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We extend the model of string as a polymer of string bits to the case of superstring. We
mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not
II-B superstring, together with possible strategies for surmounting them. As with previous work
on bosonic string we work within the light-cone gauge. The bit model possesses a good deal less
symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei-
invariant theory in [(D —2) + 1]-dimensional space-time. This means that Poincare invariance is
reduced to the Galilei subgroup in D —2 space dimensions. Naturally the supersymmetry present in
the bit model is likewise dramatically reduced. Continuous string can rise in the bit models with the
formation of infinitely long polymers of string bits. Under the right circumstances (at the critical
dimension) these polymers can behave as string moving in D-dimensional space-time enjoying the
full N = 2 Poincare supersymmetric dynamics of type II-B superstring.

PACS number(s): 11.25.Sq, 11.15.Pg

I. INTRODUCTION

The idea that relativistic string is a composite of point-
like entities [1—3] called "string bits" is an appealing alter-
native to the cumbersome formal apparatus of string field
theory. The origins of the idea can be traced to the ear-
liest days of dual models [4] with the attempt, motivated
in part by the old parton model of hadrons [5], to un-
derstand dual resonance amplitudes as planar "fishnet"
Feynman diagrams. After 't Hooft showed that planar di-
agrams are naturally singled out by the 1/N, expansion
[6], the idea was again vigorously explored as a possible
link between non-Abelian gauge theory and string theory
[7—9]. The attempted linkage failed because, unlike the
partons of hadrons (quarks and gluons), the "partons"
of string never carry a finite fraction of the string's mo-
mentum: string bits are always "wee" partons. From the
modern point of view, strings are not hadrons and we ad-
vocate that the inevitable weeness of string bits should
actually be embraced as a uniquely stringy hallmark [3].

Our main goal in developing string bit models is to
devise a truly nonperturbative formulation of string the-
ory. In the earlier work of one of us this idea has been
pursued only in light-cone gauge and systematically de-
veloped only for bosonic string [10]. Bosonic string (in
26 space-time dimensions) is generally believed to be ab-
solutely unstable, and it is therefore an unfortunate test
case for a nonperturbative reformulation. This has not
hindered the formal implementation of string bit ideas
for this case, since that has so far been limited to a per-
turbative context. However, there seems little point in
attempting nonperturbative studies of bosonic string bit
models, other than to confirm that they do not make
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sense as string theories. We can be much more opti-
mistic in the case of superstring theory which is generally
hoped to be a consistent stable theory. Indeed, if a su-
perbit model for superstring can be shown to be a good
theory at the nonperturbative level, there is the excit-
ing possibility that many of the conundruxns of quantum
gravity, such as the consistency of quantum mechanics in
the presence of black holes, may be resolved [11,12].

In this paper we present a bit model for superstring,
restricting attention for the most part to the type II-B
case, which presents the fewest obstacles to a complete
treatment. By no means do we claim that our bit model
is unique. Universality suggests that the model can be
generalized in various ways, and still yield a satisfactory
continuum limit. In fact to get the correct string inter-
actions the model haa to be extended. Producing one
or another satisfactory model is useful for studying su-
perstring theory, but we eventually want to restrict the
models by some underlying symmetry principles, not by
whether they possess a satisfactory continuum limit. Our
bit model suggests what some of these principles may be,
but it certainly does not give them all.

A dramatic feature of string theory viewed in light-
cone gauge is the fact that the longitudinal coordinate
x = (t —z)/~2 is virtually eliminated from the theory.
Except for its zero mode, conjugate to P+, it is solely
a function of the transverse coordinates. The string bit
idea efFectively eliminates even this zero-mode longitudi-
nal degree of freedom, by identifying P+ with the num-
ber of string bits: each bit is free to move around only
in the transverse space. The full space-time symmetry
group of the string bit dynamics is the Galilei group in
[(D —2) + 1]-dimensional space-time with space coordi-
nates x", A; = 1, . . . , D —2 and time identified with x+.
Each bit has a fixed Newtonian mass m. If M bits can
form into long polymers, then mM can be identified in
the limit M ~ ao as the string's total P+. All of this
has already been discussed in the simplified context of
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bosonic string [1,3,9,10,13]. To extend the work to super-
string, we must decide how the world-sheet spinors are to
be 6t into the string bit picture. We shall 6nd that they
can emerge in the continuous string limit if each bit is
in a 256 component supermultiplet of Sqg, the minimal
super-Galilei group [14,15] for eight-dimensional space.

The paper is organized as follows. In Sec. II we re-
view the super-Poincare algebra in light-cone coordinates
and display its super-Galilei subalgebra. Then in Sec. III
we devise a suitable discretization of superstring in the
light-cone Green-Schwarz formulation. This discretiza-
tion motivates our proposal for a fully second-quantized
superstring bit model. In Sec. IU we present such mod-
els, first in 2 + 1 dimensions as a warmup, then in 8+ 1
dimensions for type II-8 superstring. Section V contains
our concluding remarks, which include a brief discussion
of the open issues we leave for resolution in future work.

II. SUPER-POINCARE ALGEBRA
IN LIGHT-CONE COORDINATES

We begin by reviewing the D-dimensional super-
Poincare algebra and expressing it in light-cone variables.
For simplicity we shall only consider even D. The super-
Poincare generators include a vector P", a rank two an-
tisymmetric tensor M"", and a Grassmann odd spinor
Q~. Greek indices take values from 0 to D —1, and capi-
tal script indices take values &om 1 to 2 ~, which is the
dimension of the spinor representation of the Poincare
group ISO(D —1, 1). The algebra satisfied by the gener-
ators is given by

[P",P"] = [Q~, P"] = 0,
[M"",PP] = i (g"~P" —g"PP"),

[M"",MP ] =i(q"PM" + g" M~"
—rl"PM" —g" M~")

[M~", Q~] = ——(Z"" Q)~,
2
1

(QA, Qt ) = — (I' PI' )
2

(2.1)

where g" =diag( —1, 1, . . . , 1j, I'" are the Dirac I' ma-
trices in D dimensions, and Z"" = i/2[I'", I'"]. Note that
the right-hand side of the last equation involves

Pro Po+ Pk k

where o.' =—r'r', k = 1, . . . , a —1, are the original Her-
mitian o. matrices introduced by Dirac.

Light-cone coordinates are de6ned by singling out one
of the spatial directions, say x, and letting

0~ D 1)—1
(2.2)

The role of time is played by x+, so its conjugate momen-
tum P plays the role of the light-cone Hamiltonian. The
longitudinal coordinate is x, and the transverse coordi-
nates are x', with i = 1, . . . , D —2. In these coordinates
a [(D —2) + 1]-dimensional super-Galilei algebra emerges
as a subalgebra of the full D-dimensional super-Poincare

algebra in the transverse + time directions. Transverse
spatial translations are generated by P', time translation
is generated by P, transverse spatial rotations by M'~,
and transverse Galilei boosts by M+'. Accordingly, we
make the replacements

(2.3)

. t'0 -I &

(0 0 1 0
0 0 0 —1
1 0 0 0

&O —1O 0)
(2.5)

where I is the 2& ~j' -dimensional identity matrix, and
1 is the 2~ 4~j -dimensional identity matrix. This will
simplify the superalgebra in light-cone coordinates, sin-
gled out by the spatial component D —1, since o.~ ~ is
diagonal:

(D—1) roy D —1
~l 0 0 0)

0 —1 0 0
0 0 —1 0

(0 0 0 1)
(2 6)

The choice of representation for the transverse I',
k = 1, . . . , D —2 can vary from one dimension to an-
other depending on whether or not one applies Majorana
or Weyl constraints (or both). Since we only consider
even D, the Weyl constraint may always be imposed. If

The part of the super-Galilei subalgebra involving even
generators is then given by

[P', P'] = [P', H] = [J",H] = [K', Kj] = 0,

[Jjpk]'.(g kPj 'gjkP )'
[K', Pj] = ib'~p—+,

(2.4)
[K', H] = iP', —

[Jij Jkl] (haik Jjl + gil Jkj gjk fail gjl Jki)
[Z*', K"] = '(S*kKj —ekK*).

