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Particle path-integral approach to the study of Dirac spin-- field systems
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A novel approach to the study of fermionic systems in d-dimensional Euclidean spacetime is
presented according to which an original, field-theoretical form of description is converted into a
particle-based language. An important aspect of the advocated procedure is that it employs a
spacetime resolution scale which does not have to serve, at the same time, as an ultraviolet cutoK
for matter Geld Quctuations. At the particle level of description, such Huctuations are independently
regularized by a scale associated with a "proper-time" parameter. A key feature of our representation
for fermionic systems is its purely geometrical content. In particular, Polyakov s spin factor, which
enters the path integral description of spin- —entities, emerges very naturally in the course of passing
from the Geld-theoretical to the particle-based language. The applications considered in this paper
pertain to evaluations of the Dirac determinant. In the presence of a coupling to an external gauge
field, such computations lead to efFective-action terms. Both Maxwell and topological terms are
retrieved in two, three, and four spacetime dimensions.

PACS number(s): 11.10.Ef, 11.10.Kk, 11.15.Tk

I. INTRODUCTION

The quantum-mechanical description of elementary
particles propagating in Minkowski spacetime runs into
an immediate obstacle: A localized "position" operator
X„, which corresponds to the set of spacetime coordi-
nates x~, does not have a well-defined meaning. Field
theory bypasses this problem via second quantization and
yields a particle picture through the Fock space construc-
tion. On the other hand, the Wick rotation which in-
evitably enters field-theoretical calculations renders the
aforementioned impasse irrelevant, since no topological
ambiguities appear in the course of defining a coordi-
nate operator in Euclidean 8pacetime. There is no a pri-
ori reason, then, why the principles and methodologies
of first quantization cannot be pursued within the Eu-
clidean spacetime setting.

It so happens that the quantum propagation of parti-
clelike entities in Euclidean spacetime has been discussed
by Polyakov, who has furnished the relevant path-integral
rules for its description [1,2]. An important aspect of the
whole scheme is that the parameter v, which serves to la-
bel dynamical development along a given path, has pure
mathematical meaning and cannot be identified with
physical time as in the case of the ordinary quantum-
mechanical path integral. Reparametrization transfor-
mations of the form

on the theory and, as such, they should be appropri-
ately accommodated by the integration measure. As for
the phase assigned to each path, it does possess a direct
geometrical meaning and serves to incorporate quanti-
ties such as the length, curvature, etc. , of each particular
path.

A suitable choice of gauge leads to the following expres-
sion for the probability amplitude associated with a kee
pointlike entity that has no additional intrinsic degrees
of freedom (e.g. , spin):

We shall refer to the parameter v(e [0, T]) entering the
above expression as "proper time. "

The geometrical accommodation of spin involves addi-
tional notions the nature of which need not concern us
for the moment. SuKce it to state that, for closed-path
propagation in K", the quantum description of spin-1/2
particles requires the injection into the functional inte-
gral of the so-called spin factor C (C), given by [1]

T
4(C) = 'P exp — dr ur„„[z(r)] [p„,p„]8 0

where the overdot signifies difFerentiation with respect to
'T serve to impose a gauge-type invariance requirement

where C denotes the closed path x(0) = x(T), 7 stands
for path ordering, and

'Electronic address: akaranikatlas. uoa. ariadne t.gr
t Electronic address: cktoridatlas. uoa. ariadne t.gr is the orientation tensor of the local perpendicular plane.

0556-2821/95/52(10)/5883(15)/$06. 00 5883 1995 The American Physical Society



5884 A. I. KARANIKAS AND C. N. KTORIDES 52

What basically serves as a source of inspiration for the
formulation of the above scheme is the statistical study
of models such as the Ising, Heisenberg, etc. , in terms of
geometrical configurations appropriate for each system.
Such configurations facilitate an interpretation according
to which the underlying Euclidean space can be alter-
natively viewed as spacetime. The natural next step is
to look for direct connections between path integrals for
pointlike entities and field theory. In fact, the idea of a
quantum description of the Klein-Gordon and Dirac par-
ticles in terms of paths, labeled by proper time, was put
forth by Feynman [3] in his original paper on the subject.
Since then, the connection between quantum field theory
and particle path-integral representations has been dis-
cussed by several authors (see, e.g. , [4] and references
cited therein).

In addition, the dynamics of relativistic spinning par-
ticles has been described by means of (first-quantized)
superparticle path integrals [5—8], using additional Grass-
mann variables. More recently, it was shown that
such world line (superparticle) approaches can be used
for calculating (multiloop) @CD amplitudes very effec-
tively [9—11).

A quantitative exploitation of pointlike representations
was also conducted by Brandt, Neri, and Zwanziger [12]
in connection with the quantum treatment of magnetic-
charge-carrying particles. The present authors' recent
interest in particle-based representations of field systems
can be found in Refs. [13—16].

In this paper we pursue the connection between quan-
tum field theories and Euclidean path integrals with ex-
clusive reference to spin-1/2 fields. With an eye towards
gaining computational advantages at the nonperturba-
tive level, we adopt the point of view that the initial
casting of the field system should have a built-in resolu-
tion scale. We shall then proceed, in Sec. II, to translate
the quantum version of the field system into path-integral
form via a series of mathematically well-defined steps. In
this way, we shall be able to identify the field-theoretical
origin of the geometrical features which enter the Eu-
clidean path integrals.

