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Tachyon field quantization and Hawking radiation
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We quantize the tachyon field in a static two-dimensional dilaton gravity black hole background,
and we calculate the Hawking radiation rate. We find that the thermal radiation Hux, due to the
tachyon field, is larger than the conformal matter one. We also find that massive scalar fields which
do not couple to the dilaton do not give any contribution to the thermal radiation up to terms
quadratic in the scalar curvature.
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I. INTRODUCTION

Witten s identi6cation of a black hole in string the-
ory [1] has created considerable activity in understanding
two-dimensional black hole physics. A two-dimensional
dilaton gravity model coupled to &ee scalar Gelds was
proposed [2] as a toy model for black hole formation and
evaporation. This model enables a semiclassical treat-
ment of Hawking radiation and its back reaction on the
geometry [3].

The above model can be extended to include the
tachyon Geld, which, being a physical string mode that
appears in the effective two-dimensional string theory,
cannot be ignored. Tachyon effects, at the classical level,
on the black hole geometry were studied by many au-
thors, establishing the existence of two-dimensional static
black hole solutions with tachyonic hair [4—6]. Also a
new two-dimensional black hole solution with a time-
dependent tachyon field is discussed in [6].

It would be interesting to see the effect of the tachyon
Geld on the Hawking radiation of a two-dimensional black
hole. Kostelecky and Perry [5], calculating the change of
the metric in the presence of the tachyon 6eld and taking
its value on the horizon, argued that Hawking radiation
increases in the presence of tachyonic charge. Frolov,
Massacand, and Schmid [7] calculated the tachyon quan-
tum fluctuations near the horizon, studying (T (2:)) in
the Hartle-Hawking vacuum, T being the tachyon 6eld.
They found that the quantum fIuctuations become very
small for a large black hole mass. Nevertheless, there is
no definite result in the literature for the Hawking radi-
ation rate coming &om the contribution of the tachyon
field, as there exists for conformal matter.

We believe that a detailed study, according to Chris-
tensen and Fulling [8], of the Hawking radiation rate due

to the tachyon 6eld is interesting for two main reasons.
First of all, the tachyon 6eld is massive, and in general the
effect of a massive scalar 6eld on the Hawking radiation
is not well known. Second, the effective action emerging
&om the tachyon field quantization, and in fact &om the
quantization of almost any Geld, even if we keep terms
which are quadratic in the background fields, is highly
nonlocal, and therefore the development of techniques
which treat these nonlocalities is interesting in its own
right.

In this work we undertake such a study, considering the
one-loop effective action which emerges after the tachyon
6eld quantization, keeping terms which are quadratic in
the background fields. We 6nd that the quantum effects
of the tachyon Geld are more signi6cant than those of
conformal matter. Also in our approximation we 6nd
that the contribution of the tachyon field to Hawking
radiation is due to its coupling to the dilaton 6eld. This
means that for massive scalar 6elds which do not couple
to a dilaton, the terms in the effective action quadratic in
the scalar curvature B do not contribute to the thermal
radiation of the black hole. This is a result which is valid
only in two dimensions.

In Sec. II we set up the problem of calculating
the Hawking radiation rate, following Christensen and
Fulling. Quantizing the tachyon field, we discuss the ef-
fective action keeping terms quadratic in the background
6elds. In Sec. III we calculate the trace of the energy-
momentum tensor &om the effective action. In particular
we treat the nonlocality using a spectral analysis of the
operator in the metric of a static two-dimensional black
hole background. In Sec. IV we calculate the Hawking
radiation rate due to the tachyon 6eld. Finally in Sec. V
we discuss our results.

II. EFFECTIVE ACTION
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The relation between the conformal anomaly and the
Hawking radiation is well known [8]. In particular for
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d8 = —gdt + g dr

where

Mg=1 ——e (2)

the static two-dimensional black hole expressed by the
line element

the fact that in the flat space with linear dilaton, the Geld
T is massless if A = m0. Furthermore classical stability
of the background solution requires that Az ) m~0 [6,9].

