghost is 7/C(y) = 0, we
are looking for the most general configurations which
admit covariantly constant spinors satisfying this con-
straint. Since the corresponding vector n, is null, we
are simultaneously looking for geometries which admit
a null Killing vector. Indeed the constant null vector
of the flat background will become covariantly constant
in the curved background. This brings us to the back-
grounds which have one covariantly constant null vector:
to supersymmetric pp waves [14] which we have called su-
persymmetric spin waves (SSW’s). The metric is that of
Brinkmann, and other fields are adjusted for supersym-
metry. The configuration may depend on u,z!,...,x%
but has to be independent on v. If both null vectors are
used in the alternative-type gauges one can relax covari-
ant constancy of both vectors and look only for the su-
persymmetric backgrounds which admit two null Killing
vectors. Those depend only on transverse coordinates
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z!,...,z® but have to be independent on both light-cone

coordinates u,v. These configurations include fundamen-
tal strings [15], generalized fundamental strings [16], etc.
These configurations also fall into the definitions of grav-
itational waves, since they admit a null Killing vector.
The chiral null models of Horowitz and Tseytlin [17] also
admit a supercovariantly constant Killing spinor satisfy-
ing the null constraint and belong to the class of gravi-
tational waves of electric type. We present the relevant
details on these configurations and their relation to the
most general supersymmetric electrically charged multi-
black-hole-type solutions in Appendices A and B. As an
example we describe here the spherically symmetric elec-
trically charged black holes in which the heterotic string
is quantized consistently. They have the following four-
dimensional canonical metric:

ds? = g 2dt? — e 2%¢%(dZ)? , (18)
where the four-dimensional dilaton field is given by

2 _ 3
(1+4mGN+4g (NL 1)) .

1
29 _ 1
€ r r2

g2

(19)

In Eq. (18) Gn is the Newton constant and Ny is the
contribution from the left-moving oscillators. The Bogo-
molny bound in notation of [18] (for Gy = 2) states that
the mass of the black hole is equal to the central charge
of the graviton multiplet, which in turn is defined by the
right-moving electric charge as well as by the combina-
tion of the left-moving charge and Np:

3 2 32
2 2_QR_9 QL

The relation of this solution to supersymmetric ten-
dimensional gravitational waves and to four-dimensional
black holes [18] is explained in Appendix A. The black
hole solution (18) interpolates nicely between the a = 1
and a = /3 heterotic string supersymmetric electrically
charged black holes. Indeed, for a = 1 solutions the left-
moving charge Qp, is vanishing and therefore the dilaton
is given by the harmonic function

2\ 2
e—2¢=iz(1+8—m+167:> =—12—(1+5T-)
g T T g r
(21)

For a = +/3 we have N1, = 1. For this solution the dilaton
is given by the square root of the harmonic function:

(1 + 8—’”); . (22)

20— L

g° T
Note, however, that the general solution (18) and (19)
corresponds not to black holes with arbitrary dilaton cou-
pling a, but to more generic dimensionally reduced super-
symmetric gravitational waves. It has been noticed by
Behrndt [19] that there exists a massless black hole con-
figuration in (18) and (19). Indeed, the two-parameter
solution with m = |Z| = 0 and Ny = 0 has the form



(18), where the canonical four-dimensional metric is

1

2\ — 3% 2\
d32=(1—4i) dt2—<1—4—g—) di®, (23)

r2 r2

and the four-dimensional dilaton is

1
1 (r2— 4g2 2 1
—2¢ __ —2¢ =
e = pes (——7_2 ) , € °(r—o00)= Z

(24)
One of the striking properties of massless dilaton black
holes is the appearance of a new type of singularity. Mas-
sive extreme black holes have the singularity and the hori-
zon both situated at r = 0 ( the only nonsingular solution
is the pure magnetic a = 1 massive extreme black hole in
stringy frame). Massless states are getting an additional
singularity at » # 0. The position of the singularity is
related to the string coupling constant.
The electric solution is singular at r = 2g (and at
r = 0). At r — 2g the dilaton blows up. As different
from massive electrically charged black holes, which near
singularity » = 0 have small gauge coupling, the mass-
less electrically charged black holes have infinite coupling
near the singularity » = 2g. The singularity at » = 0 and
the fact that the string coupling becomes small are irrel-
evant for massless electric black holes,
(6247):1_*29 — 00 . (25)

The magnetic massless solution* has the form

d 2 __ 4 _% 2 4 % =2
S” = 1—W dt* — 1—921‘2 dz (26)

and the four-dimensional dilaton of the magnetic solution
is:

1

4 \ "2
e2® = g2 (1 — g—2r2) , ez¢(r —00)=g°. (27)
This solution is singular at r = % (and at 7 = 0). Here
again we have the picture quite opposite to the usual
properties of massive magnetically charged dilaton black

holes. Near the singularity r = 527 the string coupling
vanishes. Indeed, in this case
(€**)75%, 0 - (28)

It is particularly important that even in the limit of the
vanishing ADM mass of the black hole considered above
the configuration still has unbroken supersymmetry and
the Killing spinor satisfies the same constraint as for the
black holes with the nonvanishing mass.

The multi-black-hole solutions generalizing those in

“These solutions do not fit into the dimensionally reduced
supersymmetric gravitational waves of electric type, for which
the quantization performed in [9, 10] can be applied directly.
However, it will be shown later that for supersymmetric waves
of magnetic type there exists a more general gauge condition,
in which the quantization can be performed.
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Eq. (18) as well as the most general known to us station-
ary supersymmetric solutions can be found in Appendix
A. The massless black holes, some of their properties,
including singularities, as well as more general massless
black hole and multi-black-hole solutions are presented
in Appendix B.

All those configurations have one-half of unbroken su-
persymmetry and therefore the heterotic string can be
quantized consistently in these backgrounds.

III. NEW TRUNCATION OF x SYMMETRY

The backgrounds with half of supersymmetries unbro-
ken, which were intensively studied in the recent years,
see, e.g., [20, 21] for a review, offer a much more general
class of truncation of x symmetries. To be more explicit,
we may use any BPS background to get the orthogonal
projectors needed for truncation of kK symmetry and de-
fined in Egs. (13) in old form and in Eq. (12) in a form
related to the Killing—anti-Killing split in Egs. (5), (6),
and (11). Moreover, all solutions of the Killing equations
(3) for 11- and 10-dimensional supergravities which are
not known yet and still wait to be discovered are already
included in quantization.

Consistent quantization of truncated k symmetry is
possible in the backgrounds with one-half of unbroken su-
persymmetry. The integrability condition for the exis-
tence of Killing spinors of the bosonic part of the back-
ground is the consistency condition for the quantization.
This defines the curved superspace in which quantized k-
symmetric objects exist.

The reason why the geometries with one-half of su-
persymmetries unbroken (BPS-states) are singled out is
related to the fact that the dimension of the truncated
k-symmetry ghost has to be one-half of the untruncated
one to preserve unitarity of the quantization and the cor-
rect counting of the physical degrees of freedom.

The most general truncation of x symmetry can
be achieved in terms of the most general algebraic
constraint, which the Killing spinors of the half-
supersymmetric backgrounds satisfy. Our goal is not
to use any specific background for this purpose, but
the most general one which may define the Killing-anti-
Killing split of the spinor. The key role in our quanti-
zation of the xk-symmetric systems belongs to the super-
charge of the background.

The supercharge of the gravitational supersymmetric
theory was defined by Teitelboim [22] in asymptotically
flat spaces as the surface integral in terms of the gravitino
¥, field of the configuration, solving the field equations

Q= ]{ dX ., "0, . (29)
8T

The surface over which the integration has to be per-
formed depends on the choice of configuration. In all
cases it is the same surface the integration over which de-
fines the Arnowitt-Deser-Misner (ADM) mass of a given
system or the ADM mass per unit area (length). The
on-shell backgrounds with one-half of supersymmetry un-
broken in bosonic sectors have the vanishing supersym-
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metry variation of the gravitino, when the parameters
are Killing spinors, as defined in Egs. (3), (5), and (6):

d " Vaer =0 . (30)
8%

Ok =

Let us stress that x symmetry of the classical action
is preserved only in the on-shell superbackground. This
means that the bosonic part of the background in ab-
sence of fermions in the solutions has to solve classical
equations of motion. For the heterotic string this means
that the vanishing of supersymmetry variations of grav-
itino ¥, is a sufficient condition for the vanishing of the
supersymmetry variations of dilatino A and gluino x. To
prove it one can use the Nester construction in the form
used in [23]. Thus we start with

6,0, =0 = N" = g 7" Ve, =0 . (31)

Using Eq. (3.14) from [23] we get
VuNHO = (5, M) (8, 0) + (8e,x) T (Je x) + field egs. = 0 .
(32)

Since the field equations have to be satisfied for the back-
ground of the superstring even before quantization, we
conclude that the existence of a supercovariantly con-
stant spinor (30) is necessary and sufficient condition
for the bosonic background to have half of supersym-
metries unbroken. The full background corresponding to
such bosonic backgrounds has fermionic isometries of di-
mension equal to one-half of the dimension of the full
fermionic part of the superspace.

For anti-Killing spinors the supercharge is not vanish-
ing. For the black hole multiplets it defines the so-called
superhair of the black hole:

Ssuperha.ir = QE = ‘% dzuu’yﬂl’)‘ﬁkﬁfé . (33)
8%

The concept of the superhair was defined for the first
time for extreme Reissner-Nordstrom black holes in [24]
and studied more recently in the context of more general
extreme black holes in [25].