A characteristic aspect of our approach is that the
path-integral expressions inherit, explicitly or implicitly,
the spacetime resolution scale kom the field system.
Sending the resolution scale to zero (in the sense that
it is taken to be much smaller than the observational
scale) leads to interesting physical realizations. A rele-
vant analysis will be carried out in Sec. III, with special
emphasis being placed on the spin factor.

The fact that our regularized casting of the field system
takes place within a continuous spacetime bakground, as
opposed to having introduced a lattice set of points, en-
courages the thought that no continuum property has
been lost during the translation into pat¹integral lan-
guage. We verify this property by performing specific
calculations in Secs. IV and V, concerning logarithms of
the Dirac determinant. In this way, we shall (re)produce
both conventional and topological terms entering efFec-
tive actions. Our conclusions are formulated in Sec. VI,
while some technical details are provided in the Ap-
pendix.

II. TRANSCRIPTION OF SPINORIAL FIELD
SYSTEMS INTO A PARTICLE PATH-INTEGRAL

REPRESENTATION

Our immediate goal is to accomplish the translation of
a given quantum field theoretical system, formulated in
Euclidean spacetime, into a particle-based, i.e. , quantum-
mechanical, language. An approach which realizes this
objective at a discrete level of description will be carried
out in the present section.

On the quantum-mechanical side, the relevant rep-
resentation is furnished by a discrete set of coordinate
states (~nn)) which obey the orthonormality and corn-
pletness conditions

) a"~nn)(nn~ = 1.

On the field-theoretical side, the discrete formulation
is encoded in the action functional. Thus, for a free Dirac
field, one writes

S = —) n"g(nn) (p„O„+m ) g(n-n) .

The precise definition of the differential operator 0
specifies the discretization scheme one whishes to adopt.
Irrespectively of any particular choice, the functional in-
tegral, which furnishes the quantum content of the the-
ory, utilizes the well-defined Berezin integration mea-
sure [17] d@(nn) and d@(no.) over the Grassmannian
variables @(nn) and g(na). For example, one obtains
for the partition function

Z = d nn d nn exp —S

= det(p„8~+m~) .

The calculation of the determinant, or, better, of
Tr In(p„B„+m ) in some convenient representation,
must now take into account the precise definition of 0
Given the well-known doubling problem in lattice the-
ories, various successful strategies have been developed
which make use of concepts such as that of a hopping
parameter [18],staggered fermions [19],the SLAC deriva-
tive [20], etc. Invariably, the above determinant refers to
a sparse matrix.

Our purpose, on the other hand, is not to define the
field-theoretical system on the lattice per se but to trans-
late it into a particle-based language. Not only that, but
we also want to eventually arrive at path-integral expres-
sions which can be "read" as describing the propagation
of pointlike entities in continuous Euclidean spacetime.
To this end, we shall employ a scheme within which dis-
cretization emerges as averaging over cells rather than as
a replacement of the continuum by a lattice of points. In
particular, the derivative operator is defined through its
action on the spinor field at the site no. as [16]

(p„B„+m )@(no) = —f d yN&„8„—m)f(lyl)]

x@(no. + y), (6)
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where f (~y[) is a distribution of fast decrease which prac-
tically falls to zero whithin the discretization range o;.
Moreover, f (~y~) has the property f(~y~); b(y), which
is satisfied, e.g. , by the Gaussian distribution.

According to (6), the derivative of the spinor field as-
signed to site nn is given by an appropriately weighted
average of regular derivatives within a volume of the or-
der o." surrounding the site. More generally, we might
view our discrete action S as resulting, by virtue of
averaging within cells of volume o.", from the nonlocal
Dirac action

S = d"x d"y x p„B„—m y x+ y

mediately points to its quantum-mechanical content. In
coordinate representation, we write

Of more immediate interest is the representation of 0„
in the basis offered by the discrete set of coordinates with
orthonormality and completeness relations given by (3).
We shall make direct use of this representation in connec-
tion with the computation of Tr[ln(p„8 + m )]. As a
first step in this direction, let us use Schwinger s proper-
time representation [21] to write

l Z c~o T z (q„s +~ )T'
Observe that the nonlocality in the above expression

is totally under control as the standard Dirac theory is
recovered in the limit o. —+ G.

Our field-theoretical characterization of the derivative
operator B„according to the nonlocal version (7) im-

where c makes its appearance as an a priori independent
length scale. Evaluating the trace in the representation
offered by the complete and orthonormal set of discrete
coordinate states (~nn)) we obtain, by standard meth-
ods)

( N
dT -T—lnZ, =tr e lim ) n"

Nmoo (10)

We have picked up, it will be noticed, yet one more length scale, namely, e = T/N. In (10), tr stands for the trace
over Dirac indices.

The emerging picture is the following: Each given closed path in &",of total length T, involved in the evaluation of
the trace, has been divided into N intervals. Upon each division we have inserted a complete set of discrete coordinate
states. Accordingly, the index i labels independent discretizations of K". We are now faced with the task of specifying
the matrix element (n' n 8 n'n). We determine

where f(p ci ) denotes the Fourier transform of f(~y~). Given that f(p n ) falls off to zero within the first Brillouin
zone, we conclude that

(12)

The independent discretization of each copy of LR", per division of the (closed) path, means that the distance
n' —n' takes on continuous values. We visualize the lattice of points as being able to "slide" continuously in Sil";

i.e., the lattice arrangement can shift &om K" slice to LR" slice during the motion along the path. Returning to the
free energy, we find, after some straightforward manipulations,

.L. .

where we have introduced
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A convenient choice for I" ( n' —n' ), consistent with
the requirements that have been already spelled out, is

(15)

The above distribution will play a key role throughout
our analysis. It furnishes a relative weight which relates
the lattice structures at i and i —1, given the fact that
they can "slide" with respect to each other. Its signifi-
cance for our scheme is directly attributed to the presence
of "proper time" as an additional parameter.

