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Quantum mechanics of the dynamical zero mode in (1+1)-dimensional +CD
on the light cone
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Motivated by the work of Kalloniatis, Pauli, and Pinsky, we consider the theory of light-cone
quantized (1+1)-dimensional +CD ou a spatial circle with periodic and antiperiodic boundary con-
ditions on the gluon and quark fields, respectively. This approach is based on discretized light-cone
quantization. We investigate the canonical structures of the theory. We show that the traditional
light-cone gauge A = 0 is not available and the zero mode (ZM) is a dynamical field, which might
contribute to the vacuum structure nontrivially. We construct the full ground state of the system
and obtain the Schrodinger equation for the ZM in a certain approximation. Finally, the relationship
between our results and those of Kalloniatis, Pauli, and Pinsky are discussed.

PACS number(s): 11.15.Tk, 11.10.Ef, 11.10.Kk

I. INTRODUCTION

Quantum field theory on the light cone has been re-
cently studied as a new powerful tool for understand-
ing nonperturbative phenomena [1,2], especially in the
theory of strong interaction (QCD) [3—7]. One of the
most remarkable advantages in light-cone formalism is
that vacuum is simple or trivial; i.e., the Fock vacuum
is an eigenstate of the light-cone Hamiltonian [8]. On
the other hand, in the usual equal-time formalism the
vacuum contains an infinitely large number of particles.
However, one simple and naive question arises here: how
can we understand phenomena such as chiral symmetry
breaking and confinement in such a simple vacuum?

As has already been indicated by many authors [9—11],
zero modes of the fields might play an essential and im-
portant role there. Recently Kalloniatis, Pauli, and Pin-
sky have investigated about pure glue (1+1)-dimensional
QCD (QCDi+i) [an SU(2) non-Abelian gauge theory in
1+1 dimensions with classical sources coupled to the glu-
ons] and have discussed the physical effects of the dy-
namical zero mode [12]. Note here that there are two
kinds of zero modes of the Belds. One is called a con-
strained zero mode, which is not an independent degree
of freedom. Rather, it is dependent on the dynamical
modes through the constraint equation. There have been
many works on such a constrained zero mode related to
the phenomena of phase transition in scalar field the-
ory [13—16]. The other, which we treat here, is called
a dynamical zero mode, it is a true dynamical indepen-
dent field. Also Kalloniatis et al, . have used the specific
approach of discretized light-cone quantization (DLCQ)
[2] in their analysis because this approach gives us an
in&ared regulated theory and the discretization of mo-
menta facilitates putting the many-body problem on the
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II. CLASSICAL THEORY: HAMILTONIAN
FORMALISM

In this section, we study the canonical structures of
light-cone QCDi+i, where the space is a circle and the
gauge group is SU(2). Let us start with Lagrangian den-
sity

'F„„F""+4(ip-"D„—m)4 . (2.1)

Here @(x) is a quark Beld. Especially in two diinensions,
the quark Beld (in a representation in which p is diago-
nal)

(2.2)

is a two-component spinor in the fundamental represen-
tation [2]. B and L indicate chirality, which specifies only
direction for massless fermions. While the filed E„„and
the covariant derivative are defined as

computer. We shall follow their approach.
Our aim in this paper is to study the light-cone quan-

tized QCDi+i with fundamental fermions (quarks) cou-
pled to the gauge fields (gluons) in inore detail and give
insight into the nontrivial QCD vacuum structure. The
contents of this paper are as follows. In Sec. II, we study
the canonical structures of QCDi+i on the light-cone
(Hamiltonian formalism) based on Dirac's treatment of
the constraint system. We explicitly obtain a canonical
light-cone Hamiltonian and Dirac brackets between phys-
ical quantities there. We also comment on the dynamical
zero mode of the gluon fields in this section. In Sec. III,
we quantize the theory developed in the previous section
and construct a full ground state of the Hamiltonian.
Furthermore we derive the Schrodinger equation for the
zero mode in a specific coupling region. Section IV is
devoted to a summary and discussion. The appendix ex-
plains our notation and conventions.
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F„„=O„A„—B„A„—ge 'A„A'„, (2.3) P~~(z) =
t

—0 .
Bl'.