Note that in the above algebra P+ plays the role of the
Newtonian mass. This role will be exploited in construct-
ing the string bit model for discretized light-cone super-
string, in which P+ is the length of a piece of string, and
is equal to the total Newtonian mass of all the string bits.
The rest of the charges completing the Poincare algebra
do not have a Galilean interpretation, and will not be
manifest symmetries in the light-cone gauge.

The supercharge Q~ is a 2 ~~ component SO(D —1, 1)
spinor. But it decomposes under the transverse SO(D—
2) subgroup into two (reducible) 2~~ &~ component
spinors playing different roles in the Galilei subalgebra.
To display this we choose an appropriate representation
for the I' matrices, convenient for light-cone coordinates.
The 2 ~ x 2 j' Dirac I matrices satisfy the Clifford
algebra (I'",I'") = —2g"". Choose a representation for
the r matrices such that I' and I are given by



5982 OREN BERGMAN AND CHARLES B. THORN 52

it is, then convenience dictates a representation for the
transverse I' matrices with the same block form as I'

The Weyl-&iendly representation for D = 4 would retain
the same form for I' but replace I' by

2

where the p~ are 2~ /'2
&( 2& ~/' Hermitian matrices.

In such a representation

b 0

and the chirality matrix I'D+~ will be diagonal

Imposing the Weyl constraint by Gxing the chirality of
the supercharges to be +1 means keeping only the first
(last) 2~ 2l~2 components of QA. On the other hand,
if we want the supercharges to be Hermitian, we must
choose the I'" to be imaginary (Majorana). Only if D = 2
(mod 8) is this possible within the Weyl-&iendly repre-
sentation just described. The Majorana representation is
also possible for D = 4 (mod 8), but then at least one of
the transverse I' will not have the block form of I
so I'D+~ will not be diagonal. For example, in the case
D = 4, a Majorana representation for the transverse I'
matrices can be taken to be

The above representation of the CliQ'ord algebra helps
us display the Galilei properties of the supercharge
QA. This amounts to describing the embedding SO(D
—2) x SO(1, 1) &SO(D —1, 1) singled out by the light
cone. Separate the values of A into two groups denoted
by dotted and undotted capital Latin spinor indices, ac-
cording to the eigenvalues of the matrix n (2.6), the
chirality matrix for SO(1, 1):

D —1 ——bAB,

D—1
+AB ~AB)

D—1 D —1 pAB AB

The dotted and undotted indices each range over
2~D 2l~ values (16 for D = 10, 2 for D = 4). Because
the transverse o. anticommute with o. , it follows that
ca~~ = n&& ——0. The spinor supercharge Q~ then has
dotted components Q&, and undotted components Q~,
transforming (reducibly) as spinors of SO(D —2). The
superalgebra in light-cone coordinates can now be ex-
pressed in terms of these spinors. For later convenience
we define R& = Q&/~2. In terms of the supercharges
Q~ and R& the part of the super-Galilei algebra involv-
ing odd generators is given by

[P', Q~] = [H, Q~] = 0, [P', R~] = [H, R~] = 0, (Q~, Q~ j = P+h~~,

R ) = —P. a~~,2

(R~, Rt ) = Hb'~~. — (2.7)

This superalgebra is called 82g, where the "2" stands
for the two supercharges Q, R. In the Weyl friendly rep-
resentation described above the spinors Q~, R& each de-
compose into two inequivalent irreducible spinor repre-
sentations of SO(D —2), characterized by opposite values
of rD+io. , the chirality matrix for SO(D —2). To de-
scribe this we introduce dotted and undotted lower case
Latin indices according to whether this chirality matrix
has value —1 or +1, respectively:

Then the 2 ~2 componeiit supercharge QA breaks up in
our chosen basis as

(Q-l
~2R,
~2R.«. )

I

If the Weyl condition is used to reduce the spinors, which
means keeping the top (or bottom) two entries, we sim-

ply replace n'. ~ p' b(or —.p'. ) and Z&& ~ o b
=

—i[p', p'] b/2 (or o". . ) in (2.7).
The super-Gallilei subalgebra of the super-Poincare al-

gebra will be relevant in describing the dynamics of su-
perstring bits. In fact it will be the full spacetime sym-
metry of a Geld theory of these pointlike constituents of
light-cone superstring. The bits are nonrelativistic par-
ticles living in the (D —2)-dimensional transverse space,
with time given by x+. They do not know about the
longitudinal direction x, and consequently there is no
room for the M " Lorentz generators. However, all in-
formation of the longitudinal direction is not lost. When
bits form into a long polymer, the conserved bit number
operator becomes a candidate for a discretized P+. In
the limit of inGnitely long polymers, this "P+" is effec-
tively continuous and the polymers behave as continuous
strings moving in D-dimensional space-time, since x is
conjugate to P+. With the formation of infinitely long
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polymers, the effective dimension of space is increased
by one and, at the same time, the Galilean invariance
is promoted in the critical dimension to a full Poincare
invariance. For the supersymmetric case, it is not imme-
diately obvious how much of the Poincare superalgebra
should be retained in the superbit dynamics. At first
glance, one might hope to retain the complete superalge-
bra displayed in Eq. (2.7). We shall find that this may
be too much symmetry for a satisfactory explanation of
string, so we should ask how much supersymmetry can be
given up while still retaining the full Galilean symmetry.
It is clear Rom Eq. (2.7) that one cannot discard the Q
supersymmetries without also discarding the R's. How-
ever, it is consistent to discard the B supersymmetries
while retaining the Q's. This would correspond to the
super-Galilei algebra Sqg [14,15]. Retaining both dotted
and undotted supersymmetries corresponds to the super-
algebra S2g.

III. DISCRETE SUPERSTRING
IN LIGHT-CONE GAUGE

We start with the Green-Schwarz formulation [16,17]
of closed superstring theory in light-cone gauge. The
bit model is then motivated by first constructing a dis-
cretized version of string on the light cone. In the light-
cone gauge the world-sheet reparametrization invariance
is fixed by choosing x+ = w and choosing o such that
the "+" component of momentum density is constant,
'P+ = Tp with Tp the string rest tension.

A. II-B

The light-cone world-sheet variables of type II-B su-
perstring theory in D = 10 space-time dimensions in-
clude, in addition to the coordinates and momenta, the
right- and left-moving Majorana-Weyl spinors S and 8,
transforming in equivalent representations of SO(8), and
obeying anticommutation relations

The undotted ones are essentially the zero modes of the
spinor variables:

do. S (o),

do. S (o). (3.3)

I'+ jTo
R do. p' S"(o)(P'+ Tpx").

Tp p

(3.4)

Consider first how the N = 2 superalgebra is realized.
It is immediate that all of the Q's and R's anticommute
with all the Q's and R's. It follows from (3.1), the canon-
ical commutator of P' and x~, and periodicity of x in 0
that

(Qa Qb) p+ bab

(Q, R) = —P
(3.5)

and similarly for the left-moving supercharges Q, R. To
compute the algebra of the B supercharges we will need
the following identities for the SO(8) p matrices:

p" + ('++ j) = 2b"b ',
p' 'p' "+ (i ++j) = 2b"b'"

iac ibd + ( ~ d) 2bcdbab

iac ibc + (
~ ~ b) 2bcdbab

(3.6)

The top two implement the Clifford algebra, while the
bottom two are Fierz identities which follow &om the
first two by the special triality property of SO(8). We
then find that the R supercharges satisfy

The dotted components are more complicated bilinears
in the spinor and coordinate variables:

I+jT,
R = do p' S (cr)('P' —Tpx"),

2 Tp p

(S (o), Sb(o.')) = b b(o —o'),

(S (o) S'(o')) = b'b(o —o').
(3.1)

yah &+ jT'o

(R, Rb) = do[('P' —Tpx")2 —2iTpS S ']
0 p

=b PR,
Here the indices refer to the undotted indices of a fixed
chirality (I'qq ——+1) as described in the previous section,
and take the values 1, . . . , 8. The light-cone Hamiltonian
is given by

1
I+jr()

do[(7')'+7 (x")' —'T.S S"
2T0 p

+iTpS S '). (3 2)

The indices i, j, k are used for the vector representation
of SO(8), and the indices a, b, c, d and a, b, c, d are used
for the two inequivalent spinor representations of SO(8).
The supercharges Q, Q, R, R generating the N = 2
supersymmetry carry both dotted and undotted indices.