In principle, any other established lattice scheme could
serve the purpose, provided an appropriate dependence
on "proper time" is devised. For example, in the Wil-
son case [18],one might conceive of employing statistical
averages over hopping parameters K;. Our present dis-
crete casting of the fermionic system seems to have a
natural, built-in capacity to average over repositionings

of the lattice structure as one moves in the "proper-time"
direction. Another issue which calls for special attention
concerns the various length scales entering (10). Accord-
ing to our construction, o. accounts for localization in
spacetime. We may associate it with "particle size. " The
scale e sets the pace by which successive spacetime slices
enter the splitting of a given (closed) path. They both
correspond to spacetime resolution scales and one is well
advised to send them to zero (in the local limit) at unit
ratio, i.e. , o(, e ~ 0 with (n/e) = 1. Turning our atten-
tion to c, we observe that it sets a lower bound on the
length of the closed trajectories entering the calculation
of the trace. Obviously, c )) e, so that it should be the
last scale to be sent to zero. As it turns out, c will assume
the role of an ultraviolet cuto6' for matter field Huctua-
tions, once the spacetime resolution scale has been safely
set equal to zero.

Our next task is to move towards continuous expres-
sions. On one hand, o. ~ 0 entails the transitions

nn M x, ) o."
i=1 n,

d"z;, no, n~
~( p ~)

On the other hand, e ~ 0 generates path-related quantities:

dx; m [dz(~)],
~q [p,TI

) (x* ' —x')
i=1

d~ z„(~) .

Effecting the above "changes" in the expression for ln Z, we write, after taking into consideration (15),

dT —Tm T2, 1 . 1—ln Z.~o ——tr e JV [dz(7)] e ' P exp — dr p~z„(7) exp
c T ~(p) ~(~) p 26

diaz(~)' (16)

where A is a residual factor which comes from the definition of F ( n' —n' ); it is equal to (2') ~ ~2m ~d. The
above expression should be simply viewed as a continuous version of (13) and not as the result of taking the limits
o. , e ~ 0 (at unit ratio). In fact, the resolution scale e enters (16) explicitly and this matter will occupy our attention
in the next section. From here on, however, we shall skip explicit reference to the e ~ 0 and/or c ~ 0 limits.

We close the present section by extending our analysis to the case where an external Abelian gauge field coupling
is also included in the Geld-theoretical model. Our discrete action reads

8 = —n" ) g(nn) (p„D„+m ) @(nn) .
n, p,

The covariant derivate operator D„ is defined. by its action on the spinor field at site no. as

(yD„+ m ) @(na) = —f d y (q„B„—m) f(~y~) U (I „~)g(nn+ y),

where

U (I +„) = exp ig A„(z)dz„—
L

(19)

On the other hand, no visible advantage is ofFered by our discretization procedure with respect to pure field-theoretical
analyses, where the lattice structure remains static.
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and L +& denotes the (arbitrary) path from z to z + y in K . Going through the same steps as before, we write

-1 Z =T " .-(":+-)T' (2O)

We shall refer to the above quantity as the (Euclidean) effective action. The calculation of the trace will be
conducted, as before, in the representation offered by the complete set of discrete coordinate states. The key relation
1S

1(n' o (1 —ep„D ) n'n) ——U(L;i i; ) 1 ——p), (n' —n' )„+(In' —n'
I)

Standard manipulations lead to the following discrete expression for the effective action (containing all the length
scales):

)- .l
)

1 ——(n' —n* ') q-
p, P

N
1

N

„F( n—' —n'
) exp ig ) n(n—' —n' )„A~(n'n) (22)

Finally, the continuous expression corresponding to (16) reads

—ln Z~ —— tr
1 T

[dz(v-)] e ) ''P exp
(0)= (T) 0

dr p„i„(r)

1
X exp

2c
dv x(v)' exp (~g a-~(~)a~)z(~))I

III. EXTRACTION OF THE SPIN FACTOR

The path-integral expressions (16) and (23) arrived at in the previous section still retain the spacetime resolution
scale e. Our intention, on the other hand, was to attain a form for these expressions pertaining to the resolution being
much smaller than the observation scale, i.e. , being consistent with sending e to zero. One possible way of eliminating
e, which bypasses direct con&ontation of the trace over Dirac matrices, is to make use of the identities

1 T T
A exp —— dpi(w) = [dp(v)]exp i d7 p„(r)i„(r) exp —— d7 p(w)

2E 0 0 2 0
(24)

1P exp — drp~i„(7') exp i dr p~(r)i„(r) = Pexp'
0 0 0

b" b'p„(r)

T
x exp i d7. p„(7.)i„(7.)

0
(25)

~ T
2P exp

T
d7 pp exp —— d7. p(~) = Pexp —i 'd7 p p

Sp~(r) 2 p ( p

v

x exp —— d7p e
2 p

(26)

Upon inserting the above identities into, say, (23) and integrating by parts, we can safely set e to zero. We then
obtain

dT -T- f T
ln Zg ———tr e ™ [dz(w)] [dp(r)] exp i dw z p

c T z(0)=z(T) p

( & ) f
x Pexp i

—i d7p. p exp ig d7i A
i

)
(27)
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An alternative derivation of the above result, within the framework of the present approach, has been furnished in
Ref. [16]. A Greeii function version of (27) has been obtained by Migdal [22] through a formal procedure applied on
the local Dirac operator.