We postulate the new truncation of infinite reducibility
of K symmetry by requiring some odd (even) generation
k-symmetry ghost to be a commuting m = 2n + 1 (an-
ticommuting m = 2n) fermionic zero mode of the zero
supercharge condition®

Sghost = j{ A" VaCm) =0 . (34)
8%

In other words, we require the parameter of the -
symmetry transformation to be a Killing spinor of the ge-
ometries associated with the states which saturate the su-
persymmetric positivity bound and the BPS bound. This
gives a perfect and universal accomplishment of the goal:
to truncate the infinite reducibility of any x-symmetric
theory. The integration in (34) has to be performed over
the suitably defined surface.

5The fermionic coordinate of the string 6 is included in this
set as p = 0 case.
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For example, in the context of the ten-dimensional het-
erotic string toroidally compactified to four dimensions,
the relevant surface defining the ADM mass of the four-
dimensional black holes is the two-sphere at spatial infin-
ity times the internal space 9% = S2, x T'®. However, for
each particular class of problems the choice of a surface
in the definition of the supercharge depends on the class
of configurations which are interesting in specific prob-
lems. For example, supersymmetric fundamental string
[15] provides a supercharge per unit of length, and the
surface X is an eight-dimensional spacelike surface. One
may expect that for the supermembrane the surface will
be the same as the one defining the ten-dimensional ADM
mass of the black holes. Various surfaces for the quanti-
zation of k-symmetric objects in various phases still have
to be identified. In particular, for various supersymmet-
ric p-branes and black holes in diverse dimensions there
will be all kind of relevant surfaces. A nontrivial situa-
tion may occur when the mass of the black holes vanishes
due to the shrinking of the corresponding area, as shown
by Strominger for type-II B string theory [26]. However
even in this limit the background still provides a Killing
spinor suitable for quantization.

The definition of the supercharge (as well as the def-
inition of the ADM mass) does not violate general co-
variance, it is just the way to describe the gravitating
systems with special behavior at infinity.

Upon integration the truncation condition acquires a
form of the algebraic constraint on the Killing spinor in
the half-supersymmetric bosonic background of the form

Sghost = X&iC(m) =0, Cim) = xxCm) - (35)

The wonderful property of the half-supersymmetric back-
grounds is that they admit both commuting and anticom-
muting Killing spinors.Therefore we may use this alge-
braic condition either on the anticommuting variables 6
in the classical action corresponding to the unitary gauge
with non-propagating k-symmetry ghosts, or on any gen-
eration of the commuting-anticommuting ghosts, since
their statistics alternates.

Thus we propose to truncate the infinite reducibility
of k symmetry identifying the fermionic ghosts with the
asymptotic value of the Killing spinor of the bosonic part
of the background. The constraint (34) is the most gen-
eral constraint which allows the truncation and consis-
tent quantization in a given background. Simultaneously
it restricts the backgrounds by requiring them to admit
supercovariantly constant spinors of the dimension % of
the dimension of the original spinor.

Thus what remains is to find the most general back-
ground for each theory (superparticle in arbitrary dimen-
sions, GS type-II superstring, the heterotic string, and
the supermembrane) which has one half of unbroken su-
persymmetry. This would supply us with the most gen-
eral algebraic constraint for the truncation of K symmetry
in each of the above-mentioned theories.

To us the best known example of such kind is the
list of all metrics admitting supercovariantly constant
spinors in N = 2 supergravity (and more recently in
N = 4), performed by Tod [27]. In N = 2 supergravity



52 DUALITY SYMMETRIC QUANTIZATION OF SUPERSTRINGS

interacting with N = 2 matter Tod has listed all met-
rics and has found all supercovariantly constant spinors.
The reason for this was partially related to the fact that
N = 2 supersymmetry with two Majorana spinors, or one
Dirac spinor is suitable for the use of the highly devel-
oped Newman-Penrose formalism with commuting Dirac
spinors.

In most of the other cases related to N = 4 super-
gravity with matter, or in N = 8 supergravity in com-
pactified theories, or directly in 4 > d > 11 there is
a rapidly growing amount of information about bosonic
configurations with one-half of unbroken supersymme-
tries. Those configurations are related by dualities, by di-
mensional reduction, and/or uplifting. Examples include
extreme black holes, fundamental strings, p-branes, pp-
waves, dual strings, and dual waves. However, at present
we do not have all solutions of integrability conditions
for the existence of Killing spinors in higher dimensional
supersymmetries.

IV. EXTREME BLACK HOLE SUPERSPACE
AND THE SUPERCHARGE ALGEBRA

We are interested in the quantization of the k-
symmetric superstring the background superspace with
the following properties: it is an on-shell superspace
(in the first approximation prior to the the study of -
symmetry anomalies). However, only special on-shell su-
perspaces are allowed: half of fermionic directions are
isometries. This means that the system of coordinates
exists in which the configuration is independent on half
of fermionic coordinates of the superspace. This corre-
sponds to the fact that the bosonic part of the back-
ground admits supercovariantly constant Killing spinors.
The supercharge which forms the Clifford algebra, defin-
ing the ultra-short supermultiplet of string excitations
is built in terms of anti-Killing spinor whose dimension
is the same as that of the Killing spinor. Such back-
grounds allow the general covariant truncation of infinite
reducible K symmetry and consistent quantization of the
superstring.

Most of our attention here will be directed to the ex-
treme four-dimensional black hole supermultiplets and
their spectra. Therefore we will describe the algebra
of the supercharges Q representing the ten-dimensional
Majorana-Weyl or Majorana spinors as d = 4,N = 4 or
d = 4, N = 8 spinors. However, the strategy for quanti-
zation of generic k-symmetric objects remains the same
if one is interested in the spectrum of higher-dimensional
configurations.

The algebra which the supercharges Q satisfy in back-
grounds with half of supersymmetries unbroken is most
conveniently described for massive states at rest with
M = |Z| in terms of a 2N-component spinors® [28]. In
doublet form they are given by

8The notation of Ref. [28] is used in this section.
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Qs .

ng( _), Q:=Q, fora=1,...,N,
Q*al

Q‘;:Q*aizeaﬁQEf fora=N+1,...,2N. (36)

These spinors satisfy a symplectic reality condition
Q= e*P0aQp (37)
with

a 0 I
Q"z—Qabz(_I 0) , (38)

zZ |z
{Q4: Qh} = €ap ( ) =eap 2°° . (39)
-z|1  z*

The 2N x 2N matrix Z° is written in terms of N x N
numerical antisymmetric complex matrix Z% and |Z|6%.
The numbers Z%/ are the eigenvalues of the central charge
operators in a given supermultiplet. For the purpose of
quantization we need to consider the special BPS case
when

-Zz* =22' =§%z)*. (40)

If we would have a massive multiplet without central
charges the algebra generating the states would be

{QZ,Q2}=eaa(_3\4 %)zea[, Qebnr . (a)

The physical massive states of N-extended supersymme-
try without central charges are classified according to
USp(2N)xSU(2). When the extreme constraint is re-
laxed, i.e., M # |Z|, the algebra is

{Q2, @8} = €as (_fﬂ J‘Z“) =g P (42)
The USp(2N) symmetry of Eq. (41) is broken in presence
of central charges Z%. The effect of Z%/ is to reduce the
U(N) symmetry of supersymmetry algebra to subgroups
of U(N) which leave the complex skew-symmetric nu-
merical matrix Z¥ invariant. Therefore one has to clas-
sify the orbits of the twofold antisymmetric representa-
tion [N]2 of U(N). From all possibilities to have central
charges for the purpose of quantization we are interested
only in one: in special critical orbit with USp(N) invari-
ance. In this case only the central charge matrix Z°® has
the properties required to fix x symmetry: the rank of
this matrix” equals N whereas the dimension is 2/V.
Thus we would like to use only the backgrounds with
the supercharge satisfying the algebra (39). The condi-
tion of exactly one-half of unbroken supersymmetry re-
quires all nonvanishing eigenvalues of ||Z|| coincide. Un-
der this condition exactly half of generators Qj drop from
the algebra, and USp(2N) symmetry is broken down to

"The rank of the matrix is the maximal size of its invertible
square minor.
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USp(V). Let us stress that the extremality condition
M = |Z| means that in the absence of central charges,

there are no massive states. This is actually well known
from black hole theory: supersymmetric extreme black
holes require the presence of central charges [24, 29].
Any complex antisymmetric matrix Z* can be brought
to the normal form using some U(N) rotation. For ex-
ample, for N = 4 and for N = 8 respectively we get

5 . Z 0
ZijZZO-Z('OI |Zl) )

1Zl o o0 o
_ 0 |2 0 o
Ziz=to2| o o 1z1 o |°

0o 0 o0 |z

(43)

where |Z| is a non-negative real number. When the cen-
tral charge matrix is in the normal form, one can perform
a symplectic transformation over Q% — T%,Q% = S¢
with some numerical matrix T [28]. As a result, we get
for supersymmetry generators in the “electric black hole”
basis,
a gby __ Zab __ 0 IZ|(1+U3)

{Sa»sﬁ}—faﬂz = <—|Z|(1+0'3) 0 ) .