~(~+~~(z))
(2.16)

aD„—xO„—gA T (2.4)

where A (x) is a "gluon" field and g is the coupling con-
stant and T and e ' are the generators and the struc-
ture constant of the SU(2) gauge group defined as [17)

On the other hand, we find that in the DLCQ ap-
proach, from the boundary conditions (2.8), the gluon
field A can be decomposed into a zero mode (ZM) and
a particle mode (PM) as follows:

[T T ]=is s'T

Tr(T T ) = ih s

(2.5)

(2 6)

where

A„(x) = A„+A„(x),

0 g
L

A„—: dx A„(x),2L

(2.17)

(2.18)

In the light-cone kame approach, we set the coordinates
A„(x) —= A„(x) —A„. (2.19)

0~ i)
2

(2.7)

and then rewrite all the quantities involved in the La-
grangian density (2.1) in terms of z+ instead of the orig-
inal coordinates xo(time) and xi(space). As usual in dis-
cretized light-cone quantization, we de6ne x as the line-
cone "time, " while x is the light-cone "space, " which is
restricted to a 6nite interval &om —I to I. Within the
interval, we impose periodic and antiperiodic boundary
conditions on the gluon field A„(x) and the quark field
4(z), respectively: i.e.,

II+ P

11+.(z) = 0,
0 0
II = F+

(2.20)

(2.21)

(2.22)

0
Here A and A denote the zero modes and the par-

P
ticle modes of the gluon field, respectively. Similarly
the canonical momenta (2.11) and (2.12) are decomposed
into a ZM and PM, which leads to

A„(x+,z +2L,) = A„(z+, z ), (2.8)
where

(2.23)

@(z+,z +2L) = —@(z+,z ) . (2.9)

In this way the Lagrangian density (2.1) is rewritten

2 = —,'(F+ )'+ ~2(4~tiB+4~+@~iB CL)

m(@~@&+ 4—'„O'L, ) —+2g(@&T @RA+

+C~tT CL,A ), (2.10)

where B~ = 8/Oz+. In order to carry out the Hamil-
tonian formulation, we must compute the canonical mo-
menta

L

F+ —— dz F+ (z),2I
0 0 0
Aa abcAb Ac

L
dx e s'A+(x)A' (x),—L

(2.24)

F+ (x) = F+ (x) —F+
= 8+A —0 A+

—ge '(A A'+A A'+A A ). (2.25)

Following Dirac then [18] we can see that there are six
primary constraints such as [19]

=0,

MII (x) = = F+ (x),

(2.11)

(2.12)

0
II+ = 0,

II+.(z) = 0,
PL, (z) = 0,
P~~(z) = 0,

(2.26)

(2.27)

(2.28)

(2.29)

=0,

(2.13)

(2.14)

PR(z) —V2i4'R(z) = 0,

P~(z) = 0,

(2.30)

(2.31)

= ~2i@~~(x), (2.15)

where means the weak equality as usual. Substituting
Eq. (2.17) into the Lagrangian density (2.10) and using

Eqs. (2.11)—(2.16), the total light-cone Hamiltonian can
be obtained:
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L
II'c = dz [n--O A +P a e —Z]

—L

dx [-(II ) + -(II ) +. II 0 A+ + ge '(II A+A + II A+A
—L

+II As+A' y fI A+A' + II A+A' ) —+24'~iO @L, + m(414'R+ @tz@1.)

++2g (lIJtT 9 (i +A ) + etT e (A +A')) +u, II+ +u, II+ +u & +u P,'

+u4(PR —+2i C R) + usPn], (2.32)

where us and uz (u2, us, u4, and us) are (Grassmann)
Lagrange multipliers and we have used

L
dx A~(z) = dx II+ (z) = 0 .

—L —L
(2.33)

Once we obtain the expression for the Hamiltonian,
we must investigate whether the primary constraints in-
duce the secondary constraints by imposing the consis-
tency conditions. As the result, we find there are four
secondary constraints:

(2.41)

Os = [8 II (x) —gII 'e 'A (x)

+ig(PI, T~@I, + 4 ~T~P~

+P T @ y4„T P„)( )] (2.42)

yg ——PI, (x), (2.43)

L
dz

—
[II

—e' A' (z) —i(PI.T @L, + 4~T P~
—L

+P„T 4~+ @t~T P„)(z)],

L

g dx (II 'e A + ~2@~T @n) = 0,
—L

(2.34)
x2 = Pl, (z), (2.44)

8 II —g(II e 'A') —~2g(4t T @&) =0,
(2.as)

y, = PR(z) —~2i@t~(x), (2.4s)

~2iB @I, —m4& —v2gC'I. T A =0, (2.36)
y4 —P~(z), (2.46)

(&2iO O'I, —mC'R —v 2g@I,T A ) = 0,
where

(2.37)
y, = ~2iB @1,(z) —m@&(z) —v 2g@I,T A (z),

(2.47)