A difFerent way to deal with the explicit dependence on e in (16) and (23) is via the direct confrontation of the
Dirac trace. To this end, we introduce a set of anticommuting variables @~(r), p = 1, . . . , d, defined on a closed path
parametrized by r E [0,T], imposing antiperiodic boundary conditions. Upon taking into account that the correlator

(g&(r)Q„(r')) with respect to the action —f dr/~@„ is simply —b~„sgn(r —r'), we determine

[dg] exp — dr vj „Q„Pexp — dr Q„x„
AP o ) (' o )

1 b 1= P exp — dri~(r) exp — dri dr2(IJ, (ri) sgn(ri —r2) (&(ri)
e 0 b p r 2 p 0 /=0

1 1= 1+ — dri dr2 x»(ri) x»(72) b'»» + —
4 dri dr4 xp, (ri) x@4(r4)

p T1 p T3

x (b„,„,b„,„,—b„,„,b„,„,+ b„,„,b„,„,) + (28)

where the path integral on the left-hand side (LHS) is normalized to unity for x = 0. For the case of even dimensions,
we deduce, from the above expression,

(1
trP exp d7p x =tr1 [dg] exp — dr g&g& 'P exp — dr g&i&

)
(29)

We shall now carry out an independent evaluation
of the RHS of (29) via the following procedure: For a
given closed curve C we introduce the orthonormal basis
(e, n;), i = 1, . . . , d —1, where e is a unit tangential vec-
tor [with e„(r) = x„(r)] and n; are mutually orthogonal
unit vectors spanning the (hyper)plane perpendicular to
the curve. Expanding g within this basis according to

g = 2 (/pe —P;n, ), (30)

e (r ) = B;(r)n, (r),

n'(r) = C &(r)n&(r) —B (r)e(r)'
(31)

By a suitable choice of coordinates, namely, g . e =
g~x~ = const. , the integral on the rhs of (29) will involve
only the perpendicular modes. We thereby obtain

f (1
[dv/7] exp — dr g~@„Pexp

AP (4 o '")
T

= e* '
[dP;] exp de (P;P; + C;, 4,4, )AP 0

dr g„x„

d=e ~'det~b, , —+C,, ~dr )
(32)

The quantity 4(C) = det ~ (b;~ & + C;~), subject to
antiperiodic boundary conditions in the interval [0, T],

the integration over the Grassmannian modes (Pp, P;) can
be carried out explicitly. Now, motion along the curve
generates the rates

furnishes the so-called spin factor which earmarks the
propagation of spin-1/2 modes along the closed path C.
It was first introduced by Polyakov [1,2] in connection
with the ab initio path-integral description of pointlike
excitations. A detailed study of C'(C) was given subse-
quently by Korchemsky [23]. A work in which it is shown
how the spin factor follows from the action for a spinning
particle is Ref. [24]. The extension to higher spins was
treated in [25]. In our case, the spin factor emerged natu-
rally during the procedure of translating an original cast-
ing of spin-1/2 systems as field theories, with a built-in
resolution scale, into (particle) path-integral form.

Let us formulate our final conclusion, which strictly
holds in even dimensions, as follows:

1tr'P exp — dr x . p = exp (T/e) trC'(C) . (33)

For an odd number of dimensions, its validity is con-
tingent upon the insertion of (29) into the path integral.

The Gaussian factor exp —
2 J dr x(r) entering (16)

and (23) facilitates the elimination of terms with an odd
number of p matrices and the even-dimensional situa-
tion is thereby reproduced. In principle, then, the con-
tribution to the path integral &om the spin factor in the
odd-dimensional case entails the complete tracing of each
closed path.

The preceding analysis has led to the following path-
integral representation of the full efFective action in the
presence of an external set of gauge fields:
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—T~ T 2~—inZ~ = e Ae ~ ' [dz(w)]exp —— diaz exp i ig drz A trC(C) .
c x(0)=x(T) ) &

' )

0++ioo
lim [dz(w)] exp —— dv z (w) —1

~(0)=~(T) 2 0 0+ —ioo
T

x exp — d~ n(~) i (r)
0

T
[dn(r)] exp d~ n(~) [dz(~)]

0

To make final contact with Polyakov's Euclidean path-integral formula [cf. (1)],we simply need to take into account
that

d2~ bi ~ —1 (35)

In what follows we shall systematically work with (34)
and pursue the limit e ~ 0 on physical, rather than for-
mal, grounds.

IV. EXTRACTION OF DIRAC DETERMINANT
TERMS IN EVEN DIMENSIONS

) tr4(C) = trl ) (—1)" = —tr1 = 1 .

(C) m=0
(36)

In four dimensions, we expect a similar arrangement to
produce a complete result, as long as one is dealing with

The fact that (33) holds as an identity for an even
number of dimensions implies that the spin-factor con-
tribution can be surmised on the basis of global loop
characteristics; it does not require the step-by-step trac-
ing of the closed contour C. Identifying global extrinsic
properties of closed curves in two dimensions is a sim-
ple task, as self-intersection becomes the only relevant
property. Multiple traversals (equivalently, reentries) of
simple loops without change of sense (see Fig. 1) define
classes characterized by the integer v (= No. loop rep-
etitions). The spin factor tabulates the motion of the
perpendicular "plane" (the normal vector in this case)
and provides a contribution of the form (—1) +i.