(44)
Now it is easy to define the projectors which separate the

vanishing supercharge Qj from the anti-Killing one Qp:

Qk**[l—( 1S, Q= —=[1+(-1)*'])58

g
5’“

(45)

This means that in our basis the even in a components
of the symplectic spinor S2 commute, whereas the odd
components generate the spectrum. We introduce the
notation

Q)™ = %[1 — (~1)**1S%, m=2a=2,4,...,2N,
(46)
i i _ (_1\aet+1ljqe
(Qk)a \/5[1 ( 1) ]S
Mm=2+1=1,3,...,2N —1. (47)

Each of the N. -component Killing and anti-Killing spinors
(Qw)7 and (Qf)™ satisfies the symplectic reality condi-
tion which does not mix them:
(Qk):xm = 5QBan(Qk)g ’ (Ql_c);.;zﬁl = E“Bthﬁ(Qk)Z .
(48)

In doublet form they are given by the IN-component
spinors

(Qr)%
(Qk)‘g: = ( ) )
(Q)*oP

) (QR)%
(Ql—e);’::(( * ) ) p7ﬁ=17-'-»%' (49)

5)*P
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In normal basis we may rewrite the supercharge algebra
(39) as

{(21)7,(Qk)3} =0, (50)
{(Q0)% (2%)3} = 12| eapt™ , (51)
{(Q%)T, (Qr)3}=0. (52)

Thus, our extreme black hole basis for extended super-
symmetry in a normal form represents two USp(XN) dou-
blets instead of the one original USp(2N) doublet Q2.
Only one of those doublets (anti-Killing one) forms the
Clifford algebra, the second one (Killing one) anticom-
mutes with both of them. The Clifford vacuum Q is an-
nihilated by (Qz)**? as well as by (Q)°P. It has to be
doubled since the C PT conjugation adds the states where
the role of Killing and anti-Killing part of the spinors is
reversed. This double degeneracy of the Clifford vac-
uum shows that black holes with opposite sign of central
charges behave as particle-antiparticle to each other. The
spectrum of states generated by the action of (Qz)**? on
the vacuum is described as follows. One set of states
comes from

QO ., (QR)P . (QR)F . (53)

The Clifford vacuum state is a bosonic black hole with
positive value of the central charge, other states in this
chain are black hole superpartners. The set of CPT con-
jugate states is based on the analogous chain which starts
with the Clifford vacuum which is a black hole with the
opposite sign of the central charge. The states are clas-
sified by the representations of USp(/V)xSU(2) group.

The generators of both groups are constructed as bilin-
ear combinations of supercharges, where either the spino-
rial space-time indices or the internal ones are contracted.
In particular, the generator of the USp(/V) transforma-
tions which labels the states of the given spin is

st = — , P m,a=1,...,N.
57z (@ (203
(54)
It generates the algebra of USp(V),
[s™®, s’“‘h] =qQikgl (55)

Since we are going to use for gauge fixing the split of
the spinor defined by the supercharge of the background,
one may expect that eventually the algebra generating
the full set of the BPS states will appear via Noether
charges of the quantized string. We will show that in
the normal form (52) the algebra will be associated with
the light-cone gauge and electrically charged black holes.
The same algebra in general will be shown to represent
the most general extreme black holes saturating the BPS
bound.

V. DUALITY-COVARIANT GAUGES
FOR THE HETEROTIC STRING

We would like to consider the quantization of the het-
erotic string in the four-dimensional background of ex-
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treme black holes. To be able to accommodate the black
hole hair using the standard fields of the Green-Schwarz
string, which include the ten-dimensional Majorana-Weyl
spinor depending on the world-sheet coordinates z, z, we
will use the form of the constraints which Killing spinors
satisfy in this background, adapting them to the ten-
dimensional form. We may choose a commuting (anti-
commuting) k-symmetry ghost of some generation, which
is a ten-dimensional spinor, to satisfy the constraint

xi C(z,2) = ——C(z £)=0. (56)
The numerical Hermitian matrix I' is defined by the prop-
erties of the Killing spinors at asymptotic infinity of the
target space. In our case it is defined by the central
charges of the background:

'==., Z2?=|2%. 57
7] 57
We may use our constraint on the Killing spinor in the
form which correspond to that given by Harvey and Liu
[23] and Sen [30] in their presentation of the form of the
Bogomolny bound.

i(Ro — Ao) o=
r = o200 v (@utineP) =T, T2 =
a=4
(58)
where
Ao = ag + ie"2%0 (59)

is the value of the dilaton-axion complex scalar at infin-
ity, far away from the black hole. Six electric Q, and six
magnetic P, charges of the black hole satisfy the condi-
tions

'Y[Gb]QﬂPb =0 (60)
and
—e‘4¢°g°°g“b(QaQb +P,P) =2 (61)

The 12 charges Qg,P, can be defined also via 28-
dimensional charges (ga)el, (9a)mag introduced by Sen
[30]:

Qa = Eaa(q&)el ) Pa = Ea&(q&)mag . (62)

The matrices E,% are defined by the nonvanishing ex-
pectations values of the scalars of the four-dimensional
theory (or, equivalently, by the geometry of the com-
pactified dimensions). Condition (60) was not spelled
explicitly in [23, 30]. For us this condition is of great im-
portance: in this form it reflects the critical orbit with
USp(N) symmetry, discussed in Sec. IV. At the techni-
cal level, without (60) we would not be able to get the
required projectors in the presence of both electric and
magnetic charges.
The Killing spinor can be represented in the form

14T

C(z,2) = xx C(2,2) = ——2—C(z,2) . (63)
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Our new projectors Xz, Xk indeed satisfy all the require-
ments (12), since

(47) (59) -
(- (5).
(5 (5).

Under S- and T-duality transformations the central
charges are covariant. The corresponding covariant
transformation of spinors makes our constraint on k-
symmetry ghost duality covariant. Before discussing the
details of the covariant gauge fixing, let us break both S
and T duality of the new class of gauges and reconstruct
the familiar class of gauges: the light-cone one and the
generalized light-cone gauge.

Example 1: light-cone gauge. Our first example is a
pure electric U(1) dilaton black hole. We choose the hair
Q4="'=Q8=P4:"'

Qo = €2%|Z], =Py=0.

(67)

The black hole projector becomes a light-cone projector
(=T o (=™

Xk = 2 - 2 ’
_(1+TY (14 ~°y®

Xk = "‘——‘2 =\7% /-

Thus in terms of the ten-dimensional Majorana-Weyl
spinor the electric solutions admit a Killing spinor which
satisfies the light-cone constraint

(68)

(e = (7"7")C(2,2) =0, (69)
and the anti-Killing spinor satisfies equation
(vfy 7 )er =0. (70)

If we would choose a negative value of the electric charge

Q9=—e2¢°|Z|, Q= =Qg=Py=---=Py=0,
(71)

the constraint on the ghost would become the one for the
anti-Killing spinor in the previous choice,

(v*77)C(2,2) =0. (72)

Thus in this example the electric black hole hair breaks
the ten-dimensional Lorentz symmetry SO(1.9) down to
SO(1.1)xSO(8). We can consider the limit of our gauge-
fixing function (56) when the central charge vanishes,
|Z] — 0. This limit exists and has the same form
(yty7)C(z,2) = 0. Thus using the light-cone gauge one
can either consider the massive four-dimensional black
hole states or massless four-dimensional states.

Exzample 2: generalized light-cone gauge. Let us choose

Qo =1,e?|Z|, Po=---=Py=0. (73)

The constraint on the ghosts depends now on the arbi-
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trary six-dimensional vector [, satisfying the constraint
?2=1:

(1 —~%4°1,)C(2,2) =0 . (74)

This is a special choice of our generalized light-cone
gauge when the vector n, = (1,0,0,0,l,), and n? = 0
due to the fact that IZ2 = 1.

FEzample 3: magnetic gauge. The quantization of su-
perstring theory as well as of heterotic string theory was
performed only in light-cone or generalized light-cone
gauge. Therefore it was widely believed that the ele-
mentary excitations of string can be associated only with
electrically charged black holes. However we may change
the gauge now. Let us first consider the simplest mag-
netic U(1) dilaton black hole:

Pi=e*®|Z|, Qu=-=Qo=Qs=---=Py=0.
(75)

Now the Killing spinor and the k-symmetry ghost
in terms of the ten-dimensional Majorana-Weyl spinor
are constrained to be chiral in the four-dimensional Eu-

clidean subspace, I'® = y1y2y3~4,

(1+4T% & =(1+T%) C(2,2) =0, (76)
and the anti-Killing spinor is antichiral:

(1-T%)eg = (77)

Again, by changing the sign of the magnetic charge we
have the antichiral ghost. Such a split breaks the ten-
dimensional Lorentz symmetry to SO(1.5)xSO(4). This
algebraic constraint has not been used before for the
gauge fixing of the x symmetry.

Ezample 4: generalized magnetic gauge. One can
choose a more general magnetic charge with SO(6) sym-
metry as

P, =1,e2%|Z| . (78)
The ghost will satisfy the condition
1+ 7172737ala) C(z,2) =0. (79)

Example 5: electric-magnetic-azion-dilaton U(1) black
hole. We choose
P? 4+ Q2% =e*%|Z)2
Qs=...=Qo=Ps=---=Py=0. (80)

The Killing spinor satisfies the constraint

(1 ~ 70746_2¢0|(ZQ'4 + »75P4)) C(z,2)=0. (81)

This gauge was also never used before for the quantiza-
tion of the heterotic string.