(3 7)
gai &+ jTo

(R, R)= do. [('P'+ Tpx") + 2iTpS S ]
0 p

= b'P~,
where PR, PL are the right- and left-moving parts of the
light-cone Hamiltonian respectively, P = PR + PL .

The above anticommutators show that the right- and
left-moving supercharges satisfy independent X = 1
S2g algebras, but with different Hamiltonians. Thus an
N = 2 S2P algebra strictly holds only on the subspace of
states satisfying the constraint P& —P& (= P /2). This
is just the Lp ——Lp constraint which is indeed required
in closed string theory. The first issue we must settle in
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discretizing the world-sheet coordinate 0. is how to treat
this constraint. To do this we note that Lp —Lp is the
generator of translations in 0. The states on which it
vanishes are precisely those invariant under this trans-
lation. When 0 is replaced by a discrete label A:, the
translation becomes discrete: k ~ k + 1. Invariance un-
der this discrete transformation is just a cyclic symmetry
requirement on the string wave function:

@(+it l~ +2~2) ~ +MOM) @(+202~ . ~
~ &MOM) +ilail)~

[x'„,p', ] = tb"bI), (s„,s, ) = b bi(, (sg, s, j = h bI(

(s.io)

The undotted supercharges should obviously be given
by

M M

q =~m) s„,q =~m) s„,
and their algebra is clearly

where Ok are the Grassmann odd spinor supercoordi-
nates, de6ned for type II-B superstring by

(Q, q') = mMe', (q, q') = mMs', (q, q') = o.

(3.i2)

8 = (s —is ).
2

In our bit models this symmetry will be an automatic
consequence of the identity of string bits and need not
be explicitly imposed. Since it is a discrete symmetry,
it will not have an infinitesimal interpretation away from
the actual continuum limit, so an analog to the constraint
Lp = Lp will not exist in the discretized theory, but will
naturally arise in the continuum limit. From this consid-
eration, we see that we need not and probably should not
require the full N = 2 supersymmetry in our bit model.
The N = i supersymmetry generators (Q+ Q)/~2 and

(R + R)/~2 satisfy the Poincare superalgebra without
constraint, and we might hope to retain this much su-
persymmetry in the discretized theory.

To set up a model of discrete superstring, we assume
that P+ comes in discrete units m, P+ = Mm where M
is a large integer counting the number of bits in a string.
The parameter labeling points on the string thus becomes
discrete o m km/To, where k is an integer taking the
values 1, . . . , M. The transverse coordinates are xk cor-
responding to x(km/To) and the conjugate momenta are
pg corresponding to m'P(km/To)/To. The spinor vari-
ables are Sg and S& corresponding to gm/Tos(km/To)
and gm/Tos(km/To), respectively The n. onvanishing
(anti)commutators among these discretely labeled vari-
ables are

We can also easily guess a discretized form for the R's:

M):&"SI'(p'I, —To [*I,+, —*I',]),
2 m

M

) .~"S~(pj, + To[~I,+i -*~])
2 m k=1

(Q R') = -~'.P, (Q, R') =b ub a b ab

(q, R') = (q, R') = o, (3.i4)

where P = P& pI, is the total transverse momentum car-
ried by the discretized string. However, B fails to anti-
commute with B, breaking the N = 2 supersymmetry:

M
R&} — ) p~~ . /~~S'c(s~ + S~ 2S~)

k=1

Using the identities of the SO(8) gamma matrices (3.6)
we then derive the rest of the superalgebra:

The anticommutators of Q, Q with R, R are then exactly
of the correct form:

M
R'k+ (&++ b) = — ).~'s (s~i~++S~ i —»I.)

k=1
M M

(R, R ) = ) 8 (pA,, —To[xi,+ —xI,])' — )4m 2mk=1 k=1
M M

(R, R') = ).~'(pI +To[xr+i —xk])'+
2 ).

b SkSk+1,

b Sk Sk+1.

Actually it is not hard to modify these definitions so that (R, R) = 0: simply replace [xt,+i —x&] by [2:& —al, i] in one (not
both) of the R's. But one would still not get the full N = 2 algebra because of the constraint problem mentioned earlier. Even
worse, we shall see that the resolution of the notorious lattice fermion doubling problem, which is automatic for our choice,
would fail for this alternative.
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Although we have lost the full N = 2 supersymmetry, there remains an N = 1 supersymmetry generated by Q+ ——

(Q + Q)/~2 and R+ ——(R+ R)/~2. We easily read off the superalgebra

(q, q'~ =mMS', (Q. , R', ) = -&".P,

(R+, R+) =
M

gabScSc
4 & k k+1

k=1
M

) h'S (S +S —2S )
k=1

M

) 6 (p„+Tp[xk+~ —xk] ) +
k=1

M

) gab ScSc
k=1

(3.16)

The last of these equations gives the Hamiltonian

M

2m ) pk + Tp (xk+y —xk) —xTpSkSk+~ + zTpSkSk+~ —zTpSk(Sk+~ + Sk ~
—2Sk) (3.17)

Note that in the continuum limit the last term is formally subdominant to the others since it involves a second
difference. Thus the Green-Schwarz Hamiltonian (3.2) is regained in the continuum. This last term, which arises

from the nonzero anticommutator of R with R is in fact extremely valuable. It breaks world-sheet chirality in
precisely the way needed'(in the manner of Wilson) to remove the annoying fermion doubling problem from the
discretized theory. Since the Hamiltonian is a bilinear form in canonical variables, it is easy to confirm this through
explicit diagonalization of H. As always with quadratic Hamiltonians this is done by finding eigenoperators under
commutation with H. Applying this linear operation to each of the dynamical variables, we find

[H, xk] = —i
m

[H, SP] =

+iTo

2m

~ TQ
[H, pk] = —i (xk+i + xk —i —2xk)

m

(SP ~
—Sk+~+ 2SP, —SP+~ —Sk ~),

(SP ~
—Sk+z ~ 2Sk —SP+~ —Sk z).