(AQA2 . A„) = A&(x)A2(x) . . A„(x)
L

dx Ag(z)A2(z) . .A„(x) .
—L

(2.38)
We can show directly that constraints (2.34)—(2.37) do
not generate new constraints further. Adding these con-
straints to the primary constraints, there exist ten con-
straints, which govern the dynamics of our system. What
we have to do next is to classify these primary and sec-
ondary constraints to the first class or the second class
constraints. A direct calculation shows that constraints
(2.26) and (2.27) belong to the first class and the others
to the second one. But this is not true. As indicated
by some authors [19,20], the minimal set of second class
constraints is found by combining constraints except for
(2.26) and (2.27) appropriately and it is easy to show
that this set is indeed given by

00 =II

(0 (z), Op(y) j = 0, (2.49)

which reflects the gauge invariance of the system. In
order to eliminate all the constraints and quantize the
system, we need to fix the gauge degrees of &eedom and
define the Dirac brackets along the usual prescription
[19]. Here we shall give the gauge-fixing conditions as

(2.so)

, =II (z)+0 A ( )+go '(A (x)A'(x)) =0,
(2.s1)

ys ——[v 2i8 O' (I)z—m4~(z) —~gg@I,T A (x)]t,
(2.48)

where 0 (a = 0, 1, 2, 3) and yp (P = 1—6) denote the
first- and second-class constraints, respectively. The first-
class constraints satisfy the algebra

(2.40) (2.s2)
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~s = A (x) = 0 . (2.53) III. QUANTUM THEORY: DYNAMICAL
ZM EQUATION

{'A,II )DB = (2.54)

Note here the following remarkable fact. As we see &om
the gauge-fixing conditions (2.52) and (2.53), we can not
impose the traditional light-cone gauge A = 0 because

0
we cannot put the third component of A to be zero.
SU(2) global color rotation symmetry always enables us
to choose such gauge-fixing conditions [21]. That is why

0
one of the zero modes of the gluon field A becomes
a dynamical variable, which might give insight to the
nontrivial structures of the /CD light-cone vacuum [21].

Now we are coming in the stage of evaluating the Dirac
brackets. After the straightforward but some tedious cal-
culations, nonzero Dirac brackets are

In this section, we discuss the quantum aspects of the
theory studied in the previous section at the classical
level in detail. First we start by discussing eigenstates
of the matter part in the Hamiltonian (2.56) in the fixed
background gauge field and then we construct the full
ground state including the ZM of the gauge field q(x+).
Before doing that, we inust solve Eqs. (2.57) and (2.58)
for @I, and A+. Equation (2.57) for @L, is easily solved:

OO

@'K(x) = ~ ): dy
2 2I

( in 1
x exp

I

——(k + -)(* —y ) I @R(y; I ),)L 2

(3.1)

2
(2 55) where

As far as Dirac brackets have been used, we may set all
the constraints and the gauge-fixing conditions to van-
ish strongly. The result is that total Hamiltonian (2.32)
reduces to the form

4~(x; k) = r
q'R(~)

~ (a+-', )—gq
+2 ( )
A+- +gq

(3.2)

HT —— dz —P + m@Z@L
2

(@t~T 4&) A+
2

(2.56)

with c being the color indices.
On the other hand, equations for A+ consist of the

three components

c)2 A+(x) + 2gq(x+)c) A+ —g q2(x+)A++ p'(x) = 0,
(3.3)

0
where p = II s and 4r, (x) and A+(x) are given as the
functions satisfying following equations: i.e.,

c) A+(x) —2gq(x+)8 A+ —g q (x+)A+ + p (x) = 0,
(3.4)

V 2i 8 O'I, (x) —m@~ (x) —9 2gq(x+) T iIII, (x) = 0,
(2.57) c)2 As+(x) + p (x) = 0, (3.5)

c)' A (x) + 2e gq(x+) c) A+(x)

—g'q'(*+)(A+ —&"'As+)(x) + v 2gC ~„T 4&(x) = 0,
(2.58)

where p (x) = ~2g4'tI T @R(x). Clearly a solution

for Eq. (3.5) is formally written of the form As+(x)
—(1jc) )p (x). Thus, we will concentrate to the remain-
ing equations (3.3) and (3.4). For brevity, we rewrite
Eqs. (3.3) and (3.4) as

d'f(*)+2 dg(x) 2f( )+ i( )
cLx dx

d'g(*) 2,df(x) 2
( )+ 2( )dx2 dxL

q = g dx 4'z~TsCI&(z) = 0 .
—L

( 5 ) where we set

where q(x+) = As . While @~(z) has been chosen to
satisfy charge neutrality condition

(3.6)

This corresponds to the third component of ZM of Gauss
law, which is necessary whenever the system is in a finite
interval [22]. The fields @I, and A+ are expressed in
terms of @R and q(x+) by solving Eqs. (2.57) and (2.58).
As the result, we find that the physical degrees of &eedom
in this system are only the diagonal part of zero modes
of the gluon field q(x+) and right-handed quark field @R.