In dealing with central charges of supersymmetry al-
gebra related to supersymmetric extreme black holes it
is more convenient to use the chiral basis as described
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in Sec. IV. This basis is associated with the symplectic
spinors which in a clear way shows how the black hole
multiplets form the representations of USp(N)xSU(2)
algebra. In this basis the truncation condition takes the
form

Z 7) —
7 C(z,2) =0, (82)

where the numerical symplectic matrix Z is defined in
Eq. (39), and the ghost forms a symplectic spinor. In a
more detailed form the constraint is

z4 j Z *ai
Al 1 ( C?, ) B ng +C o
.ij oi - ; i3 e -
-1 % Cred ~Ci + Zgr O
(83)

The advantage of using symplectic form of the constraint
is that, e.g., the second line on the right-hand side of
Eq. (83) can be obtained from the first one by multipli-
cation on Z*. The black hole basis for supersymmetry
which was used in [29] is very close to the one which is
used there. In particular, the SU(4) matrices «, 3 were
used instead of six matrices v*. Thus, if we know the
antisymmetric matrix Z*, we can build the symplectic
matrix £ and have a symplectic spinor gauge fixing in
the form (82). For example, pure electric solution with
P = 0 and positive electric charge Z% = af‘jQ /v/2, and
with

1Zl o o0 o
i 37— 0 |Z] o o
ZY9 = a;;|Z| = ioz o 0 |z o0
0o o0 o0 |Z]
0 1 0 O
-1 0 0 O
=1Zll ¢ o0 o 1 (84)
0 0 -1 0

provides the following symplectic 8 x 8 matrix for
Eq. (82):

7:0'2 I I
(—Z—) - ( ) , (85)
'Zl el -1 iUz I
where I is the unit 4 x 4 matrix. If we would consider a

pure magnetic solution we would get Z% = g3, P/ V2,
-1zl o o o

i . 0 -zl 0o o
zi=pyizi=ios | o T8 2 o
0 0o o0 |z
0O -1 0 O
1 0 0 o0
_!Zl 0 0 0 1 ’ (86)
0o 0 -1 0

and the corresponding symplectic 8 x 8 matrix would be
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-1 0 0 O
io 0 -1 0 O
0 0 1 0
( Z ) B 0 0 01
121/ mag -1
-1 iUz

(== R ]

Thus indeed we see that the electric solution corresponds
to the central charge matrix in the normal form, with
all eigenvalues equal, whereas the magnetic solutions
presents the central charge in the form related to the
normal one by some U(4) transformation.

We have used in this section the ten-dimensional form
of the constraints on K symmetry to be able to dis-
play the relations between known gauge-fixing conditions
and the electric black holes (or supersymmetric gravita-
tional waves in ten-dimensional context). We have also
given examples of the magnetic and mixed electromag-
netic gauges which were never used for quantization be-
fore. We have also shown that the chiral four-dimensional
spinors, especially in symplectic form, are very conve-
nient way to display dualities via the transformations of
the central charges.

VI. CENTRAL CHARGES IN THE FLAT SPACE
LIMIT

When the string is quantized in the BPS background,
the central charges are those of the background. To
perform the quantization in the flat space we may con-
sider different possibilities. We may simply use the cen-
tral charge matrix of the background to gauge-fix the
fermions as in Eq. (82) even when the background is not
there anymore. The second possibility is to consider the
limit of central charges going to zero,

. Z P
%ILHO (m) C = XkC =0. (88)

Such a limit exists, we have shown examples in the pre-
vious section. In particular when the background is pure
electric or pure magnetic, the constraint has the same
for as the limit when the central charge goes to zero. We
may however take the following attitude. In the curved
background with the central charges the vacuum expec-
tation value of the string variable (or zero mode, z,z-
independent value) II,#(z, z) is such as to reproduce the
central charge in the supersymmetry algebra. The ten-
dimensional string variable

I;#(2,2) = 8zz* — 04#8:0 , n=0,...,9, (89)

consists of the four-dimensional part II;*(z,2z), 4 =
0,...,3, and of the six-dimensional part II;%(z,2), a =
4,...,9. The extreme black hole background with spe-
cific values of the central charge enforces a nonvanishing
value of the vacuum expectation of the string variables
II of the form:
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0 0 (87)
-1 0 0
1 0
01

[
Zijea)@ 0
(YaC)apiiz*(2,2)) = 3 (90)
Z*l]edﬂ,
Here C is the charge conjugation matrix. The four-

. dimensional part we take directly in the rest frame be

o |z|I
) ) (91)
—lziI o

where I is the unit matrix. Thus we define the
string black hole state as the state with vanishing
ten-dimensional mass of the state, however the four-
dimensional mass is not vanishing since the state has
nonvanishing central charge. Indeed we have

((VaC)apis TP (2, 7)) = (

(7€ T=*)) (7€ TH)T) = mip = 05 (92)
however
((M.%7,0)) (. *vaC) ') = =| 2T,
(va€ TLA) ((vaC LAY = |Z)°1 . (93)

In this way we have reproduced the property of the cen-
tron BPS multiplet discussed in [31] that the BPS state
corresponds to a massless ten-dimensional state but to a
massive four-dimensional one.

To summarize, the string variable II #(z,2), p =
0,...,9 gets a nonvanishing (z, Z)-independent numerical
value defined by the central charge of the background:

A |Z|I)
YA A

((7uC) apiiz*(2,2)) = (

(94)

Thus even if the BPS background which supplies this
matrix is absent we may attribute the numerical values
of the central charge matrix to the vacuum expectation
of the string momenta. This again gives us a constraint
on k-symmetry ghost in the form (82).

The construction above suggests the following idea.
One can rewrite the classical GS action for the heterotic
string by using the string variables in the form

o opi PNk dj xij
z#, 6;,, (02)%, =, =**7,

1=0,1,2,3, ¢j=12,3,4, a=12. (95)
The antisymmetric matrices 9 = ||z|| which are the
new bosonic coordinates of the compactified string, are

defined as
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(VaC)apijz®(2,2) = (299 (2,2)€ap00 z*(z,2)es;)

=X(z2), (96)
and have the property
9
e (Zw“wa) I. (97)
4

In terms of these variables the classical Green-Schwarz
action for the heterotic string has the global (z,Z)-
independent U(4) symmetry under which the fermionic
string variables as well as bosonic variables X transform.
The symmetry is best expressed in terms of the sym-
plectic transformations in the form given in Sec. III. The
symplectic spinor is rotated as

U o
6T, X - TXTT, T=< ) . (98)
o U*

When the string action is considered in these variables,
the generation of central charges matrix becomes a very
natural step. This may lead to a reformulation of the
N = 4, N = 8 supersymmetry in a basis with central
charge-type coordinates. In particular, it was suggested
in [32] to consider a d = 4 superspace with additional
coordinates for describing extended supergravities with
hidden supersymmetries. The full set of coordinates (for
N=8)is
z*, 07, 0%, tr5, 7, p=0,1,2,3, I,J=1,...,8.
(99)
The bosonic coordinates try, /7 correspond to Cartan
antisymmetric tensors =%/, Yij ,%,J =1,...,8 which gives
the explicit form of E- generators. We suggested to in-
troduce the new vielbein forms E;;, E% in addition to
the usual ones. Those forms in curved superspace at
6 = @ = 0 are defined by the scalar field matrix of Crem-
mer and Julia [2]
J

Z e~ 4mx%o / / Dz*DODpDbDc(Det uz)™*
moduli

topologies
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Utl, vidii
( _ ) (100)

Visij Urs¥
One can expect that the development of this direction
will lead to the better understanding of the role of cen-
tral charges in supersymmetric theories. In particular,
the crucial property of all nonlinear manifestly super-
symmetric on-shell invariants of N = 8 supergravity is
their E; symmetry and the fact that they are build as
the integrals over the full superspace [32, 33].

The nonrenormalization theorem for extreme black
holes which was presented in [1, 29] had only one cru-
cial requirement: fermionic isometries, which make the
superfields covariantly independent on some fermionic
coordinates. It seems to become clear now that if the
extreme black holes with manifest E7 symmetry® will be
discovered as solutions of N = 8 supergravity, they will
represent the U-duality symmetry of the spectra of quan-
tized states of the superstring theory. In addition, they
will (i) form the most general background of the com-
pactified to d = 4 type-II GS string theory in which the
consistent truncation and quantization of k symmetry is
possible and (ii) these black holes will be subject to su-
persymmetric non-renormalization theorem of the type
described in [1, 29].

VII. GS SUPERSTRING PATH INTEGRAL
IN BLACK HOLE GAUGES

For the time being, before the reinterpretation of
string variables responsible for accommodation of cen-
tral charges is performed, we will study the quanti-
zation of the GS heterotic string in the old variables
(z*,04, p=0,1,...,9, a =1,...,16), but in duality-
covariant gauges.

The gauge-fixed path integral in semi-light-cone gauge
Y0 = 0, gop = PYop where gop is some background
metric, was presented in Eq. (2.2) of [8] in the form®

X exp (— / d?2(8,z"8zx" + 0y 11;10,0 + L'gauge(w) + bdc + 586)) , (101)

where u; = 8;z7 = II;*. In a generalized semi-light-
cone gauge xk(glc) = (nf) the only difference would
come in the 6 term in the action which will read

6TU;0.0 (102)
with
Uf(z’ 2) = Xchuzv Xk » (103)

and the local measure of integration is (Det uz) ™%, which
is equal to the inverse square root of the determinant of
the maximum square invertible minor of the matrix ||U||.

We may rewrite this path integral now in the form

8Under manifest E7 symmetry we mean the following. When
the black hole hair (the values of the scalar field at infinity
and the electric and magnetic charges of the black hole) under-
goes the global E; rotation, the total solution, as a function
of three-dimensional space, will rotate according to E7. This
property was demonstrated for manifestly SL(2, R) symmetric
black holes in N = 4 supergravity [34]. In all cases the classi-
cal symmetry groups are broken down in quantum theory to
subgroups with integer parameters only.