In this section we shall restrict ourselves to situations
where classes associated with multiple repetitions of sim-
ple curves furnish complete results. Configurations such
as figure-8-shaped crossings (see Fig. 2) in two dimen-
sions lead to interesting topological analyses which will
be discussed subsequently. In particular, we shall put the
spin factor to work by letting it lead us to the free Dirac
determinant and to quadratic, with respect to an Abelian
gauge potential, eBective-action terms for d = 2, 4.

As already mentioned, self-intersection is the only ex-
trinsic feature of closed curves in two dimensions. For
multiple traversals of a simple loop C, the spin-factor
contribution for d = 2 becomes

Abelian gauge potentials (or, of course, the free theory).
We shall not attempt to go beyond the Abelian (QED)
case in this paper. Repetition of simple closed curves
will, therefore, generate the contribution

) tr4(C) = trl ) (—1)"= —trl = 2 .
(C} sr=0

(37)

zp v =el 7

T

z„(~) = x„(0)+ dte„(t) .

(38)

To eKect the utility of this change of variables, we in-
sert into (34), modulo the Wilson factor, the identity
(using for the sake of simplicity a vector notation)

[dec(t)]b'(e —x) = 1 . (39)

Once due consideration is payed to normalization fac-
tors, and after the periodicity codition x(0) = x(T) is
taken into account, we arrive at the following result for
the "&ee eBective action":

Let us start with the calculation of the free Dirac de-
terminant. As it turns out, this task is instructive not
only because it will identify the impact of the spin-factor
contribution on the final result, but also because it will
lead us to appreciate the role played by the distribu-

tion exp —(1/2e) j~ dwx(w), which regulates the flow

along "proper time. " It should be remembered that this
factor is a direct consequence of the original regularized
casting of the Dirac field system. Our first order of busi-
ness is to harmonize the velocity-dependent factors en-
tering the integrand in (34) with the integration measure
[dz(w)]. Assuming that we are dealing with, almost ev-
erywhere, di8'erentiable curves, we introduce the follow-
ing change of variables:

g ~/

ey(t'}

FIG. 1. Self-intersecting curve embedded in LR with e~(t)
parallel to e~(t') for t g t'

FIG. 2. Figure-8, self-intersecting curve embedded in LR

as a realization of Eq. (65) in the text.
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1 T
d~e„(~) —— dr e'(v ) tr@(C),

2c 0

Ze, c gd T/2e —Td ln(2~)/2en ree Xp T e e
0

ddA
x [de(~)] exp —2'. A„

27r ~
0

(40)

where we have set x(0) = xo. Notice that the periodicity condition is hidden in the factor

I l" l~ exp —i%~ j dwe„(r), which furnishes the h function h f dec~(r)
We now make the transformation e„(w) ~ e~(w) —ieA~, whereupon we get

1
e ' " ) [de(w)] exp —— dv e (w) tr 4 (C) .

2E 0

Now the calculation goes through with relative ease. The functional integration can be performed 6rst to give

f
T

]de(x)] exp( ——/ dx e (e) = iim (2x) i = li me x(p]dTl («2)x] / )2e

i=1
(42)

Substituting this in (41), we obtain after reenstating the mass term

Zi de dT —T(m —-')/2
free

d Ad

(2m.)" (43)

where the prime serves to remind us that we are, temporarily, ignoring the presence of the spin factor.
We now make the redefinition T + (eT)/2 by which the new parameter T acquires units of (mass) . We rename

the new cutoff for the T integral as A = ce/2; this will serve as an overall momentum cutoff in the limit of zero
resolution scale e —+ 0. Then (43) becomes

—lnZq„, —— gd —T(m —m)/e

A —~
(44)

where m = 1/e.
We immediately surmise that the limit ~ ~ 0 entails

an adjustment of the "mass" parameter m according to
which

1
77K 6 ~ fA= —.

6—+0
(45)

The quantity

2 —1
M = —(m —m) (46)

defines, in the limit where the resolution scale goes to
zero, a physical mass (squared) parameter for the spin-
1/2 particle.

For the &ee Dirac particle, where no topological com-
plications arise during its propagation, the spin-factor
contribution reduces to (36). Consequently, (44) becomes

We recognize in the above result the (logarithm of) the
Dirac determinant in second-order formalism (and even
dimensions). Note, moreover, that the crucial factor of
1/2 has been supplied by the spin factor.

In conclusion, not only did our regularization proce-
dure at the field-theory level retain all continuum prop-
erties of the free Dirac system, but the limit e ~ 0 has
given rise to quantities ascribing to spin and physical
mass of a free particle. This is very satisfying, indeed. ,
given that the recovery of continuous spacetime struc-
ture, as e —+ 0, goes hand in hand with the two quantities
which correspond to eigenvalues of the Casimir operators
of the (continuous) spacetime symmetry group.

We next turn our attention to quadratic, in the exter-
nal gauge field, effective-action terms. To this end, let
us replace A„(z), which enters (10) via the Wilson loop
factor, by its Fourier expansion

—l Z = —t1 dd TM'+~

= —Trln( —(9 +M )2
(47

where d takes only even values.