Quantizing the tachyon in the background of the two-
dimensional static black hole, and with T,~

——0, the one-
loop efFective action, keeping terms quadratic in the clas-
sical fields R (scalar curvature of the metric) and Q, is
given in Ref. [10]. It consists of a local part

the Hawking radiation rate is given by

cxK = — g'T dr,
&H

where T is the trace of the energy momentum ten-
sor coming &om quantum corrections and the integral
is taken &om the horizon ex' = (1/2A) 1n(M/A) to infin-

ity. The above result is valid, provided that the fluctua-
tions of quantum Gelds in the given background generate
a static trace anomaly.

Thus the basic ingredient for calculating the Hawking
radiation rate is the conformal anomaly. This is given
by the variation of the effective action under conformal
transformations

1 b'I'[y]

~y bo.

where

1 m' 1 m' (I'i, = —— dx~g m ln + —ln ~Q ——R~
87r pz 2 pz ( 6

(8)

and a nonlocal one

I'„, , = — d ~g(QP( ) (O)Q —2QP(') (Cl)R
8m

+R[-',P"'(o) + P"( )]R), (9)

where p is a renormalization parameter and the operators
P(')(Cl) are given by [10]

p( )
1 —~p

'

(s) 1 p —1 1+ ~P 1

4~p 1 —~p 2

2o'
gpv —e gpv

The classical action of the dilaton-tachyon system cou-
pled to gravity in two dimensions is

(4) 1 1 1+ ~p 1 1
6ps~z 1 —~p 3p 9

P"= ~3 ————,~~pin + —+—1 ( 6 1) 1+~p 38 2

48 &»') 1 —v&

(10)

1S = — d xg g(e [R+—4(V'4')2'
—(VT)' —V(T) + 4A']), (6)

where

where V(T) is the tachyon potential. For the tachyon po-
tential we take only the quadratic part V(T) = —mzoTz.

Redefining T = e @T we get canonical kinetic terms of
the Geld T and the action is written

S = d xQ g(e [R+4(—V'O) +4A ]
1

2'
(V'T)' —[(V'C )—' —OO —mo]T') .

The coupling of the tachyon to the dilaton is separated
as

((74) —04 —mo ——Q + m

where

Q = (VC') —04 —A

and

m' = W' —m'.0

This separation is made in this way in order to recover

4m
0

The expressions are given in Euclidean signature.
We note here that in the case Q = m = 0 we get the

well-known result (1/96vr)R(l/Cl)R for conformal matter
which leads to conformal anomaly T = (1/24)R.

The quadratic terms in the one loop effective action are
derived in [10] for any dixnension. Especially in two di-
mensions the diagrammatic derivation of the above non-
local terms is simple. In particular the Qz term comes
&om a Gnite graph. This graph can be evaluated for
example in flat space and then the appropriate covari-
antization yields the result in (10). Furthermore the QR
term comes &om the contribution of the tadpole graph
in the effective action and can be calculated in the same
way as the Q one. The R terms can also be derived
diagrammatically in the light-cone gauge. The diagram-
matic approach can also be used for the derivation of the
higher order one-loop terms. The diagrammatic deriva-
tion of the form of the efFective action is beyond the scope
of this paper so it is not given here. Details for the cal-
culation and covariantization along the above lines can
be found in [11].
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III. THE TRACE
OF THE ENERGY-MOMENTUM TENSOR R(x) = 4A d~C(r)4„(x),

0

The nonlocal character of the terms in (9) does not per-
mit a straightforward variation of the action with respect
to the metric. In order to deal with the nonlocal terms
we use spectral analysis of the operator in the given
background. We work in the "unitary gauge" where the
metric of the black hole has the well-known cigar form

with

C(r) = N(~) )r(1+ ir.) ~2 . (19)

Using the previously described spectral analysis, the non-
local part of the efFective action (9) becomes

ds = tanh (Ay) d0 + dy
4A2

1 1
8' 0 4A2

and the angle coordinate 0 is the compactified Euclidean
time. The eigenvalue equation for the operator is