9The semi-light-cone quantization of the heterotic GS string
was performed by Carlip [35] in a slightly different form.
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where the Killing-anti-Killing split of the spinor is real-
ized in terms of the most general possible central charge
in USp(4) critical orbit. Thus we consider the generic
“black hole gauge”

0 =06,

xx0 =0, (104)
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which means that only the Killing part of the anticom-
muting spinor 0 propagate. In this case we have the same
path integral as explained for the generalized light-cone
gauge, however with any possible choice of the projector
X5 (see examples in Sec. IV) and not only the light-cone
one. Thus the path integral is

Y, e [ [ Do*DoDYDDe(Det us)
moduli

topologies
X exp (- / d?2[8.z#8zx* + 6T (X T Az X) 020 + Lipauge(¥) + Lrep ghosts]> . (105)

It was explained in [8] that the local measure of integration provides at least formally the independence of the theory
of the way in which local fermionic gauge symmetry was fixed. This means that the part of the path integral given by

/ Dz*DODvypDbDc(Det uz) —4

X exp (_ /dzz[azwuaE:E“ + OT(Xchmi Xk)aza + L,gauge("/)) + Lrep ghosts]) (106)

is invariant under the change of the gauge conditions.
This gauge is a unitary gauge for the fermionic symme-
try (all fermionic ghosts are not propagating). The local
measure of integration is exactly the contribution of the
second class constraints as predicted in [13,11]. The class
of gauges which were considered before and the transfor-
mations from one to another did not involve any changes
of the vacuum expectation value of the dilaton which
controls the loop expansion. Therefore for this class of
gauges the fact the that integral in (106) is invariant by
construction is sufficient to claim that the total path in-
tegral including the loop integrations

z e~ 4mx%o /

topologies moduli

(107)

is gauge invariant. Now we are considering more general
class of gauges which are related by S-duality transforma-
tions from one gauge to another. The partition function
on the torus where e~4™X%0 = 1 is now duality invariant
by construction. However if we are interested in parti-
tion functions for different topologies, we have to take
into account that S-duality will act on the string cou-
pling constant as

(6—2¢°)' = (c(ao + ie_zd"’) + d)—1

x (c(ao — ie™2%) +d) e | (108)
where aq is the value of the axion field at infinity and ¢, d
are some integers. The part of the path integral given
in Eq. (106) is invariant. However each term in the path
integral in (105) with the nonvanishing Euler number x
transforms when we use the full SL(2, Z) transformation
to change a constraint on the spinor'® and on the string

10We will consider in detail the S-duality covariant gauges
in Sec. VIII.

[
coupling constant. Thus when duality transformation in-
cludes the dilaton whose vacuum expectation value plays
the role of the string coupling constant, each term in the
Green-Schwarz path integrals given in Eq. (105) is covari-
ant rather than invariant: the change of the gauge has to
be followed by the corresponding change of the coupling
constant. There is a puzzling resemblance here with the
observation about S duality due to Witten [36]. He found
that the partition function on a general four-manifold is
not modular invariant but transforms as a modular form
of the weight depending on the topology of the manifold.
Using the fact that our partition function consists of the
invariant part given in Eq. (106) and using the SL(2, Z)
transformation (108) one can see that for each topology
our partition function transforms as a modular form of
the weight depending on the topology of the manifold.

The expansion in topologies makes the understanding
of S duality more complicated and perhaps the better
way to proceed is to use the first quantization, suggested
above only to get the elementary string states, which are
duality invariant, according to Eq. (106). The next step
would be to construct the BRST operator for the first
quantized theory. The resulting second quantized theory
may have better way of realizing S duality and may give
us a possibility to avoid the loop expansion in the form
(107).

Therefore for the moment we will concentrate on the
part of the path integral given in Eq. (106) which has a
clear behavior under the change of the gauge conditions
including the S-duality type. For example in the pure
magnetic gauge where X, = %(1 — I'®) the fermionic
part of the action is

%5(1 —I°W;(1-T%0,0

a=9

— 1, 5 0 a
= 50(1-T%) (Wni + 7allz )azo . (109)

a=5

Thus the kinetic term of the fermionic variables depends
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on SO(1,5) vector I1°,II%, whereas the spinor is chiral in
SO(4). The local measure for the magnetic solution is
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There are different ways to proceed with this action. In
[8] we performed some change of variables after which we
got the SU(4) form of the path integral. The analogous

a=9 —2
02 a2 change of variables can be performed starting with any
[Det (_(Hi )"+ X_:s(nz ) )} ) (110) gauge of the type (104). This result is
J
. 1:4 .
/ Dz Dn3:*D6; DbDc exp [— / d*z (azz“az-m” + D 12°0:60; + Ligguge(¥) + Lieep ghosts)} . (111)
=1

This form of the GS superstring path integral shows in a
clear way that the idea that the elementary string excita-
tions have to be associated only with electric black holes
is based on the light-cone gauge quantization. In the
generic class of gauges the elementary string excitations
cannot be qualified as electric black holes: they are given
by generic black holes. We have presented the string par-
tition function in the form in which there is no depen-
dence left on the choice of the constraint on the spinor.
Therefore there is no difference whether we have started
with electric-type constraint 76 = 0 or magnetic-type
constraint (1 + ') = 0. One can claim on the basis of
this construction that the elementary string excitations
is invariant under duality transformations as the soliton
configurations solving the classical equations of motions
and as the Bogomolny bound.

Another way to proceed with the path integral in the
semi-light-cone gauge was suggested in [37]. These au-
thors rescaled the eight-dimensional Killing spinors 6
without breaking it into two SU(4) spinors. These proce-
dure seems to be more suitable for dealing with anoma-
lies. At this stage we would prefer to postpone the issue
of anomalies and just work out the black hole class of
gauges which contains the light-cone gauge as a subclass.
We hope that the situation with conformal and gauge
fermionic symmetry anomalies will be studied later along
the lines of [35, 8, 37].

One more comment about the black hole gauges is in
order. If we would choose the light-cone gauge also for
the bosonic variables of the string, i.e.,

zt =7P%, 8zt =PF, (112)
we would have to identify the variable P with the mass
of the black hole. Indeed, in our picture the origin of the
light-cone gauge is traced back to the central charges.
However, they appear via the zero modes of the string
momenta. Therefore

(I;° + I;°) = Pt =2|Z| = 2M (113)

where M is the mass of the black hole.

Taking into account that P* plays such an important
role in the Green-Schwarz string field theory based on the
light-cone first quantization one may hope that our pic-
ture may lead to string field theory describing the duality
symmetric interactions of extreme black hole multiplets.

Manifestly supersymmetric black-hole gauge. Mani-
festly supersymmetric gauge was suggested in [7] with
the purpose to keep linear realization of supersymmetry.

—
The algebraic constraint was imposed on the first gen-
eration of fermionic ghosts, whereas the gauge for the
0 variable was chosen to contain a derivative. We may
present now the gauge-fixed action for manifestly super-
symmetric black hole gauges. The constraint on the first
generation of ghosts is defined by the central charge ma-
trix. We will use it in the form x;C(2,2) = 0. The
gauge-fixed action according to Egs. (38) from [7] and
Eq. (3.4) of [8] is

‘Ccl + ﬁixﬁazg + (8202)XEH2 XkCz )

where the propagating FP ghosts C;, C, are commut-
ing whereas the propagating NK ghosts ; are anticom-
muting. By performing some change of variables and by
adjusting the local measure of integration one can prove
that the physical states are independent of the choice of
the fermionic gauge fixing.

(114)

VIII. S-DUALITY SYMMETRIC FAMILY OF
BLACK HOLE GAUGES

The basic new feature of the quantization which we
propose is the use of the algebraic constraint on Killing
spinor of the BPS background. The simple and univer-
sal form of the constraint is given in Eq. (82). When
the background undergoes any duality transformation,
the Killing spinor and the algebraic constraint on Killing
spinor transform in a way which reflects the symme-
try under dualities of equations of motion including
fermions.

In this section we would like to study the new quan-
tization for the special case of the axion-dilaton black
holes in manifestly S-duality symmetric form [34]. For
this configuration we know exactly how background (in
our example the superspace, whose bosonic part consists
of axion-dilaton black holes) transforms under S duality
and what happens with the constraint on Killing spinor.
After the detailed analysis of this configuration we will
reformulate in the next section the information available
about the S-duality-covariant gauges to the form suitable
for the generalization to the U-duality symmetric gauges.

The axion-dilaton family of black holes [34] has a fea-
ture which justifies the word family. We consider the
solution in a form in which it is characterized by some
generic values of the the axion-dilaton field and electric
and magnetic charges. After the S-duality transforma-
tion the solution keeps the same functional form. It is
important that one considers the generic values of the



black hole hair and not the exceptional cases such as pure
magnetic or pure electric solutions, for example. In such
special cases, as it was demonstrated in [38,39], one starts
with pure electric solutions and after S-duality transfor-
mation one gets a new solution which is characterized by
the electric as well as magnetic charge and by some value
of the axion field, which was not present in the original
pure electric dilaton black hole. However, after the man-
ifest S-duality symmetric form of the solutions is found
one does not generate new solutions by performing an ad-
ditional S-duality transformation, they are all there, in
the family. For simplicity we will consider a U(1) axion-
dilaton black hole [34] with only one vector field, which
has both magnetic and electric charge.!!
The solution has the form

ds? = e®dt? — e g2,
e (&) = i[H2(F) Hi(D)] — Ha (@) H2(D) ,
AY(Z) = (Q + iP)H2(F) + c.c.,

- —» .- &) _ Hl(i:)
A(#F) = a(&) + ie™ @) = (@)’

A4@) = —(Q + iP)H, (%) — c.c. (115)

where M1 (&), H2(&) are two complex harmonic functions
(for simplicity we are considering a one-black-hole solu-
tion)

L e% AoM + XYY _ M,
@)= o+ 2T ) 2wt

N e®o M+T _ Mo
%M—ﬁ0+ﬁaﬂ=”*ﬁ

where Ao = lim|z_,00 A(Z)-

The S-duality transformation on the half supersym-
metric bosonic background is given by the fractional
transformation on the complex scalar A(zx):

(116)

1y aX(z)+b
V@) = ST (117
Here the SL(2, Z) matrix A is
_la b -1_{d —b _
A= |2 d‘,A =|% a‘,detA—-l, (118)

where a, b, c,d are some real integers.