(3.18)

To diagonalize these relations we first pass to Fourier modes

M —1
—2mink/Mw„e

M

M —1

) Sa —2mink/M

M —1
—2~ink/Mp

n=o

M —1

) S —2m'ink/M

QM

(3.19)

with the inverse relations

Xn =
M

+2nink/M
M

) +2nink/M

M
Sa g Sa +2mink/M

k=1

M

) Sa +2nink/M

(3.20)

One then finds

2

[H, p ] =4i sinTQ 2 7l 7L

m I
2«-

~

2isin S„+4sin S

/ . . 2~n= . ,em- )
~

2isin S +4sin S
M " M ")

[H, x„]=i-
m

—ZTO

2m
[H, S„]=

+zTQ

2m[H, S„]=

We easily identify the energy lowering operators

(3.21)

1A„= (p„—uu„x„),
2&n

A&B = sin S +icos S
2M " 2M (3.22)

each of which lowers the energy by the amount u /m
with u„=2Tpsin(nz. /M). Of course the Hermitian con-
jugates of these operators are energy raising operators,
each of which increases the energy by the same amount.
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2Tp, 727l
sin

m
2Tp . (M —n)~

sin
m

(3.23)

In the limit M -+ oo, with mM fixed, finite energy
modes occur for n and M —n finite. These correspond to
left- and right-moving modes, respectively, precisely as
required for a continuous closed string. The excitation
energies for these modes are given by

Pn = "(A„+At~ „),
x„= (A„—AtM „),

24)~
R7l ~t YL7rS = B~sln + BM cos
2M 2M'

(3.27)

which in the continuum limit with n (or M —n) finite
approach 2nvrTO/P+ [or 2(M —n)7rTo/P+]. Had the SS
coupling term been absent there would have been addi-
tional lower energy modes with n —M/2 infinite. 2

The ground state of our discretized string is the one
annihilated by all of the energy lowering operators. The
ground-state energy turns out to be exactly zero. (Imply-
ing, of course, the absence of tachyons in the continuum
superstring inass spectrum. ) The part of II = II „+Hz&
involving coordinates and momenta, which just describes
a system of harmonic oscillators, applied to the ground
state gives half the sum of all the mode excitation ener-
gies:

M —1 M —1

II~„~G)= ~G) ) ~„=~G)
' ) sin . (3.24)

n=1 n=1

a ING)=iG) ') .. — ')
n=1 n=1

= 0. (3.25)

We can summarize the solution of our discretized super-
string model by quoting the Hamiltonian in terms of rais-
ing and lowering operators:

M —1

H = + ) sin (At A„+B„tB„),
2mM m

(3.26)

The "8" appearing here is just the transverse dimension
D —2 for ten-dimensional space-time. The part of H
involving the spinors gives exactly the negative of this,
with the "8" in this case being the 8 values of the spinor
index G) so

The discrete II-B superstring model we have presented
is the first step toward a string bit model. Its charac-
teristic feature is that it has replaced a closed string by
a system of M string bits, which are ordered around a
loop. The interaction among string bits only exists be-
tween nearest neighbors on this loop. Thus it is not quite
a standard many body system which would allow inter-
actions between all pairs of particles, and Inight even
include three or more body interactions. It is very well
known [3,13] how this peculiar pattern of interactions can
arise in a true many body system of particles described by
% x N matrix creation operators in 't Hooft's N —+ oo
limit [6]. We shall turn to this in the next section.

A troubling feature of the bit-bit interaction from the
string bit point of view is its long-range harmonic form,
evident in the Hamiltonian (3.17). However, it is clear
that, as with all discretizations, the limit that leads to
continuous string should occur for a wide class of inter-
actions, including ones that are short range. Short-range
potentials would of course allow a discrete string to dis-
sociate into string bits. All that is necessary to veto dis-
sociation in the superstring continuum limit is that the
dissociation energy be of O(1/m) as M + oo with mM
fixed.

There are many ways we could introduce a short-range
nonharmonic dynamics into our model, but it is desir-
able to retain as much of the supersymmetric structure
as possible. One approach is to introduce modifications
into B,R and then define the Hamiltonian in terms of
these. The simplest possibility is to replace To in (3.13)
by a scalar function V(~xi, +i —xi, ~). This has the virtue
of leaving the anticommutator (Q+, B+) of the superal-
gebra undisturbed. We can also allow a generalization
of the spinor structure of the interaction terms in (3.13)
compatible with SO(8) invariance and the preservation of

(Q+, B~+). For definiteness in this paper we shall forego
such generalizations and restrict to the following form for
B+.

where P is the total momentum. For completeness we
also quote the relation of the dynamical variables to rais-
ing and lowering operators:

) & [(S„+S„)p
2 2mk=l

-(S'-S')(.+. — .)V(l .+. — .1)] (3.28)

The other resolution of the doubling problem (in the man-
ner of Kogut and Susskind) in which these extra modes are
accepted as part of the physical spectrum is not satisfactory
here because they would include both integer and half integer
modes depending on whether M was even or odd. The half
integer modes would ruin the superstring interpretation.

8

II =—-) (z, a ).
a=1

(3.29)

Unfortunately, with V not a constant (B+,B+) is no

longer proportional to b, so that part of the superalge-
bra will be lost. In this situation we propose to define
the Hamiltonian by the positive SO(8)-invariant bilinear
form
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This expression automatically commutes with the Q+ so
the SiP supersymmetry is preserved. Instead of being
the square of a Grassmann odd operator, as would be
a consequence of 82& supersymmetry, H has the some-
what weaker property of being a sum of squares of eight
odd operators. By maintaining this structure we hope to
make more likely the recovery of the full Poincare super-
symmetry in the stringy physics. The structure also nat-
urally guarantees that the energy spectrum is bounded
&om below. For the special case V = To, H reduces to
the original form. Thus we can assert that a satisfactory
Bee superstring limit will exist provided V behaves as a
nonzero constant as far as low energy collective excita-
tions are concerned.

B. Net II-8

Type II-B superstring studied in the previous section
was particularly neat because of the symmetry between
left- and right-moving waves on a string. This circum-
stance allowed a very appealing resolution of the fermion
doubling problem, because one can form the SO(8) in-

variant coupling term SS which raised the energy of the
unwanted extra low-lying modes with mode number near
M/2. When this left-right symmetry is absent, as in
the type II-A and heterotic superstring theories, another
scheme must be devised to get a satisfactory discretiza-
tion.

For type II-A superstring the right- and left-moving
spinors S, S transform under inequivalent representations
of SO(8). Consequently, the coupling term SS is not
SO(8) invariant. Therefore one must break the trans-
verse space rotational symmetry in order to get rid of the
fermion doubling. In fact, defining canonical spin vari-
ables requires a decomposition of the above spin variables
with respect ta an SU(4) xU(l) subgroup of SO(8),

gA (SA + SA+4) (SA SA+4)1 1

(3.30)

and similarly for the left movers. The superscript A =
1, . . . , 4 labels a 4 of SU(4), and the subscript A labels a
4. The decomposition of the representations is

We start by reminding the reader how the doubling
problem arises. Consider the part of the Hamiltonian
(3.17) involving only the S spinors,

Hs ———iTp SA. Sq+1, (3.32)

which is all we would have in the heterotic case where S
is absent. The Fourier modes S then satisfy

Hss ———iTpS„S~+1+ igTpSq Sq+1

a +0 ~ 27t n a 2+p . ~n 7t n a
[Hs, S~] = —slii S~ = siii cas S . (3.33)

m M m M

We see that the excitation energies are of O(l/M) not
only for the desired cases of Gnite n, M —n, but also
for finite n —M/2. For n & M/2, S raises the energy
and is multiplied in its contribution to SA, by the time
dependent phase exp(+iE„t—2mink/M) with E ) 0.
For M ~ oo with Gnite n this corresponds to a right-
moving wave. But in this limit with finite (M/2) —n,
the unwanted "double mode" excitation is a left-moving
wave. Moreover, if M is odd, it acts like a half-integer
(antiperiodic) left-moving mode. For M/2 & n & M, E
is negative (the modes are energy lowering operators) and
those with Gnite M —n are right movers for a continuous
closed string whereas those with finite n —M/2 are left
movers. Clearly the Kogut-Susskind resolution of the
doubling problem, which is to use the doubled modes as
a part of the observable physical modes, would wreck
the "heterotic" nature of the model: a continuous closed
string would end up with both left- and right-moving
spinor modes. Thus the Wilson alternative which worked
in the II-B case must somehow be used here.