4A B 4' 1 B ( B@i
2 + tanh Ay

tanh2(gy) B02 tanh(Ay) By ( By )
+r.'4 = O. (12)

+4&'C( )C( )(-'&"( )+&"( )) (2o)

where P~'i (r) are given in (10) with the substitution CI —+
—4A2~2 and

Since the background fields are static quantities we ignore
the 0 dependence and we look for spherically symmetric
solutions satisfying the equation

—1/2 1/2 ~ + 2@ 0
d dC„

dx dx

4'„(x) = N(r) 2' ir, i K, 1; —sinh—2X
(14)

where we have defined g ~2 = tanh(x/2), x = 2Ay, and
r2 = Fc2/4A'.

The solution of the above equation, which is regular on
the horizon (x = 0) and with a plane wave asymptotic
behavior (x ~ oo), is

Cq(r) = dxgg(x)q(x)4„(x) .
0

Note that if m g 0 then the functions P~'& (r) have a finite
limit at K = 0.

According to our previous discussion, we need to calcu-
late the trace of the energy momentum tensor. In order
to derive it &om the efFective action written in the form
(20), we need the variation of C and Cg under conformal
transformations. Equation (17) implies that the varia-
tion of the expansion coeKcients can be derived &om the
variation of the corresponding scalar function, which is
easy to perform, and the variation of the eigenfunctions
of the operator. For this it is more convenient to work
with the rescaled functions

where the normalization constant N(r) is given by U„= g ~ 4„(x) (21)
r(iK) r(1+ i~)

I'(2ir) (15) which satisfy, according to (13), a Schrodinger-like equa-
tion

The eigenfunctions satisfy the orthogonality relations

dxgg(x)C„(x)C„(x) = h(r. —p, )

and the completeness relation in the x direction

where

U„(x) + [r. —V(x)]U„(x) = 0,

1 —2 coshx
V x

4 sinh x

(22)

dr%'„(x)@„(z)= b~'~(x, z) =
o Qg(x)

Any static scalar quantity H (x) can be expanded as

H(x) = drC~(r') @„(x),
0

where

Clr(~) = dxgg(x)H(x)@„(x) .
0

In particular the scalar curvature is given by

(17)

If we perform the conformal transformation (5) with
the conformal factor depending only on x, the eigenfunc-
tions (21) becoine

U„= g'~'4'„(x)

which will satisfy Eq. (22) with

V(x) = V(x) —r. (e ~ l —1) .

Since we are interested at the variation of U's at the point
o = 0, as we can see &om (4), we can solve the equation
(22) perturbatively, getting
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U„(x) = U„(x) — dp " "
U„(x) +O(o ),(U„]2~'o.~U„)

0

Their variation, keeping the first order term in the per-
turbation series, is given by

where using (21) we have

(23) ~~-(*) 2„.~ „"d„~.(g)+.( )

a=0

(U„~2rc o ~U„) = dxg ~ (x)2K o(x)@.„(x)@„(x).
0 = —2~ 4'„(y)G~'l(y, x), (26)

Then the eigenfunctions read

(24)
where G„(y,x) is the Green function satisfying

4.(x) = 4'. (x) — dp, ", , @„(x)+ O(~') .(@ 12
' I@-)

0 K —p
( .+ ')G."(g *) =~"'(~ *) = (27)

(25) Using now the relation (17) we find

hC(v. ) = +2r. Qg(x) @„(x)—2 dpC(p) 4'„(x)4„(x) Qg(x),
K

bo. x K —Pcr=0

(28)

K= -»'v g(*)+-(x) —2 dI CQ(1 )~-(x)+p(*), , V'g(x)bo. x K —pcr=o

(29)

Note that the described procedure can be applied in the general case including the 0 dependence of the eigenfunctions
and considering conformal transformations, where the conformal factor is o(x, 8). Using Eqs. (28) and (29) we can
write down the trace of the energy momentum tensor

4A'
T = — C(r)[P ' (~) —4P (r)]4'„(x)dK8'