We will present a useful form of this solution where
only the SL(2,Z) doublets enter. This will be helpful
for clarifying the transformation property of the gauge-
fixing condition under the S duality. This form will be
also suggestive for the U duality. Consider the harmonic
matrix

15 this section we are using the notation of [34] unless
otherwise specified.
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8,~8.,-V(:c) =0,
Ha(Z) —Ha(d)
V()= _ _ »
Ha(Z) —Ha(2)
det V(z) = ie~ 2@ (119)
Under S duality this matrix transforms as
Vi(z) =hV(z)A™", (120)

where
U 0
h=( ), U=S—, SoEC)\0+d. (121)
0 U* (1]

This transformation is known to be a compensating U(1)

transformation which supports the choice of the local

U(1) gauge fixing under the SL(2, Z) transformation.
We can also use two harmonic doublets

_ 15l
-

Hy ’_|_S_0|A Hy
HZ - So 7'{2 )

The vector fields are also organized in doublets. We
have a harmonic doublet potential

(He ,—H1) (Ha,—Hi)AT,

(122)

8;0;A=0, A=[A(z),A )] . (123)
Under S duality it transforms as
A =AAT. (124)

The vector field strength also can be presented in the
doublet form

~ 1 -
fE(Ftr,_iFtr)z_(q’p) )

|2
*Ftr

. r— -1 (q
=) = ()

Those two doublets transform as follows under S du-
ality:

(125)

Fl=FA ', *F'=A*F. (126)

Our matrix V consists of the value of this matrix at
infinity when |&] — oo and of the |71| part of this matrix:

V(@) =v+ =M,

_‘]

|Z
Vo —U1
E( ),
Uy —U3
My —My
M= (_ . ) .
Mz —'Ml

The matrices v and M transform as

v =hvA™l!, M=hMA™L.

(127)

(128)
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Consider the following product of doublets:

(v*F) =h(v*F). (129)
Such products transform only in terms of the compensat-
ing h transformation. They will be useful for the form of
the gauge fixing which will transform under SL(2, Z) only
in terms of the A matrix. Now we can build the combina-
tion suitable for exhibiting the S-duality-covariant form
of the superstring x-symmetry gauge fixing.

The Killing spinor admitted by the axion-dilaton black
holes was found by Ortin in [40]:

1(a) [ Ha(Z) i
T = 2u(z) 2
(@) =e (_2(5)) €1(0) >

(130)

where €7(o) is the value of the chiral part of the Killing
spinor at infinity, satisfying an algebraic constraint which
halves the spinor. We will study this constraint both in
the doublet form as well as in the form in which only the
h part of the symmetry is relevant.

The doublet form of the constraint is

iMl [i 0o_J
re=0= | . € - €y =0. 131
Xk (1M2) 1(0) (p)”’)’ (0) (131)

Under S-duality transformations the chiral part of the
Killing spinor transforms as

i
=e2

arg S

er(%) , (132)

where

Hi(Z)
—~+d.

Ha(%)

Under S duality the constant part of Killing spinors
transforms in terms of the asymptotic value of S(Z) at
|Z| — oo which is equal to So = cAo + d:

SE)=cA&)+d=c (133)

(61(0))I — e% arg 506](0) , (6(0)1)’ — e—% arg Soe(O)J .
(134)

Taking into account the transformation of doublets above
we find that the Killing spinor constraint in the doublet
form transforms as

’
’iMl q 0_J
(%) 0= (3),, 70
a b iM1 (i 0o_J
L al[(We) a0 (3),, 0]

(135)

— e—% arg So

=0.

An alternative form of the Killing constraint can be ob-
tained by multiplying Eq. (131) by the doublet (72 , —71)
as suggested by Eq. (129). Indeed we may simplify things
by using the fact that
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('52 ,—51) X (z}/vv::) =-M )

(02, —01) ¥ (q) = %(Q+iP) : (136)

p

The Killing spinor constraint (131) after multiplication
by (v2 ,—1) becomes

1
V2

In this form it transforms as

Mejoy + (Q+ iP)IJ’yOe‘(]O) =0. (137)

1 ) !
(Mez(o) + TE(Q + zP)IJ’Yoff(Jo))

— eq,argso (MEI(O) -+ 7_2—(Q + ’LP)IJ’YOGI(]O)) =0,

(138)
and we have taken into account that (Q + ¢P) =
e2 285 (Q +iP).

We considered a solution with only one vector field,
i.e., our choice of (Q + iP)r; was a3;[(Q + iP)] where
a3, is one of the SU(4) matrices o, 3. In a more general
situation we would have (Q + iP)r; = a};(Q + iP)n +
B*(P + iQ)s where n,7n = 1,2,3. In six-dimensionally
covariant form'? we would have the constraint defined in
the notation of Sec. IV:
i€ =0= € —7"9%(Qs +i7°P,)e =0, a=4,...,9.

(139)
Under S duality the constraint in this form transforms
as

(6 = Y°1*(Qa + iv*Pa)e)’

i 5
o S (e 4y(Qu t 7P Ra)) =0 (140)

A nice form of this transformation comes out if we
use symplectic notation for the constraint on symplec-
tic Killing spinor C as given in the form

(%C)I=hsp (%C)=0, 21’ =121,  (141)

where

Ut/z 0
0 (U*)1/2

UY2 = (So)¥(So) "% = es 280 |

So=cho+d . (142)

It is important to stress that that if in the flat back-
ground we have chosen a specific gauge-fixing condi-
tion (truncation) and afterwards have decided to put

12There is a factor of /2 difference in the definition of
charges used in [34], [23].
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the quantized string in the background, we could do it
only under condition that the algebraic constraint on
the ghost defines the algebraic constraint on the Killing
spinor of the half-supersymmetric background. For ex-
ample the string quantized in the light-cone gauge can
be placed in the electric black hole background, but the
string quantized in the magnetic gauge can be placed
only in the magnetic background. The string quantized
in the electromagnetic gauge can be placed in the electro-
magnetic black hole background. That is why we call
those gauges black hole gauges.

An additional useful way to summarize this section is
to use Witten’s definition of the modular forms of the
weight (u,v) [36] if the expression transforms as

F' = (cho+d)* (cXo + d)F . (143)
Our new black hole gauge conditions are modular forms
of the weight (:l:‘—ll, :F%) for the left-handed (upper sign)
or right-handed (lower sign) parts of spinorial gauge con-
ditions, see Eq. (142).

IX. U-DUALITY-COVARIANT CLASS
OF GAUGES

Hidden symmetries of supergravities, restricted to the
subgroups with integer parameters to provide the black
hole charge quantization, are realized in extreme black
holes solutions. In this respect extreme black holes are
as good for realizing dualities as are quarks for realiz-
ing the fundamental representation of SU(3). In type-II
strings or in the supermembrane case we may look for
a general class of duality-symmetric gauges although we
do not know yet a black hole solution with one-half of
unbroken supersymmetry and E; [or SL(8, R)] covariant
black hole hair. However, one can use the information
available about the hidden symmetry of N = 8 super-
gravity [2]. We may just use the fact that it is known
how the hidden symmetries act on fields, in particular,
on spinors. In symmetric gauge N = 8 supergravity has
an SO(8) symmetric form. The scalar matrix V in this
form satisfies the condition

vV=vt. (144)
This condition is provided by the SU(8) gauge trans-
formation. The theory can be formulated in the inho-
mogeneous coordinates of §t%(ls“)‘ In these coordinates
YaBcp, A,...,D =1,...,8 are the scalar fields of the
theory. If we would know the most general black hole
solutions they would probably give us those scalar fields
as some functions of the space coordinates Z, and the
metric, the vector fields, etc., would be adjusted to the
scalar matrix expectation value (values at infinity) as well
as scalar charges, which will form the |T£| part of this ma-
trix. Thus as different from the previously studied case of
S duality we do not have the solution available which ex-
hibits this hidden symmetry, i.e., we do not know yet the
configuration which solves classical equations of motion
of N = 8 supergravity in a form in which the solution
has manifest U duality. However the general structure of
the theory suggests that the algebraic constraint on the
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Killing spinor will undergo a transformation generalizing
that of S duality, which is described above.

Let us first reformulate the information about the §
duality described above in the form suitable for the gen-
eralization to U duality.