(48)

Expanding, in turn, the Wilson loop exponential in
powers of A and isolating the quadratic term, we end up
with the expression
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dT2 dd —i(k+ie') eA (k)A (kI) T/2e T—din(2m)/2e
(2~)d (2~)d " " . T

d"A
x

&
& dw' de w e„w e

T T T' T

x exp —— df e(f) —i d7 A e(w) +i d7 k e(w) +i d7 k e(f) tr4(C) .
2c 0 0 0 0

(49)

As with the &ee-field case, the spin-factor contribution will be based on multiple traversals of simple closed curves.
For /ED, this is a satisfactory working hypothesis. In even dimensions, the aforementioned contribution factorizes
to —2'1.

We now isolate the quantity (after performing the x integration)

d"A
TV„„= — „& d7. ' de w e„v. e

1 T T T' T

x exp —— dre(7. ) —i df A. e(7) +i dw k e(~) —i df k e(f)
2c 0 0 0 0

(50)

which, owing to the periodicity relation f dwe„(7) = 0, has the structure

W„= f(k ) (k b„„—k„k )

For the same reason, the velocity vectors e„(7.) can be represented via a Fourier series in the interval [0,T]:

e~(w) = ) „oexp [(27rinw)/T]T.=
n* n =o.„—n (52)

Once this is done, the calculation of the host of integrals entering I2 proceeds with relative ease. Relegating the
actual task to the Appendix, we here quote the final result:

2 2 d k

2- d/2 —2 ( k M )x dxx(1 —x) x(1 —x)k + M I'
~

2 ——,x(1 —x) +A2 A2 )
Specializing to particular dimensions, we obtain the final results. For d = 2 [tr C'(C) = 1],

2 2 1
S ff [A] = —— A„(k) (k b„„—k„k„)A„(—k) dx

(53)

(54)

For d = 4 [tr 4(C) = 2]

S,ff[A] = — A„(k) (k b„—k„k ) A„(—k) d (1 — )I'
~

0, (1 — ) (55)

For d = 2 and M = 0, one readily recovers the exact and well-known result (in Minkowski version)

S,ff[A] = — A„(k)
~

b„„—"
~
A„(—k) . (56)

For d = 4, (55) reveals the need for wave-function renormalization since a logarithmic divergence is lurking in the
incomplete gamma function. Specifically, we find

S,ff[A] = ln
i i

d xF„„
g2 (A21

48vr2 q
M2 )

(A') 1= —1ni
i

— d xF„„,
qM &4

where o. is the fine structure constant.
Assume, for a moment, that our theory included a Maxwell term in the action. Overall, we would then write

(1 —Zs) 4 f d4xF2„which identifies, to first order in o., the well-known wave-function renormalization constant for
the electromagnetic field in four-dimensional @ED.
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V. TOPOLOGICAL TERMS IN EFFECTIVE ACTIONS

Remaining faithful to our commitment to an Abelian background gauge field, we shall proceed in this section
to study the emergence of topological terms in efFective actions. On general grounds, we expect to encounter an
instanton and a Chem-Simons term in two and three spacetime dimensions, respectively. Let us Brst consider the
(1+1)-dimensional situation. Keeping in (34) only the linear term, we write, after employing the change of variables
introduced in (38) and (48),

f ("~(~)ld2 ~ fk) —ik m T[»—21n(2m) j/26

1 T

x exp —iA„dwe„(~) —— dwe (r) d7e~(v..) exp —ik„dt e„(t) trC (C) .
0 0

(58)

We must be careful not to exchange the x integration with the k integration before ascertaining what is the exact
nature of surface contributions. In fact, since we are interested in topological terms, we must be particularly cautious
as to what happens at the integration limits. We now perform the derivative expansion

dr e„(7)exp —xk„ dt e„(t)
T

d~ e„(7) 1 —ik„ Ch e.(t)

dt
T

dt'e. (t)e, (t') +.. . (59)

The first, i.e. , the zeroth-order term, involves f dwe„(w) and gives a vanishing contribution on account of the 8
function in (58) (which results from the A integration). The second term provides the factor

T T

d7 ch e„(7.)e (t)
0

d~ dt e„(~)e.(t)0(7 —t) . (60)

It is easy to show that only the antisymmetric part of A„contributes to the integral. Indeed,

T
A„+A„„= d~ e„(v)

0
dt e„(t), (61)

which vanishes upon insertion into (58).
Designating the contribution of the second term to I» by I» 2, we write

Ii 2
——— d x

2 k„A„(k) e
2 2vr ~

T/2 —T 1 (2 )/T' d7 dt (e~ (7 )e (t) —e„(w)e~ (t)), (62)

where we have explicitly kept the antisymmetric part of A„„,and we have introduced

lde(~)] ( . ) exp —iA„
T 1 T

d7 e„(w) —— dr e trO(C) .
26 p

(63)

Our calculation will proceed by omitting the spin factor since its contribution factorizes in two dimensions. We first
make the transformation e„(r) -+ e~(w) —ieA~ which considerably simplifies matters, since

T 1—iA„dve„(~) —— . d~ e (v-) ~ — —— C& e~(~) .
p 2E' 0 2 26 0

(64)

On the other hand, the change which is induced on e~„(7)e ~
(t) by the above transformation amounts to linear e terms

which give zero contribution on account of the Gaussian. All in all, we are faced with the calculation of the average

(e~„(&)e„j(h)), with respect to the Gaussian exp 2 jz dt e (t) . It is straightforward to see that the only nonzero

contribution to this average comes from self-intersecting junctions in the sense of figure-8 paths (see Fig. 2), desci jbed
by the relation

e~(w) = e„e (t) sin p + e„(t) cos p, (65)
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with a subsequent averaging over the angle p. For future purposes, we remark that the Ggure-8 path configuration
that has been just singled out furnishes a zero overall rotation of the normal (or tangent) vector when traversed
completely and uniformly.