OO OO
K

dr C(r) [P~ l (K) —4P~ l (e)] dpC(p) @„(x)@„(x)
0 0 K —p

OO OO K
d~C(K) [16p~'l (K) —4p~ l (~)] dpC(p)4„(x) 4'„(x)

0 0 K —p

C(r)e [16P~ l(r) —4P~ l(r)]4'„(x)dK
0

where P~ l = 2P&4l + P~ l. In the derivation of (30), we
have used the fact that in the static black hole back-
ground, Q = 4B which implies that Cg(r) = A2C(K).
This relation can be used only after the variation, since
the two functions behave difFerently under conformal
transformations as can be seen from Eqs. (28) and (29).

The above expression is quite complicated and espe-
cially the terms involving double momentum integration
cannot be brought to a simpler expression in configura-
tion space for the specific form of the functions P(O) in
Eqs. (10). Nevertheless one can easily check that for lo-
cal operators and for the operator 1/ which appears
in the one-loop efFective action of the conformal matter,
the above expression reproduces the familiar results. In
particular for the operator 1jU the double momentum
integral vanishes for symxnetry reasons, and thus a trace

IV. HAWKING RADIATION RATE

The trace of the energy momentum tensor retains its
form if we go to Minkowski signature, and if we use the
metric of Eq. (2), the only change will be in the argu-
ments of the hypergeometric functions in (14):

iII„(r) = 1V(r)2I"i
~

iv, —iv) 1; 1 ——e (31)

Now using (30) the Hawking radiation rate in (3) be-
comes

anomaly proportional to R arises &om the efFective ac-
tion of conformal matter.
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p4 OO OO

K = —— dr dtC(r)([p~ l(r) —4p~ l(r)]
4 o o

—ic [16P (r) —4P l(ic)]je N(ic)2Ei(ir, ir, —1; 1 —e )
p4 OO OO OO

dr dp dtC(rc)C(p)([P~ l(K) —4P~ l(r)]
4 o o 0

K
+[16p (ic) —4p (K)]) N(rc)N(p)e 2Fi(ir. , ir,—1; 1 —e )2'(ip, i p, , 1—; 1 —e ) . (32)

The expression for K consists of two terms. The first term involves a space integration (t integration) which can be
easily performed giving

f e '2Pi (iic, i ic, 1; 1——e') =
~

I'(1 + inc)
~

0

and a rc integral that can be calculated analytically or numerically for any form of the functions P(r). The second
term is much more complicated reHecting the high nonlocality of the eBective action involving the space integration
and a double integral over the momentum. The interesting thing here is that the integral over the space coordinate
and the p-momentum variable can be evaluated analytically. To see this we consider

f
OO OO 1 OO OO OO 1

dp dte C(p) i'„(t)ill„(t) = dp dte dzg g(z)R(—z) i'~(t)4„(t)i'„(z)
0 0 0 0 K —p

dz dte Q—g(z)R(z)G~ l(z, t)ill„(t),
0 0

(33)

with G„(z,t) the Green function defined in (26). We
can proceed further and write

dz dte e G~ l(z, t)iII„(t) = dze 'E„(z),
0 0 0

(34)

I

term the 6nal expression for the Hawking radiation rate
becomes

A2
K = —— dKC(K)N(r)(r + 1)(P (r)16 0

—4p~'l(K)) ~r (1 ~ i~) ~', (39)

where

E„(z) = e 'C„(t)G„'l(z, t),
0

a field satisfying the equation

(0„+r )I'„(z) = e '4 „(z) .

The above equation can be solved, using Laplace trans-
formations, yielding, for the field I"„(z),

I"„(z)= N(K)(e' —1)2'(1 —ir, 1+iK, 2;1 —e') . (36)

Inserting the form of the field E„(z) in (34) we have

f dz dte e 'G~ l(z, t)i'„(t)
0 0

= N(ic)~1'(I+ inc)~' . (37)

W4

drC(r)N(r)([P '
(ic) —4P (r)]4 o

+ [16P~' ( ) —4P ( )])~1'(1+ )~ (38)

Combining Eq. (38) with the r integration &om the first

So the second term in (32) reduces to a single r integra-
tion:

where

p~'&(~) = 4~'p&'&(~) .