At the moment, the only way we see to do this is to
reintroduce S as an auxiliary Geld at the discretized level
in such a way that it resolves the doubling problem but
does not propagate in the continuum limit. Although we
shall not try to develop the type II-A a,nd heterotic su-
perbit models in this paper, we illustrate how this might
work by examining a spinor model with left-right asym-
metry, described by the Hamiltonian

88 ~ 41j2 + 4—1/2s 8c ~ 4—1/2 + 41j2) (3.31) &&TOSP.—(Sl.+i+ S~ i —2Sg) (3.34)

where 8„8are the two inequivalent spinor representa-
tions of SO(8). (For a detailed discussion see Chap. 11
af Ref. [17].) Any coupling between the two kinds of
spinor would have to break either SU(4) or U(1). One
can think of the SU(4) SO(6) as the group of rotations
in six "internal" dimensions, and the U(l) as the helicity
in ordinary four-dimensional space-time. In this view it is
preferable to preserve the U(1) symmetry at the discrete
level, even at the cast af breaking the SU(4).

For heterotic superstring the situation seems even more
complicated, since it has only right-moving spinor waves.
However, as we shaH. soon see there may be a more ele-
gant, SO(8) invariant, method to avoid the fermion dou-
bling problem. This method may also be applied to type
II-A superstring as an alternative to breaking the SO(8)
symmetry.

Passing to Fourier modes we have

[Hss S:1=

a
[Hss, S„]=

2GTp, n7I 71 n ~~, Kn
sin icos S + (sin S„

m M
(3.35)

+2CTp, n7l . nK n7l
sin iqcos S„+/sin S

m

1 + 77 A7l t'1+ q~ ', n~n=i cot + 1+
~ ~

cot2
2 M

in which case it lowers the energy by an amount

We find that B = (S + nS„)/gl+ ]n]~ is an energy
lowering operator provided
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E. = "
m

1 —n nor
cos

2

2,n~ (1+g)
M i 2 ) M (3.36)

As long as ( g 0 and is real and q ) 0 there are no low
energy modes other than the ones for finite n and Gnite
M —n, and the doubling problem is avoided. We might
as well simplify matters and take ( = (1 + g)/2. Then

n7r nor
o. =i cot + csc

e(xiei, x2e2, . . . , xMeM)

subject to the constraint of cyclic symmetry (3.8).

(4.1)

composite object, namely, a long closed polymer of in-
Gnitesimal string bits. Each of these bits is described
by dynamical variables given by its position xA, , its mo-
mentum pA, , and spin variables which can be represented
in terms of anticommuting Grassmann variables 0&, and
their conjugates a& ——d/de&. The possible states of a
noninteracting (&ee) superstring are then given by those
of an M-bit polymer, represented by wave functions

and

CtJ~ 1 + 'g

2

1 —rl n7r
cos

2
(3.37)

The energy lowering operators are then simply B
Q

sin2"MS + icos2"MS . As I ~ oo, the left-moving
modes (finite n) have energy rim /m whereas the right
movers (finite M —n) have energy ~„/m, the former a
factor of g times the latter. As g —+ oo, the left-moving
waves gain infinite energy and would disappear &om the
spectrum. The discrete theory could have g finite but
depend on m in a way that blows up as m —+ 0.

Extending this trick to type II-A is straightfor-
ward. Simply introduce two additional oppositely mov-
ing spinor variables, with a Hamiltonian similar to (3.34),
except that the new physical spinor is left moving and
the new auxiliary spinor is right moving. A type II-A
superstring is thus constructed as sort of a combination
of right-moving and left-moving heterotic superstrings.

IV. SECOND-QUANTIZED SUPERSTRING BITS

As we saw in the previous section, discrete light-cone
superstring seems to be made up of nonrelativistic in-
teracting superparticles carrying spin degrees of freedom
and moving in [(D —2) + 1]-dimensional space-time. If
this picture is taken seriously, a superstring is really a

l

A. I/N, Expansion and polymers

D—2

et(x e)~ = ) —yt . (x)~e" " e-- n)
(4.2)

where the Pt's are completely antisymmetric in their
spinor indices ai. a„,and the matrix labels n, P run
from 1 to N . Pt creates a boson or fermion according
to whether the number of indices n is even or odd, re-
spectively. The upper limit on n is taken to be D —2
because supersymmetry requires the number of compo-
nents in the spinor 0 to equal the number of transverse
coordinates. This is of course possible only for D = 4, 6,
and 10. For D = 10 (or D = 4) there are all together 256
(or 4) components of (t)t, 128 (or 2) bosonic and 128 (or 2)
fermionic. The supercreation operator @t will always be
Grassmann even and enjoy commutation relations. The
Pt's will of course satisfy the graded bracket relations

According to the Hamiltonian for a discrete light-cone
free superstring (3.17) each bit interacts only with its
nearest neighbors. In order to achieve this nearest neigh-
bor interaction structure in a second-quantized formu-
lation it is necessary to introduce a "color" degree of
&eedom. The creation operators for superstring bits are
then N x N matrices transforming in the adjoint rep-
resentation of U(N, ):

l4-, --.(x)R &b, .. .b (y),'j+

q &x'"~ ( )n~b~" b (y)', —(—)" lb' b (y)', &-, -.(X)

= b „88 8(x —y)) (-) 8, b

P
The string bit Fock space is built by acting on the vacuum state ~0) with products of the various creation operators,
and consists of states transforming in various representations of U(N, ). Singlet states are created by products of
traces of matrix products of the matrix creation operators. Each trace creates a closed chain of bits. We identify the
discrete &ee single superstring wave function iII with the singlet state ~4') in the Fock space of string bits given by

M

I@) = f (~ ** ~ *~ )T(@'( A)".@'( ~M)I~Io)@(»~i, ",~v4). (4.4)
A:=1

Note that once we agree that our state space is the bit
Fock space, the cyclic symmetry restriction (3.8) is an
automatic consequence of the identity of string bits and
the cyclic property of the trace. Noninteracting multi-

I

string states would contain a product of several such trace
structures.

The world-sheet dynamical variables described in the
previous section are linear differential operators acting
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on the single superstring wave function 4. On our Fock
space we seek to represent these operators as U(N, ) sin-
glets, i.e., as traces of products of bit creation and an-
nihilation operators. To find the bit Fock space repre-
sentation of any such dynamical variable 0, first write
down the ket corresponding to 04. Then by an inte-
gration by parts transfer the differential operator to the
creation operators appearing in the trace. Finally, one
must identify the function of creation and annihilation
operators that reproduces the action of this differential
operator. Note that once we have a Fock space represen-
tation of an operator, it can act on any Fock state, not
just singlets. Its action on the single superstring state
(4.4) should, however, reproduce the action of the cor-
responding differential operator on the superstring wave
function.

For single body operators like Q and the momentum
dependent part of R, which involve the supercoordinates
of only one bit at a time, the Fock space representation
is standard. Consider for simplicity only a single compo-
nent matrix creation operator at(z)g. If we denote the

I

one body differential operator uq, its Fock space repre-
sentation will be given by

Oy = (Lx Tr G x (diG x (4.5)

1
02 —— dzdyV(y —z)Tr[a (z)a (y)a(y)a(z)]. (4.6)

N

Applying this operator to the singlet Fock state ~M) =
Tr[at(zq). . .at(zM)]~0), we get, after one contraction,

For two body operators describing nearest neighbor in-
teractions, like the coordinate dependent part of R, the
identification of the Fock space representation is not ex-
act. This is because the second-quantized. operators will

give interactions between all pairs of bits. We are there-
fore led to an approximate treatment using 't Hooft's
1/N, expansion [6]. To illustrate how this works [13],
consider again the simplified case of a single component
matrix creation operator at(z)~. Then the sort of two
body operator we will need has the structure

1
) = dy) V(y —zA,, )Tr[a (zg)a (y)a(y)a (za+, ) . a (zM)a (z, ) . .a (z„,)]~0).