We proceed to compute the "expectation value" (e~„(~)e ~(t)) ignoring the presence of the factor tr@(C). All the
contribution comes &om the vicinity of the point of self-intersection p, defined by the spacetime resolution scale e.
By (65), we determine that

(e~„(w)e„~(t)) = e„„(e (~)) = e„„exp [Tin(2vr)/e] (66)

where the prime signifies absence of the spin-factor contribution. Consequently, (62) becomes

d k
Ii2 =g6 d X e „k„A (k)e '"* dTe (67)

where we have included the contribution from integrations over parameter integrals

d7- dt = 2Te. (68)

Inserting a mass term and making the redefinition T i Tc/2, we arrive at the result

I,' = -—I'~ D,
~

d x ~„k„A„(k)e
27r ( ' A') 27r ' (69)

where M is the physical mass [cf. (46)] and 1/A is the
new cutofF for the T integral. The above expression can
be recast into the more suggestive form

0
I1.2 d X 6p'~ OgA2' (7D)

which has the familiar structure of an Abelian instanton
0 term in 1 + 1 dimensions.

The fact that up to this point the spin factor has been
left out of the calculation assures us that the derived
result applies, certainly, to theories with scalar matter
fields. The Abelian Higgs model, in particular, serves as
a good playground for studying instanton efFects. In this
connection, recall that 8 parametrizes the vacua of dis-
tinct Fock-space structures which cannot communicate
with each other through gauge-invariant operators. Only
statistical mixing of these sectors makes sense.

Restoring our attention to fermions, we now consider
the spin-factor contribution. As already mentioned, the
perpendicular vector to the curve at each point undergoes
zero total rotation as the figure-8 closed path is com-
pletely traversed, whether one or more times. Moreover,
no additional contributions to (e~„(w)e„j(t)) come from
multiple crossing of the self-intersection point p as they
cancel in pairs, save for the 6nal unsaturated crossing,
as a result of opposite orientations of the two tangent
vectors. All in all, the spin factor contribution &om this
set of closed diagrams is tr1 = 2; i.e., (7D) should be
multiplied by a factor of 2.

Combinations of orientation-preserving and

orientation-changing crossings lead to new situations.
Suppose that the figure-8 configuration is multiply tra-
versed, but in such a way that the number of repetitions,
n+, of the right branch difFers Rom the corresponding
number n for the left branch. Notice that n+ and n
refer to rotations with opposite helicities. The spin factor
for a given type of traversal is of the form tr( —1) +

This implies that the complete contribution to Iq 2 for
a fermionic theory is multiplied by the vanishing factor
tr P (—1)". In conclusion, if all configurations are
included, we obtain a manifestly gauge-invaniant result
according to which the 0 term is rigorously zero.

One 6nal remark should be made regarding higher-
order terms in the derivative expansion contributing to
Iq. One easily verifies that these terms vanish in the limit
e m 0, so that there is no need to be considered.

We now turn our attention to three spacetime dimen-
sions in an attempt to unearth the Chem-Simons term.
Closed paths in & cannot be tabulated on the basis of
a global geometric embedding feature. The phase-space
path integral presents a convenient alternative. Indeed,
nothing is missed as long as the various integrations en-
tering (27) are carried through, irrespective of whether
one works in even or odd dimensions.

Turning to (27), we consider its expansion in powers
of the gauge potential. We shall go a certain distance
keeping the spacetime dimensions unspecified before we
specialize to d = 3. Upon making the variable changes
(38), (48), the quadratic term of the effective action ac-
cording to (27) is
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Fp ——g tr

dwp. p(w)

d"k - - dT d"A

(2vr)" ",T o 2vr ~„A~(k)A (—k) d7 d7' [de(w)][dp(w)]e&(w)e„(w')

T T T' T
x exp i dw p(w) . e(w) —i dw A e(w) +i dw k e(w) 'P exp i—

0 0 T 0

Consider now the quantity

W„[p] = [de(w)] exp i dw p(w) . e(w) —i
IT

dw A e(w) +i dw k . e(w) e„(w)e (w )
0

b b
, ~[p],

6p„(w) 6p (w')
(72)

where we have defined

A[p] = [de(w)]exp i dw p(w) e(w) —i
T T'

dwA e(w) +i dw k. e(w)
T

(O,T]

(27r) 6 [p(w) —A] (2~)" b [p(w) —A + k] (27r)" 6 [p(w) —A] (73)

The comprehensive notation in the last line, though formal in appearance, is self-apparent. More generally, the
foregoing formulas, as well as the ones that follow, are well defined as long as the resolution scale is not set equal to
zero.