Thus we see that the treatment of the nonlocal action
has led to a simple expression for the Hawking radiation
rate of the static two-dimensional black hole. This turns
out to be independent of the mass of the black hole as
expected in two dimensions and depends on the mass of
the tachyon field and especially on the parameter m2 =
m2/A2. For the particular forms of the functions P(r),
the K, integral cannot be evaluated analytically, but it can
be calculated numerically. In Fig. 1 we give the plot of the
ratio of the Hawking radiation rate due to the tachyon,
over the one due to conformal matter, as a function of
m2.

V. CONCLUSIONS AND DISCUSSION

The numerical calculation of the Hawking radiation
rate shows that the tachyon Geld radiation is enhanced
with respect to the conformal matter one as it is shown
in Fig. 1. This is slightly above A2/48 at the maximum
value of the mass of the tachyon field (m ~ 1) but
becomes signifI. cantly larger at lower tachyon masses. As
the tachyon mass tends to zero the rate tends to inanity
because of the in&ared divergence. This divergence is due
to the presence of the Q field which even in the absence
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FIG. 1. The plot of the ratio of the Hawking radiation rate
due to the tachyon over the one due to conformal matter as
a function of m .

of mass gives deviation &om the conformal coupling. In
particular the term responsible for the divergence is of the
form Q(l/U) ln( —H/m )Q as can be seen from a small
mass expansion of the effective action.

If we were dealing not with a tachyon field but with
a field with ordinary mass term, and the same coupling
with the dilaton, then m2 = (m2o + A2)/A2. In this case
the parameter m can be large independently of A and
we can see that the Hawking radiation rate tends to zero
as the mass becomes large. This is expected since such a
massive field is actually classical.

One interesting feature that comes out &om our cal-
culation is that in the background of the static two-
dimensional black hole, if the effective action is just of
the form RP(U, m2)R with P(, m2) any operator with
regular zero momentum limit, then the rate of the ther-
mal Hawking radiation is zero, except &om the case of
conformal matter, where P = 1/CI, which does not satisfy
the regularity requirement but yields the well-known re-
sult. This feature can be directly tested for local actions,
without involving the analysis adopted in this work, but
as we have shown it can be extended to all nonlocal ac-

tions except the one for the conformal matter. In all
these cases any signal coming out &om the horizon of
the black hole, due to these terms, must be of nonther-
mal type. From this result, which is a peculiarity of the
two-dimensional black hole background, one cannot infer
that in the presence of terms of this type only, the black
hole is quantum mechanically stable, without studying
the back-reaction effects. For the tachyon field the en-
hancement of the thermal radiation is exclusively due to
its coupling with the dilaton.

The one-loop effective action, unlike the case of con-
formal matter, has also higher order terms (cubic, quar-
tic, etc.) in the background fields Q and R. These
terms have an extra (1/0) nonlocality, as is easily seen
&om dimensional arguments, at next order. For example
R(1/Cl)R(l/O)R is expected to give the order of mag-
nitude for the cubic terms. The equation 4 = R has
the solution 4 = x = 2(CH —4), where x is the dimen-
sionless coordinate variable we have used previously and
4 the dilaton field, while 4H is its value on the horizon.
Using this prescription of the nonlocality the quadratic
terms are of the order xe and the cubic terms are of
order x2e . We see that near the horizon (x = 0) the
quadratic terms are more significant than the cubic ones
and the same holds for their contribution to the trace
of the energy momentum tensor. From Eq. (32) we see
that the main contribution to the Hawking radiation rate
comes &om the region near the horizon, due to the form
of the conformal anomaly and the factor g'. Thus we
conjecture that the higher order terms do not alter the
results significantly. Of course this is not a proof and a
more solid answer to this question requires a direct cal-
culation of the contribution of the next order terms. The
method described in this work can be used for such a
calculation.
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