The action of U(1,1) [complex version of SL(2, R)] on
spinors of N = 4 supergravity interacting with matter
with the local U(4) gauge symmetry fixed was known
since 1977 [41]. The scalars Y () are related to the
axion-dilaton field A(z) described above. For some ar-
bitrary parameter { (which is equal to 1 in the absence
of matter) the scalar matrix may be chosen in the sym-
metric gauge V = V1:

1 Y
Vi-Yy /1-YY

)'d 1 ’
Vi-Y¥ i-v¥y
were Y = (3 (1_4:1_2&31)

When the scalars are subject to fractional transforma-
tion of U(1,1),

VIY(e)] = (145)

Y = g'—:s laP—le?=1, (146)
the gravitino has to transform as

¥, = exp (%’759(1",7')) (T, (147)
where

explid(Y',Y")] = g;%z . (148)

The Killing spinor, being defined as a zero mode of the
equations

(bsusy¥,) = exp(%*yﬁ(Y',Y’)) (Osusy¥,) =0,
(149)

obviously has to transform under duality transformation
SU(1,1) as

(Vy)er = exp(%’yﬁ(}/'ﬂ?’l)) ((@u)ek)l =0. (150)

This is all we need to show that our choice of the gauge
fixing defined by the Killing spinors of the background is
duality covariant. Available black hole solutions gave us
examples of such rotations of the Killing spinors. In par-
ticular, the Killing spinor admitted by the axion-dilaton
black holes in symplectic form is

1

= Ha(E)) *
( (&) ) _ @ (ﬁ:(z_)) 0 1 ( € ) |
€*(Z) 0 (4—2’*’ z )" €/ (0)

Ha(F)
(151)

where ¢ is the constant z-independent part of the Killing
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spinor (its value at |Z| — oo0).

We would like to stress that the compensating U(1)
transformation acting on the Killing spinors of the back-
ground is neither global nor local: it is rigid. Indeed, the
hsp matrix in our example is

( E(a) ) (cAgzg—}-d) O ( 6(1) )
€ (:l) 0 (c/\(z") d) € (:l)

where A(z) = %: and H; 2(xz) are complex harmonic
functions defined in Eq. (116). The role of rigid sym-
metries in connection with the hypermultiplet action in
the black hole background was discussed before in [42].

Taking into account the fact that the choice of the
gauge condition for the heterotic string has not required
any specific knowledge of available black holes but only
the properties of N = 4 supergravity under S duality
(including the spinors) we may proceed with the duality
symmetric gauges for type-II string and supermembrane.

We may choose a scalar matrix in a symmetric gauge
V = V1 as suggested in [2]. This condition is provided
by the special choice of the local SU(8) gauge fixing:

1 Yy

Vi-Yy /1-v¥
¥

Vi-yy

V= (153)

1
Vi-vy
Each entry of this matrix is defined by the matrix
YuaBcp, A,...,D=1,...,8, i.e., by the inhomogeneous
coordinates of S_IEJ:(.IS_)'
E7(47) acts on the coordinates Ysp5 cp by fractional
transformation
, _B+YD
T A+YC S

The action of U duality on the scalar matrix V is

4 B\ (VD) 0
V(Y)(c D)_( 0o U

(154)

) V(Y (155)

where

(& 3)

is a constant matrix of E7(17), and A, B,C, D are 28 x 28
constant matrices defined in [2]. The local SU(8) trans-
formation U is determined by the condition that after
the action of E7(17) the matrix V(Y’) = V(Y')! remains
unitary.

The local SU(8) compensating transformation which
keeps the theory in the same symmetric gauge after the
duality transformation is defined by

(U(Y) 0 )
v A B)V_I(B+YD

v (& B)v (BE22) s

(156)
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In this form the matrix U still acts on 28-dimensional
representation. In the form in which it acts on a sin-
gle spinor in an eight-dimensional representation with
U(Y)sp it gives an explicit transformation of the gauge
condition under U duality.

Thus we have shown that given a half-supersymmetric
background of d = 11 or d = 10, N = 2 supersymme-
try, the Killing spinor of this background is covariant
under the action of U duality on spinors [via compen-
sating SU(8)]. Therefore if the gauge-fixing condition
on spinors of type-II superstring or supermembrane in
a half-supersymmetric background is chosen in a mani-
festly duality covariant form (34), this gauge fixing will
transform into an equivalent one related to the original
one by the action of E7(7) (or of some subgroup of it)
on gravitino and therefore on the Killing spinor.

In absence of the background we may still use the fact
that the algebraic constraint on Killing spinors at infinity
is defined in terms of the E7(47) black hole hair. The
algebraic constraint will transform under duality in terms
of the global SU(8) compensating transformation

U(Ye) 0
o wnr)

=vew (& B)v (Sie) - 09

where (Yap,cp)o is the value of the scalar fields at in-
finity, or the vacuum expectation value of the scalar field
(YaB,cp). The gauge-fixing condition will transform ac-
cording to the transformation property of the spinors.
And again, in symplectic form we have

' U(Yo)sp
@) = ()" ) (8) =0

21 = 2] . (159)

Thus the manifest U duality is the property of the gen-
eral covariant gauge fixing in terms of the supercharge of
the background and presented in Eq. (34). This gauge
fixing incorporates all possible half-supersymmetric back-
grounds of the theory.

X. CONCLUSION

The main result of this work is the gauge fixing of man-
ifestly supersymmetric string theory in a form in which
duality symmetry is also manifest. The difference with
the known quantization methods is in the fact that string
is placed in the curved BPS background which admits a
Killing spinor of the half-size of the supersymmetry pa-
rameter. The gauge-fixing condition uses the supercharge
of the background, see Eq. (34), and therefore general co-
variance is not broken in the quantization. The algebraic
constraint on the ghosts which allows to truncate x sym-
metry has a simple form in terms of the symplectic cen-
tral charge matrix of the background defined in Eq. (39)
and is given in Eq. (82). Under duality transformation
of the background this constraint transforms as shown
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in Eq. (135) in doublet form, in Eq. (138) in the con-
tracted form, and in Eq. (141) in symplectic form for S
duality and in Eq. (159) in the symplectic form for U du-
ality. The partition function on a torus is by construction
gauge independent, and therefore it is duality symmetric
at least at the formal level, before anomalies are taken
into account. The absence of anomalies of kK symmetry
in the heterotic string background requires the possibil-
ity to perform the embedding of the spin connection with
torsion into the non-Abelian gauge group [10]. Such em-
bedding was already studied for different black holes and
their uplifted versions. It was found that it does not work
equally well for all configurations, depending on whether
the holonomy group is a subgroup of the gauge group of
the heterotic string or not [14, 43]. Thus we expect that
the future study of the anomalies of the GS string in du-
ality covariant gauges will help us to understand better
the quantum aspects of this theory which were not yet
covered in this paper: here we have only shown how to
generalize the light-cone gauge to the most general pos-
sible gauges where the k-symmetry is truncated in terms
of the central charges of the BPS backgrounds.

We consider the quantization in the absence of the
curved background as a limiting procedure when cur-
vature goes to zero. This means that we can use the
central charge of the background even in the flat space
to fix the fermionic symmetry. The central charge can be
considered as the vacuum expectation value of the string
momenta, see Eq. (94). It was explained in [31] that the
saturation of the four-dimensional BPS bound my4 = |Z]|
is the condition that the ten-dimensional configuration
is massless, since m%, = m2 — |Z|? = 0. The massless
ten-dimensional state may correspond also to the mass-
less four-dimensional state. The form of the gauge-fixing
fermionic symmetry (39), which we are using has a well-
defined limit when |Z| — 0 which allows us to perform
the quantization both in the massless black hole back-
ground (23) as well as in the flat background.

Our main conclusion is the following. The nature of
infinite reducible x symmetry, which is the gauge sym-
metry of the manifestly supersymmetric versions of the
string theory, provides a clear request for the existence of
the geometries associated with the states saturating the
supersymmetric positivity bound: extreme black holes,
strings, membranes, pp waves. Those geometry states
play a special role in gravitational theories. What was
considered previously as a misfortune of infinite reducibil-
ity of x symmetry becomes its enormous advantage: the
consistent truncation can be performed in the BPS-type
backgrounds with one-half of unbroken supersymmetry,
which describe the duality-invariant geometries. We have
found duality-symmetric gauges for fixing £ symmetry.
In those gauges the elementary excitations of the super-
symmetric string described by the first quantized par-
tition function on the torus are duality invariant. The
second quantization of this theory may lead to a better
understanding of a quantized string and black holes.
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APPENDIX A: SUPERSYMMETRIC WAVES
AND BLACK HOLES

It was observed some time ago that the uplifted ex-
treme electrically charged black holes become supersym-
metric gravitational waves with the Killing spinor sat-
isfying the light-cone constraint [42]. The most general
known to us half-supersymmetric backgrounds of the het-
erotic string which admits a Killing spinor satisfying the
null condition n,y*e = 0 is given by a bosonic configu-
rations which also admits a null Killing vector. We call
such configurations supersymmetric gravitational waves
(in the context of string theory they were called chiral
null models [17]). Some of them (Brinkmann’s plane
fronted waves) admit the Killing vector which is covari-
antly constant [14]. They were called supersymmetric
string waves (SSW’s). The configurations related to the
SSW by T duality are also supersymmetric and were
called generalized fundamental string solutions or dual
waves [16]. The bosonic part of the ten-dimensional back-
ground for the heterotic string which is defined by the
integrability condition for the truncation of x symmetry
is given by such solutions.!®> Here we would like to con-
sider the half-supersymmetric SO(8)-symmetric solutions
build from ten functions of transverse z*,i = 1,...8.
This metric admits two null Killing vectors n,m, being
independent on u and v coordinates. Indeed, the gauge
fixing in the generalized (m,n) light-cone gauge in the
presence of the background naturally requires the back-
ground to admit two null vectors in addition to a half-size
Killing spinor.