X Z )

o = gq(x ),
A+ (x) —= f(x),
A+(x) = g(x) . (3 7)

It is easy to find that we can express Eq. (3.6) in matrix
representation:
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M" (*)y'(*) = p—'(x) (3.8) would be given by

Here 2 x 2 matrix M'~(x) and vectors p'(x) and p'(x) are
defined by (p'(x) = dy&" (x y) p'(y)

—L
(3.io)

M'&(x) =
~

~*'
—2a&

V'(x) =
I g( )

I

( f(x) 5' & p'(*) ~
'

'( (3.9)

Using the usual Green function method, the forin of p'(x)

where ( '~ (x, y) is the Green function defined by

M" (x)G'"(x, y) = —8"h(x —y) . (3.11)

By solving Eq. (3.11) with M'~(x) given by (3.9), we
obtain the explicit forms of G'~ (x, y), A+i(x), and A2+(x)
such that

=1 = (mni/L) (e—y)
hazy (~ %L/

(&n/L +. a) 2 (7m/L a) 2
&

2mina
n= —oo

'v
2''zn CL

(V) + ') (3.12)

1 . [(em/L)2+ a ]pi(y) + (2vrina/L)p (y) ( „;&I,&(Ai (x) = — dy
(mn/L + a) 2 (em/L —a) 2 (3.13)

1 . [(vrnL) 2 + a2]p2(y) —(2vrina/L) pi(y) ( „,(~l( „lA (x) = — dy
(~n/L+ a)2(em/L —a)' (3.i4)

As a result, by substituting these equations and As+(x) = —(1/02) ps(x) into the electrostatic Coulomb energy partin the Hamiltonian, we find that

L
Hc „, b

= dx (C~tT 4&) A+(x)
2

dx [p'(x)A+ + p2(x)A+] —— dx p (x) 2 p (x)
L L

) p'(x)p*(y)e ""'

( L 1 1+i(x —y )cot(gqL) —lx —y I I

—— d* p'(x), p'(x) .
& 2 sin (gqL) ) 2 r, 0 (3.i5)

In order to quantize the Hamiltonian (2.56), we replace the Dirac brackets to the commutators. Quantization
conditions for the fields 4~(x) and q(x+) are defined as

[q(x+) p(x')] =' (3.16)

(~R(x) ~~'(y)) = ~" ~(x —y )2 (3.17)

(O' R(*) @~(y)) =(@R( ) O'R (y)) =o (3.18)

where A means an operator and we have rescaled 2Lq ~ q. Thus, quantum light-cone Hamiltonian is composed of
three parts:

where

~ZM + HI" + ~Coulomb
"LC "LC "LC "LC

I" LC A2
H7M — (LX —p2

(3.19)

(3.2o)
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L
IIZ~C = dx m@~Z@L,

—L
(3.21)

L L
dv ).P(x)P(u) exp

I

—2~q(x+)(x —~ ) I—L —L i=y 2

x
I

+i(x —y )cot
I

/' L, . (gq) l 1 ' — 3 1 "3

(2 sin (gq/2) ( 2 ) )
(3.22)

oo J
@c ( )

~ ) d
— —(im/L)(le+1/2)(a —y ) i' ( )

2 2Lq
(3.23)

p (x) = ~2g: 4 RtT 4 R(x): . (3.24)

ai, l0) y
= di 10)y

= o

for all c and k. Here the creation (annihilation) operator
a'„t, d„t (a&, d&) is defined through the following mode
expansion of @R(x), which comes from the antisymmet-
ric boundary condition (2.9) and the anticommutation
relation (3.17) and (3.18):

where

@c ( ) ) (
- c —(im/I) (@+1/2)z

2i/4y'2L „
{i~/L){@+1/2)a

k J (3.25)

I I I

(aL a~') = ~ "~~,~ = (dL 4')
(a„,a'„,) = (a~, ai, , j = 0,
(d~ d~ ) = (d~' ~~') = 0. (3.26)

Here:: means a normal-ordered product.
In this stage, our treatment is still exact. Since we

could obtain the complete forms of quantum light-cone
Hamiltonian H, we will next discuss eigenstates of
H& + Hc „& b. To do that, we first construct the
ground state of our system in the presence of fixed back-
ground values of the ZM of the gauge field q(x+) [23].
This is corresponding to a kind of adiabatic approxima-
tion. Then we can easily find a fermionic part of the
light-cone vacuum eigenstate as 10)y, defined by

lvacuum) = 10)f Im Op(q) . (3.28)