N

To continue the evaluation we note that it matters cru-
cially which creation operator the last remaining a(y)
contracts against. The contraction with at(zg+q) pro-
duces a factor of g b = N, which cancels the 1/N,
out front. All other contractions fail to provide a factor
of N . Thus in the limit N —+ oo,

I

sections we exploit these features of N ~ oo to construct
second-quantized expressions for the supercharges and
Hamiltonian.

B. A superstring bit model in 2 + 1 dimensions

~2+[a (z&) ' ' a (zM)]10)

).&(* + —* )T [ '(* ) " '( )][0) (4.7)

This term can be shown to give 1/N, times a state with
two traces, and is thus subleading in the limit N —+
oo. Such modifications will alter the general Fock space
properties of 02, but leave unchanged its action on the
singlet states in the limit N ~ oo. In the next two

which is precisely the desired nearest neighbor interaction
pattern. The non-nearest neighbor contractions change
the trace structure of the state, giving 1/N, times a state
with two traces. Thus 1/N, corrections allow a closed
polymer chain to rearrange its bonds and transform to
two closed polymer chains. In the continuous string limit,
this is the origin of string-string interactions. For more
details and examples, see Ref. [13].

There is actually some freedom in the choice of the
second-quantized two body operator (4.6) which gives in
the limit N —+ oo a nearest neighbor interaction when
acting on singlet states. One can add to 02 terms with
nonconsecutive annihilation operators, such as

Before developing the (8+1)-dimensional bit model for
real ten-dimensional superstring, let us first construct a
simpler (2+ 1)-dimensional model. Long closed polymers
in this lower dimensional model will not become four-
dimensional relativistic strings in the continuum limit,
since the full Poincare algebra is realized only in ten di-
mensions. But there are two reasons to study this model.

(1) It contains all of the features contained in the
higher dimensional model, but with fewer indices. Thus
it serves as a pedagogical step toward the higher dimen-
sional model.

(2) We would eventually like to describe strings prop-
agating in four space-time dimensions plus six compact-
ified space dimensions. This might be achieved by such
a (2 + 1)-dimensional bit model with additional internal
degrees of freedom.

Putting aside for a moment the issue of critical dimen-
sion, let us assume that the light-cone Hamiltonian (3.2),
or its discrete version (3.17), describes a four-dimensional
type II-B superstring. The variables S, S then trans-
form as two-dimensional spinor representations of SO (2).
Since SO(3,1) spinors can be either Majorana or Weyl,
but not both, S and S are either real two component
spinors, or complex one component spinors. For simplic-
ity in matching with the higher dimensional model we

shall use the former. The real four-dimensional Majo-
rana representation of SO(3,1) then breaks as follows:
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4-+ 2+2. Sec. II are

The 2's are two-dimensional reducible spinor representa-
tions of SO(2), and will be labeled by dotted and undot-
ted upper case Latin letters. Recall that lower case Latin
indices are reserved for Weyl-restricted spinors, which are
inconsistent with Majorana spinors in four dimensions.
The two-dimensional representations reduce to the two
one-dimensional irreducible representations correspond-
ing to spin +1/2 in the plane.

There are two ways to define canonical anticommuting
coordinates:

gA = (SA —iS ) m = (SA +iS&) (4.8)

or

8 = (S' ~ iS' ), ~ = (S' —iS' ),
2 2

(4.9)

and similarly for the left movers O, vr. The first choice is
analogous to the SO(8) preserving formalism (3.9), ap-
propriate for describing type II-8 superstring. It de-
fines a pair of two component SO(2) spinors, and is
thus termed the "SO(2) formalism. " The second choice
is analogous to the SU(4)xU(1) formalism (3.30), ap-
propriate for describing both type II-A and II-B super-
strings. It defines two complex Grassmann variables and
their canonical conjugates, and is thus terined the "U(1)
formalism. " Note that since SO(2) U(1), the two for-
malisms are equivalent. This is not so in ten dimensions,
since SU(4) xU(1) CSO(8).

n11 n12

21 22

n11 n12

n2i n22

(1 01
&0 —'r'

(0 1)
(1 0)'

(4.i2)

[0 ~, @t(xg)] = — Ct(x0),
d

(4.i3)

where the "—"in the second requirement reQects the fact
that a derivative acting on the first-quantized wave func-
tion is transferred to the second-quantized ket through
an integration by parts. It is easy to confirm the identi-
fications

BOA — dx Tr

Recall that even though we have two sets of supercharges,
each generating an independent N = 1 Szg superalgebra,
together they do not generate an N = 2 superalgebra
since R and R fail to anticommute. The combinations
Q + Q and B + R satisfy an N = 1 82g superalgebra.
Second quantization then follows the steps described in
the previous subsection. It is simplest to first find the
second-quantized operators associated with 0 and vr

d/d8A. These must satisfy the properties

[n...et(xo)] = eAC t(xo),

i. SO(2) format!ism

From Eq. (4.2) we see that the superstring bit creation
operator in the SO(2) formalism is given by

—~gA ~

(4.14)

yt + yt gA + yt gAgB1
AH (4.10)

where the indices A, B run &om 1 to 2. Consequently
there are two bosonic and two fermionic degrees of &ee-
dom. Written in terms of the canonical supercoordinates
(4.8), the first-quantized supercharges (3.11), (3.13) be-
come

To avoid confusion we will denote the Fock space rep-
resentations of the supercharges Q and B by the script
letters Q and 7Z. Froin (4.14) it iminediately follows that
the Fock space representation of the Q supercharges is
given by

m—(Qs~ + 0 ~)
2

Q =i

M

2 ):(i)P. +~~)
k=1

M

2 ).(~i", —~i", )

dx Tr ~ — + ~~i + H.c. ,

(4.15)

(4.ii) =i — dx Tr[$ QA —pA pAA, —H.c.].

2 2mk=i
) o-'' (Op + ~I )(pI —To[x'„+,—x'„]),

M

A, =l
). ' "(~. — .)(p'+&.['..— 'l)

These second-quantized supercharges satisfy the same
Sig algebra as the first-quantized ones (3.12), with the
understanding that the bit number M is replaced by the
usual second-quantized number operator:

where the relevant matrix elements of n', as defined in
Mm dx&px, (4.16)
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ZA = RA+X'A, (4.17)

The expressions for 'Ro and Xo are as simple as those for
Qand Q:

'R = dx a' Tr[pt0'pB —ptA B*QBA, —H.c.],
2 2m

(4.18)

where p = [ptp+ pApA + zpABpAB]~. This is an au-
tomatic feature of second-quantized one-body operators,
but it can also be confirmed directly Rom the definitions
and (4.3).

The B supercharges contain both one body and two
body operators. It is therefore convenient to separate
their Fock space representations accordingly: dx dy nBA . (y —x)

2N, /2m
x Tr[gt(x) p(y)PB(x)

(x)p(y)PBA, (x) ~ H.c.],

ANTO d» dy nBA (y —x)
2N /2m
x Tr[pt(x)p(y)QB(x)

(x)p(y) PBA, (x) —H.c.].

(4.19)

The Fock space representations of the two body opera-
tors are less obvious, especially considering the ambiguity
alluded to earlier. The simplest choice that succeeds in
reproducing the first-quantized Bee superstring results in
the limit N —+ oo is given by

'Ro —— dx n' Tr[p 0'pB —pA 0'pBA, + H.c.].
2 2m 1

The 'R supercharges then satisfy the following algebra
with the Q supercharges:

(QA, X ~ = ~QA, XB) = O,

(Q, 'R ) = —n P + dxdynAB (x —y): Tr[0(x)p(y)]:,A H ~ AH (4.2O)

f""d~ "
( —~): T( ( )P(Y)):,

where (T~—:: [ppt —(t)AQA + 2$ABQAB]):. The integral term on the right-hand side of the last two anticommutators
signifies a breakdown of the left- and right-moving N = 1 82g algebras. We expect that acting on a single string
state in the limit N —+ oo this term will vanish, in order to reproduce the correct first-quantized anticommutators
(3.14). It is not immediately obvious from the color structure of the term that this would be so, so we shall verify it
explicitly:

f«v( - v)T: ( )p(v): i~) = f ~ J ~v~: (~(~)~(v) - ~(v) p(~)I: l+)

dxx Tr dy o. x p y —p x o. y

dxx. Tr dy o. x. o. y —p x p y

dxxTr o x —p x 4'

(4.21)

The second line follows for N ~ oo since we have simply discarded subdominant terms. The equality in the third
line follows Rom the fact the U(N, ) charges given by

a~= dx~x —px. ~ (4.22)

annihilate all singlet states. The fourth line again follows for N —+ oo by discarding subdominant terms arising &om
the contractions. The last line follows &om the equality of the traces of o and p.