The metric is

. 8
ds? = 2e**du(dv + A,dz*) — ) dz'dd’,
1

A,=0. (A1)
The two-form field is
B = 2e**du A (dv + A,dz*) . (A2)

The ten-dimensional dilaton e~2? and the u component
of the field A, are harmonic functions in the eight-
dimensional flat space,

8 8
Zaiaie—2$ =0, Zaia,;Au =0.
1 1

The eight transverse functions A; satisfy the equations

(A3)

13More general ten-dimensional solutions may still be discov-
ered and at the moment of this writing there is no information
available about the most general half-supersymmetric back-
grounds for the heterotic string. However, on the basis of the
N = 2,d = 4 investigations of Tod [27] one may expect that
all such backgrounds may be listed.



8

D 8i(8;49) =0

1

(A4)

For some of the solutions (not all of them) it is known
how to proceed with the spin embedding to cancel o’
corrections coming from anomalies [14, 16].

It is instructive to present here also the form of these
solutions in terms of the four-dimensional geometry,
when the functions describing the ten-dimensional waves
depend only on z!,z?,23. Dimensional reduction of su-
persymmetric gravitational waves was performed in [44].
The stationary metric in the canonical frame is

3 2 3
ds? = 2 <dt +) Aidwi) —e Y "datda’, (A5)
1 1

where the four-dimensional dilaton is given by

8 H
e = (e”z"’Au - Z(A,.)Z)
4

The other fields can be also deduced from the ten-
dimensional configuration and are presented explicitly in
[44]. If we would take a special subclass of dimensionally
reduced gravitational waves (A1) with

A=Ay = A3 =0,

(A6)

(A7)

we will get the supersymmetric black holes with metric
3 . .

e 2¢ Z dr*dz® ,
1

where the four-dimensional dilaton is defined in Eq. (A6).

The functions defining the solutions are taken in the form
[44]

ds? = e2%dt? — (A8)

ka

2mk

Z(Qk)i
1=4,...,8. (A9)

This is a multi-black-hole solution with § black holes and
Tk = |& — &|. The four-dimensional dilaton is given by

e—2¢={ (1+i%)(1+}32:3')
* 2a)i 2y 3
)

If we would take one-black-hole solutions with all func-
tions A; = 0 we would reproduce the supersymmetric
electrically charged two-parameter black hole solutions
of Sen [30] for g = 1. The canonical metric is given in
Eq. (A8), where the dilaton is given by

(A10)
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1
o2 _ <1+2(m+m) +4m2m)z
r T

One can rescale this solution by introducing (e=2¢) =

e~2%0 = gi,. This allows us to bring our dimensionally

(A11)

reduced wave solution to the form of Eq. (19). Two in-
dependent parameters in the wave solutions are related
to those in (19) as follows:

m+m=2mGy , mm=g*(Ny—1). (A12)

The first parameter is the mass of the black hole, which
in our case is m = m+m. The second parameter is re-
lated to the left- handed charge of the black hole and
to the parameter m2 = 4 introduced by Sen [30].
Thus if one would wish to generalize Sen’s solutions to
the multi-black-hole case using the duality rotations from
Kerr’s four-dimensional black holes, this would be very
difficult. However, a duality between ten-dimensional su-
persymmetric waves and four-dimensional black holes es-
tablished in [42] helps to get the most general in this class
multi-black hole solutions defined in Egs. (A8) and (A10).
Now we may conclude that the general electrically
charged black-hole-type solutions (A5) indeed form the
background in which the heterotic string in Green-
Schwarz form is known to be quantized consistently. The
uplifted geometry admits the Killing spinor and two null
vectors required by our choice of the gauge condition.
In dimensionally reduced form this geometry includes all
known electrically charged supersymmetric black holes of
the heterotic string theory saturating the BPS bound.

APPENDIX B: SUPERSYMMETRIC MASSLESS
MULTI-BLACK HOLES

The massless black hole configuration found by
Behrndt [19] by dimensional reduction of the T-self-dual
supersymmetric wave solutions is given by m = —m, see
Egs. (A8), (A11), and (A12). In this appendix we will
describe a rather nontrivial space-time structure of this
solution and find a more general set of massless black
holes.

Note that for the solutions obtained by Sen [30] the
black hole mass m and the left-handed charge Q1 have

the following parametrization: m2? = —l—élcosh a and

(Qr)? = gzimg sinh® . Therefore the point where the
mass of the black hole is zero seems to require also the
left-handed charge to vanish, i.e., the solution becomes
trivial. However, if one starts with ten-dimensional su-
persymmetric gravitational waves (A1), the parameters
m and 7 are independent, and there is no obvious rea-
son not to consider the configuration m + 7 = 0. (The
configurations with /m + 7 < 0, which would correspond
to a negative ADM mass, would violate supersymmetric
positivity bound.) Bearing in mind that massless black
holes are not quite usual solutions of four-dimensional
gravity interacting with matter, one may try to study
these configurations in more detail.

As we have already mentioned in Sec. II, the massless
electric black hole (23) has a singularity at r = 2g, in
addition to the singularity ar r = 0. Meanwhile, the
massless magnetic black hole (26) has a singularity at r =
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2 The relevant question to ask is whether the singularity
of the metric of the electric black hole at = 2g and of the
magnetic one at r = 2 is a true singularity, or it can be
removed by the change of coordinate system. To answer
this question we calculated the curvature scalar for these
solutions in canonical Einstein frame. In the electric case
the curvature scalar has a singularity at » = 2g:

pe - 49°(2¢* +1?)
can ’l"(”'z _ 4g2)%

(B1)

In the magnetic case the canonical curvature is

4g(2 + g%r?)
magn _
Rcan - 'I‘(g27'2 _ 4)g . (B2)

For completeness of the picture we will check that the
new singularity is present also in stringy frame. For elec-
tric solution in stringy frame the metric is

-1
ds? = (1 - 4%) dt* — d&® (B3)
and the curvature is
_ —892(892+T2)
Rstr - 7'2(7'2 _ 492)2 (B4)

The magnetic massless solutions in stringy frame has the
metric

2 _ 4 _.
ds® = dt* — (1 e dz? (B5)
and the curvature scalar is
169%(2 + g°r?)
magn __
Rym = (P —a)p (BS6)

Thus the singularity at r = 2g (r = 2/g) does not vanish
when we change from electric to magnetic solutions or
change from canonical to stringy frame. For comparison,
we present here the pure magnetic a = 1 massive black
hole in stringy frame

2
ds? = dt? — (1 4 2m ) di? . (B7)
r
The curvature is completely nonsingular
ma n 8m2
sf:l'g (G, = 1) (B8)

Nothing like that happens with the massless configura-
tion, the singularity is present and since it is related
to string coupling, it somehow reflects the presence of
a string.

One can find a solution describing a more general fam-
ily of four-dimensional black holes with a vanishing ADM
mass. For this purpose we may use the fact that in grav-
itational wave solutions in d = 10 one can use more gen-
eral harmonic functions. For one-black-hole case one may
take
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o2 _ o200 4 I
r
o
Au - (Au)O + —:':'n‘ ’
2(q):
4; = ()0 + 20
i=4,...,9 (B9)
The four-dimensional dilaton is now given by
2
e_2¢ B { ( _2¢0 + ) ((Au)o + 2mk>
) 1
[(A Jo + (q") ] } (B10)
Obviously there are many ways to make the % term in

this expression equal to zero, and to make the ADM mass
of the four-dimensional black holes vanishing. The condi-
tion on the parameters of the harmonic functions which
provides the massless black holes is

9

e—zd;o’ﬁ'l + (Au)oﬁl -2 Z(A,-)oq,- =0.
=4

(B11)

The main difference with the previous massless case
comes from the nonvanishing asymptotic value of the ten-
dimensional component of the metric g,; = (A;)o. This
modification cannot be removed by simple rescaling of
coordinates. Thus generalizing higher-dimensional con-
figurations one can find more massless four-dimensional
black hole-type solutions. Different choices of harmonic
functions in d = 10 solutions describe different geome-
tries of the six-dimensional space. The massless multi-
black holes are also available. We may choose the fol-
lowing harmonic functions in the supersymmetric waves
(160):

(B12)

The total configuration may consist of many massless
black holes, the condition that each black hole in the
configuration is massless requires

9
e 2% + (Au)omk — 2 ) (Ai)o(gr)i = 0 -
i=4

(B13)

The existence of massless black hole solutions presents
a new challenge. Some time ago the very possibility of
black holes being massless would seem unthinkable. One
could expect that in the limit m — 0 gravitational field
disappears, and space becomes exactly flat. Now we have
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a vector multiplet which acts a a source of gravity. This
leads to existence of a large family of states which have
nontrivial geometric properties even when their ADM
mass vanishes. One should note that it is somewhat
misleading to call these states “massless black holes.”
First of all, they are massless in the sense of their ADM
mass, however the configuration has a rest frame. Also,
gravitational attraction becomes increasingly strong near
usual black holes. Meanwhile, in our case massless black
holes are in equilibrium with each other, and they grav-
itationally repel usual test particles which come to their
vicinity. In this sense they behave like white holes rather
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than black ones [45].

Note also that these solutions appear in a situation
where we have massless charged vector fields. In such a
situation, just like in the theory of confinement in QCD,
nonperturbative effects may completely change the na-
ture of charged black hole solutions. In particular, one
may study whether nonperturbative effects may lead to
confinement or condensation of electrically and/or mag-
netically charged massless black holes. Therefore physi-
cal interpretation of massless black hole solutions and of
their possible role in string theory requires further inves-
tigation.
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