40(q) is the zero-mode wave function in the q represen-
tation, satisfying the following Schrodinger equation for
a free particle with a unit mass (m = 1):

I ( . di'—
I

—~—
I

e'o(q) = ~c'o(q), (3.29)

where t = E/(2I) is an energy density.
This result seems to suggest that in a sense, the

ground-state structure of the correctly normal-ordered
light-cone /CD Hamiltonian is almost trivial in the adia-
batic approximation. However, it is diKcult to construct
the full ground state beyond the adiabatic approxima-
tion. Rather, we are interested in how the effects of the
ZM change the spectrum of the excited states. But we
cannot answer this question in this paper.

Instead, we shall see the relation between our result
and that of Kalloniatis et al. In order to do so, we shall
neglect the fermion mass term (3.21) and replace the cur-
rents p (x) (i = 1, 2) in Eq. (3.22) with classical external
source terms p' independent of x [note that p3 automati-
cally vanishes because of the charge neutrality condition
(2.59)]. They have assumed in their paper that only zero-
rnode external sources excite the ZM of the gauge fields.
After some straightforward calculations of x and y inte-
grations, we find that the light-cone Hamiltonian in the
q representation would be of the form as

Of course, we can easily show that the states 10)I, satisfy
the constraints (2.59): that is Lc IILc + 4g [(p

ig )
2 + (p

2 g )
2

]

L
q 10)g =—g dx O' R(x)T @R(x)10)g = 0 . (3.27)

—L

This is nothing but the physical state condition. In phys-
ical meaning, this is saying that physical states be charge
neutral as a whole.

As the result, the full ground state of the system can
be written by

—'- —" -2co '—' -"
gg 2 2

—4 sin(gq) + cos
4 2 gq

g g 2

Note here that the functions

(3.30)
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1 x x 4 2 x
cot — —2 cot — cos x —4 sinx + —cos

x 2 2 x2 2

(3.31)

sions [6]. But as there are many difficulties to confront,
especially a renormalization problem [10], it seems quite
distant. Future works will concentrate on these points.

and

(3.32)
ACKNOWLEDGMENTS

are almost the same in the interval 0 & x & 1. Thus we
can rewrite Eq. (3.30) as

~Lc IILc + 8L, (plL)2 + (p2L)2
1

ZM g2 $2

1 t' . d 5' (2wL)2
2 ( dq) 2q
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APPENDIX: NOTATION AND CONVENTIONS

where

zuz —= +, p~ =—~2(p' + ip') .
g

(3.34)

We describe here some notation and conventions in
the light-cone formalism. They are essentially the same
as those of Harada et al. [8]. The coordinates are set
x+ = (2: 6 x )/~2, where x+ is taken as "time. " The
light-cone metric is given by

(2tUI, )
2

2 dg
+ Op(q) = ECo(q) . (3.3s)

Therefore the Schrodinger equation for dynamical zero
mode is now given by (0 11

ql op ) P~&=+~

The derivatives are also defined as

(A1)

This is the same result Kalloniatis et al. have obtained
in [12]. Thus we might say the results we have obtained
here generalize their results.

IV. SUMMARY AND DISCUSSION

In this paper, we have studied QCDi+i with funda-
mental fermions based on discretized light-cone quanti-
zation (DLCQ) formalism. We have discussed both clas-
sical and quantum aspects of the theory in detail and
obtained the full ground-state wave function of the the-
ory by the method of "separation of variables" mentioned
in [23] and we could see the light-cone @CD ground state
has almost trivial structure in the range of the adiabatic
approximation we have used here. Also we could find the
relation between the original work by Kalloniatis et al.
and ours. The physical effects of the ZM for the es-
sentially nonperturbative phenomena, e.g. , chiral sym-
metry breaking and confinement, etc. , however, remains
unclear. More precise considerations for these would be
future work. Moreover, what we would really like to un-
derstand is the @CD bound-state problem in 3+1 dimen-

(A2)

with B~ = 0+. p matrices in a representation in which
is diagonal are

/'0 1), /'0 -11
1O I

~'=I
1 O

(1 O

p

(0 ~21
~20 I' ~qp 0

(001 + /20)
0 2 ~ & &+=~

P Py~

The SU(2) gauge fields are represented by

(A3)

(A4)

where 0 is ordinary Pauli matrices such that

('0 11, &0 —ib, (1 o )
I 1 0)' ki o )' &0 -1~

(As)
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