The latter equation along with (71) leads to

F~ —— —g tr
d

„A„(k)A (—k)
dT

d7 d7
0

T
x dp 7. P exp —i

b
dw p p(w)

(O, T]

(2~)'6 [p(w) + A]

(2~) b [p(w) ~ A —k] (27r)" b [p(w) + A] . (74)

The functional integration can be easily performed to give

dk - - dTI"g ——g „A„(k)A~ (—k) dw d7. '
d"A —2TQ —2(T—T )(g—Q —2(T—T )g1' e 'y~ e p e (75)

Upon making the variable redefinitions w = Tzq and 7 = Tzq, as well as inserting a mass term, we find

Fz ——g „A„(k)A„(—k) dTT
27r " dzi

1
T(zz —zi ) [i(g g+—m j ——T[1—(zz —zz)] (ig+m) (76)

Note that m has the meaning of a physical mass because the resolution scale has been set equal to zero.
A suitable redefinition of T by which it acquires units of (mass) z along with integration over one of the z parameters

leads to

g
2

E2 =
2

d"k d"A
„A„(k)A (—k) dTT dz

27l +—2 0 2~ "
x t (p [

—'( P—g) + ] p„( i P + m) ) ™[("")'+-'—1- ('-*)("+-') . (77)

We recognize in the above expression the one-loop contribution to the eQ'ective action in the Feynman-diagram
sense. Accordingly, once we set d = 3, the calculation will be reduced to the one performed by Deser, Jackiw, and
Templeton [26] where the Chem-Simons term was first identified. Indeed, one routinely determines

try~ —i — + m p —i + m = —2 A —k „A„+ A —k A„—A —k - Ab» —m tnI„+ 2mkp6pp 78

by which E~ naturally splits into two parts: E~ ——E& + E&
Straightforward manipulations give
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2g+(~)
(4~)s/' (2~)s (k)A ( I ) dTT /— d ~(1 )

T[x—(1—x)k +yyt ) (k2g k k )

and

mg2 d3k
dTT i/2 —-r[~(i—~)k'+~']

(4 )s/' (2')s

Each T intet ration yields the factor w(i —w)h

-trna

i'(r, w(l —w)s, d. —,), so that in the iimit rt m ~, we

obtain

and

d3k 1

A„(k)A (—k)(k b„„—k„k„) dx
4~ 2~ p [&(1 &)k2 + m2]l/2

mg2 d'k 1
A„(k)A (—k) kp ep„dx

8vr 2' " "
() [~(1 ~)k2 + m2]i/

(82)

We remark that (81) would result had we applied the methodology of the preceding section (multiple traversals
of simple loops). The Chem-Simons term, on the other hand, would have been completely missed. In a derivative
expansion the leading terms furnish the result

m 2 d3k 2 d3k
, A&(k)A (—k)k&e~ &—,A, (k)A. (—k)(k'&„. —k„k.)+&

~ 2 ~

. (83)

We recognize in the first term the Chem-Simons ac-
tion originally discovered by Redlich [27] via a difFerent
method.

VI. CONCLUSIONS

In this paper we have developed an approach to
spin-1/2 systems in Euclidean spacetime which reformu-
lates their original Geld-theoretical representation into a
particle-based one. In this way the propagation of Geld
quanta attains a geometric mode of description in terms
of intrinsic and extrinsic properties of paths, identical to
that postulated by Polyakov [1,2] for particlelike excita-
tions.

An important aspect of our methodology is that we em-
ployed a two-step procedure before arriving at the final
path-integral casting of the systems under study. First,
the Geld-theoretical action was so defined as to embody
ab initio a spacetime resolution scale. Second, a "proper-
time" parameter was carefully employed in our scheme,
which brings with it an independent cutoff scale. The
latter acquires the meaning of an ultraviolet cutoff in

I

the same sense as it enters calculations in Geld theory in
the limit of a vanishing resolution scale. Such a decou-
pling of the roles between resolution scale and ultraviolet
cutofF (which controls high-&equency fluctuations) ofFers
a novel perspective on manipulations involving spin-1/2
quanta. We hope that our assortment of derivations of
effective-action terms, which includes topological ones,
provides sufBcient evidence for the applicability of our
approach to field theory. In the following paper [28]
we extend the computational capabilities of our scheme
to quantities which are directly associated with physical
processes, e.g. , Green functions and form factors.
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APPENDIX

Our present concern is to deal with the quantity

d"k
I2 = —g A„(k)A (—k) e ( ~ ) dr dr'G„„(k; r, r'),

2 (2 )~ " , T (A1)

where
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d"A 1
G»(k &, & ) = e "'" " „[de(v)]e„(r)e„(v')exp —— d7 e(f )

2m " 26 0

T T T'
—i drA„e„(7.) —i df k„e„(w) + i dvk„e„(j)

0 0 0
(A2)

Inserting e~(v) through its Fourier expansion, given by (52), we obtain

d"A
d"n(n) ) n„(l)n (l') exp

~

2vri —l + 2mi —l'
~

l2m
n l, l'

«xp —
2, ):~n(~)~' —ivT &„n„(p)+ivy ) n„(n)k„(n;~, ~') (A3)

where

c-=f (
d n(n) exp ——) [n(~)[~

2e

and

The A integration yields

k (net')—= " e''" F — ''" /*)k

2~in
'

i~T A cx(0) — T d/2g( (P)j—f
d"A

(2m.)" (A4)

whereupon

1 1 . (
G» —— „—) exp

~

2+i —l + 27ri —l'
~

)

x e8»8i i —Te k„( l; ~, ~') k„(—l—'; 7, ~') exp — ).Ik(n; ~, 7 ) I

n+0
(A5)

The summations give

(A6)

and

) e' ' ~ k„( l;~, ~')—=0(~ —7') —(~ —~') ——.P
1+0

(A7)

Effecting in succession the changes

T7 ) T7

we 6nally get

2 2 d

1 OO

x dx x(1 —x) dT T "~ exp [—Tx(1 —x) —TM ]
0 A —~

(AS)

where A = ce/2 and M = (m —1/e) /e .
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