It is immediate from (4.20) that the left+right combinations Q+ ——(Q + Q)/~2, 'R+ ——('R + R)/~2 satisfy the
correct anticommutation relation

~QA RB) AB
+~ + (4.23)

suggesting the possibility that N = 1 82/ survives second quantization. Recall from Eq. (3.16) that it was an exact
symmetry of the discrete superstring model, or equivalently of the first-quantized superstring bit model. In order

for this much supersymmetry to survive second quantization the anticommutator of 'R+ with itself must have the
standard form. This computation yields
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gAB gABy
&&+,~+) = dx T [1741'+ l&WAI'+ ,'I&—&ABI']+

2

' dxd»+ —'Iy —xl' T'4'(x)&(y)&(x)

+ 2'ly — I'T 4' ( )p(y)4 ( ) + —1 +
2 Iy — I' T 4' ( )a(y)4 ( )

gABT
+ dx dyT [i4'(y) &'(x)&A(")&A(y) + &A(y) &'(x)&A(x)&(y)

+&&A(y) &'(x)&B(x)&BA(y) + &AB(y) &'(x)&A(x) &B(y)

(y)4A(x)4BA( )~B(y) 4A(y)~B( )~AB( )~(y)

&PA(y)PB( )xQ Bc( )xQc A(y) P AB( y)Q c( x)QA c( x)QB( y) + H c.]

+[normal-ordered three-body terms] . (4.24)

Some of the three-body terms are not proportional to
b'AB, therefore the 82g algebra is not realized with the
seond-quantized supercharges. The terms by which it
fails give rise to subleading contributions when acting on
single superstring states in the limit N ~ oo. Conse-
quently the erst-quantized supercharges satisfy an N =
1 82g algebra as expected.

As sketched in the previous section, even though we
do not have the full 82g superalgebra &om which the
Hamiltonian is evident, we can still de6ne a Hamiltonian
in the following way:

A=1
(4.25)

Because of Eq. (4.23) this Hamiltonian possesses an
N = 1 SiP supersymmetry. It is in fact one Fock space
representation of the first-quantized Hamiltonian (3.17).
As we stated earlier, the Fock space representation of
B+, and therefore of the Hamiltonian, is determined only
up to terms that give rise to subdominant contributions
when acting on the single superstring state l@) in the
limit N + oo. One can then try to add such two body
terms to R+ in the hope of closing the 82g algebra cor-
rectly, and ending up with a bit theory possessing the
full N = 1 82' supersymmetry. Such extra terms would
also change the structure of interactions among different
strings, which appear as subleading terms in the 1/N,
expansion. From the point of view of critical superstring
(D = 10) these terms may be necessary to get the correct
superstring scattering amplitudes in the continuum limit
of the bit model.

an (8 + 1)-dimensional bit model for ten-dimensional
type II-B superstring. We shall specify the bit dy-
namics for type II-B superstring by working out the
second-quantized versions of the supersymmetry genera-
tors and Hamiltonian. For II-B discrete superstring, the
relation of the spinors S, S to the Grassmann variables
0, vr = d/dg maintains SO(8) covariance:

(4.26)

~g d Tr a "a aalu- .an)
-(—)"

n=O
(4.27)

0 = d, Tr t, ... , ... „=At.,-(—)"
n=O

&om which we find

Q =i

~m
2 ~~

I(
~
n tI

at I ~ ~ Ia n aa I ~ I Ia~ I ~
7dx), Tr[gt P, . .. + H.c.],

n=O

«m
2

~

~~
I(

~
n ~!a~

I ~ ~ I a~ aa I ~ ~ Ia~
~

~

I ~ tdx), Tr[gt, .. . P, . .. „—H.c.],
n=O

Q;= (Q +Q)

Let us first give the second-quantized versions of the un-
dotted supercharges Q, Q, which are examples of one
body operators. As with the (2+ 1)-dimensional case we
first obtain

C. A string bit model for type II-B superstring

Now that we have warmed up with a (2 + 1)-
dimensional supersymmetric bit model, let us construct

(4.28)

It is again straightforward to verify that these satisfy the
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Sig algebra of their first-quantized counterparts. The
number operator is again given by M = Jdx Trp(x),
where the bit density matrix in 8+ 1 dimensions is given
by

(4.29)

Next we turn to the B supercharges which involve two

body operators. As in the (2 + 1)-dimensional case we
only present the simplest second-quantized candidates
which, in the limit N —+ oo, produce on single poly-
iner states both B and B given in (3.13). We gener-
alize slightly, replacing To by a general scalar potential
V(l»A, +i —xl, l). Writing R = Rp+ R and R = Rp + R',
where the subscript 0 denotes the one body term and
prime denotes the two body term, we end. up with

Ro = dx p' ), Tr[gt O'Pg, „—H.c.],2/2

RO d» p' ), Tr[gt, O'P.t,.. , +H. . ..c.],
2&2m

dxdy ) (y —x) p V(ly xl)Tr[&o .. . (x)p(y)Pa~, ~ (x) + H.c.],2N /2m n' (4.30)

2N /2m
dx dy ) (y —x) . p V(ly —xl)Tr[g, ... (x)p(y)Ps, .. . „(x)—H.c.].n'

Other terms with nonconsecutive creation operators and with more general spinor structure have not been displayed
here, but we expect such terms are needed to get the superstring interactions right. These supercharges again fail
to satisfy the S2g algebra. It is still conceivable that with more complicated color routings and spinor structures
the full S2P supersymmetry can be restored. But this may not be possible, and we don t think it should necessarily
be required at the level of string bits, which should generically exhibit less symmetry than the continuum. At the
first-quantized level (equivalent to the second-quantized theory at N -+ oo) the full S2P superalgebra for Q+ and
R+ was only present for a constant V = To. For nonconstant V but unchanged spinor structure, we only had the Sip
algebra generated by q+. For the second-quantized theory at finite N, our simplest ansatz for R+ fails to close the

S2g superalgebra because (R+, R+s) is not proportional to h ~. The ofFending contributions, however, have a color
structure which is subdominant as N -+ oo. The supersymmetry generated by the Q+'s remains a symmetry at finite
N, for any V if the Hamiltonian commutes with Q+, and we shall insist that at least SiP be an exact symmetry of
the string bit dynamics. This will automatically hold if we de6ne the Hamiltonian H for the second-quantized theory
by (3.29) with second-quantized operators R+ substituted for the first-quantized R+. This is because we not only
have the Sig superalgebra

(4.31)

but we also require the S2P anticommutators between Q+ and R+..

(4.32)

where P is the total momentum of the multibit system. It then follows from our definition of H that [H, Q+] = 0,
since all the R's are translationally invariant, and so commute with P.

We have now presented the ingredients of our proposed string bit model for type II-8 superstring. To summarize
our results, we recall the steps in the construction of the complete Hamiltonian. First construct R.+ ——Ro+ + X,+
Rom the expressions listed in (4.30) or from a generalization of them. For example, using the displayed expressions
we obtain

For V = To, the cross terms (Ro+, R+}+ (ia ++ b) oc b . This is not surprising because this operator has a color structure
that can survive the limit N, —+ oo, and we already know from the 6rst-quantized theory that 8&Q holds in that limit when
V =Tp.
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7

Ro+ = (Re+Do) = d~P' ), W[e ' ~ Pt, ... O'Pb, ..„.+H.c.],
2

' ' 22m n!

7Z+ = (7Z' +R' )
2

(4.33)

]. n

2N /2m dxdy ), (y —~) & V(~y —~~)Tr[e ' P, „(~)p(y)gb, " „(~)+ H.c.].n!

Once the 'R+ s are pinned down, our proposal for the string bit Hamiltonian will be

(4.34)

dx ) —,Tr[V'@,... (' + —('Ro+, 'R+ j + —('R+, 'R+ j,~ ~

n=O

where we have only written out the &ee part of the string
bit Hamiltonian explicitly. The interacting terms are to
be worked out using (4.33) or its generalization.

The Hamiltonian (4.34) defines the dynamics we pro-
pose for string bits, once we have specified the structure
of Z.+. For finite N it describes a perfectly well-defined
nonrelativistic many-body system. When studied in the
limit N ~ oo, it will, by construction, describe weakly
interacting long polymers and the infinitely long ones will
have exactly the properties of type II-B &ee superstrings.
Interactions among strings will also be included in (4.34)
with strength of order 1/N, for the string-string scat-
tering amplitude. Unfortunately, the string interactions
arising from the terms displayed in (4.33) do not seem
to provide the richness of spinor structure required in
the light-cene three-superstring vertex given by Green,
Schwarz, and Brink [18]. The basic structure of the cor-
rect three-string vertex term in the supercharge is an
"overlap" integral of the product of the three string wave
functions with an insertion of a complicated seventh or-
der polynomial of the world-sheet spinors at the joining
point. Inspection of the 1/N, terms arising from non-
nearest neighbor contractions in the action on a polymer
state of the terms displayed in (4.33) confirms the basic
overlap structure. But these terms can provide only a
linear factor of world-sheet spinors at the joining point.
Thus it is clear that terms in 'R with a more complicated
spinor structure will be required. This means that the
principles we have so far imposed on our string bit models
are not quite strong enough to force the correct dynam-
ics for interacting superstring theory. In Ref. [18] it was
shown that requiring the Poincare superalgebra was suK-
cient to uniquely determine the three string vertex. Thus,
if we could succeed in devising a string bit model with
the full 82@ supersymmetry at finite N and a large N,

If they are restricted to terms with nonconsecutive creation
operators, e.g. , with the trace structure Tr: Pffft P:, they will
not aR'ect the properties of free strings.

limit that correctly describes &ee superstrings, the cor-
rect stringy interactions would be virtually guaranteed.
So far we have examples which fulfill either of these cri-
teria, but not both. The mod. els given in this paper are
constructed to satisfy the second criterion, but they fall
short of the first. In Ref. [15] we construct a model pos-
sessing the full 82/ supersymmetry, but it is unlikely that
its large N limit describes &ee superstrings. Lacking
a satisfactory model with the full 82/ supersyinmetry,
one should adopt the renormalization group philosophy
and allow atl interactions consistent with SiP symmetry
and search for the interesting cases among all possible
continuum limits, one of which should be the interacting
type II-B superstring theory. The various superstring/bit
models and their supersymmetries are summarized in Ta-
ble I.

V. AMBIGUITIES AND OPEN ISSUES

In this paper we have made a proposal for the extension
of string bit models to superstring, developing most fully
the type II-B case while leaving the complete analysis of
the not II-B cases for future work. However, we have only
made a start on the task of confirming that the proposal
reproduces completely all aspects of superstring theory.
While we can firmly assert that the N ~ oo limit de-
scribes free superstrings adequately, the 1/N, corrections
which determine the interactions among strings have not
yet been well studied. It is transparent &om the string
bit compositeness that these interactions will be string
breaking or joining processes with amplitudes propor-
tional to overlap integrals between initial and final mul-
tistring states. We can anticipate also that, as was the
case for bosonic string, the interactions can only be fully
Poincare invariant in the critical dimension. However
the details, including any modifications required to pro-
duce the correct operator insertions at the joining points,
have yet to be worked out. These operator insertions are
also known to entail contact interactions [19,20] which
should of course also be a consequence of our string bit
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TABLE I. Superstring models and their supersymmetry (SUSY).

Model
Covariant type II

Light-cone type II, D = 10
Light-cone type II, D g 10

Discrete light cone
1st quantized super bits
1st quantized super bits
2nd quantized superbits
2nd quantized superbits

V = Tp

V(x)
V = Tp

V(x)

Superstring/bit models
V(x) SUSY

N =287
N =287
N=282g
N=182g
N=18gg
N=18yg
N=1$gg
N=18gg

Failing (anti) commutators
None
None

[M ', M ']QO
(R, R ) QO

(R,R) +0
(R H. )gb '

(Q, VZ ), (Q, R },(74+, 'R+)
(Q, R. ), (Q, VZ ), (7Z+, 'R+)

model. We fully expect that terms must be added. to the
second-quantized interacting supercharge 'R which do not
contribute in leading order in the 1/N, expansion. Any
monomial such as Tr: PtPPtP:, in which the creation op-
erators are not consecutive is such a term. All of these
issues need to be carefully examined in future work.

Assuming that either our proposed Hamiltonian or a
suitable modification of it, correctly reproduces the inter-
acting superstring theory, there is still the question of
uniqueness. Because stringy physics is only a property
of in6nitely composite string bit polymers, it is natural
to expect, in accord with ideas of universality, that there
are many microscopic string bit models that yield the
same continuum string theory. One aspect of this is our
expectatioxi that a wide class of potentials V will give
identical stringy physics to the case V = To. The de-
gree of Qexibility in the choice of potential still needs to
be pinned down. In particular, our conjecture that the
potential could even be short range needs to be tested
(at the very least numerically). These are all issues that
can be addressed at the erst-quantized noninteracting
(i.e., N m oo) polymer level. But they are also perti-
nent to the fully interacting (finite N, ) string bit theory.
For example, the ambiguities mentioned in the previous
paragraph may to some extent be string bit artifacts that
can be absorbed into the definition of a small number of
macroscopic string parameters and have no further effect
on the string interactions.

Finally we say a few words about compactification, a
subject we have not yet addressed. A string model of the
real world must of course possess precisely four noncom-
pact dimensions, three space plus one time. This means
that the corresponding string bit model should have pre-

cisely two noncompact spatial dimensions. Accordingly,
we must eventually "compactify" six of the eight spatial
dimensions of our superbit models. One possibility is, of
course, to impose by hand that a six-dimensional sub-
space is some compact space, be it a toroid, orbifold, or
Calabi-Yau manifold. But the string bit picture allows a
more dramatic possibility. Polymer formation generically
promotes 6nite internal degrees of &eedom on the bit to
an efFective compact dimension [21]. Indeed the manner
in which the world-sheet spinor fields S, S emerge &om
the 256 component string bit multiplet illustrates this
point very nicely. A pair of world-sheet fermion fields
can always be "bosonized. " The resulting boson world-
sheet field. then enters the string dynamics in just the
way a compacti6ed coordinate would. In particular it
would count as part of the D which is required to be 10
for superstring. In this way the string bit model might
be properly formulated from the beginning as a (2 + 1)-
dimensional super-Galilei invariant theory of string bits,
which carry, in addition to the supermultiplet spin labels,
a 6nite number of internal degrees of freedom to play the
role of the six compactified dimensions. A successful im-
plementation of this possibility would provide an explicit
and concrete realization of 't Hooft's idea [11] that the
world. is a hologram: That it is fundamentally a system
existing in two spatial dimensions, although it gives the
appearance of being three dimensional.
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