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Some properties of the Kerr solution to lour energy string theory
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The Kerr solution to axidilaton gravity is analyzed in the Debney-Kerr-Schild formalism. It is
shown that the Kerr principal null congruence retains its property to be geodesic and shear-free;
however, the axidilatonic Kerr solution is not algebraically special; it is of type I in the Petrov-Pirani
classification and may not be represented in the Kerr-Schild form. A limiting form of this solution
is considered near the ringlike Kerr singularity. This limiting solution is similar to that for the field
of fundamental heterotic string obtained by Sen.

PACS number(s): 04.70.Bw, 11.25.Mj

I. INTRODUCTION

Much attention has been paid recently to the connec-
tion of black hole physics and string theory. In partic-
ular, many important solutions of Einstein gravity have
found their analogue among the solutions of low energy
string theory, including axion and dilaton corrections.
Such classical solutions to axidilaton gravity can be in-
terpreted as stable extended solitonlike states or funda-
mental strings [1—3]. In this paper we analyze a new ro-
tating and charged solution to axidilaton gravity, which
is an analogue of the Kerr solution. This solution was
obtained by Sen [2] and, in a more general form [includ-
ing the Newman-Unti-Tamborino (NUT) parameter], by
Gal'tsov and Kechkin [4]. The rather complicated char-
acter of the Kerr solution puts obstacles in the way of di-
rectly obtaining this rotating solution &om the Beld equa-
tions; so this solution was obtained by a method for gen-
erating new solutions &om the known ones [5, 2, 4]. How-
ever, by using this method some important characteris-
tics of the new solutions remain unknown. For example,
there was no information concerning the type of the new
Kerr-like solution in the Petrov-Pirani classi6cation. We
partially compensate for this de6ciency.

By using the Kerr coordinates [7] we analyze this solu-
tion near the singular ring and 6nd the limiting form of
the solution to be remarkably similar to the solution con-
structed by Sen [2, 3] for the field around a fundamental
heterotic string.

II. SOME ALGEBRAIC PROPERTIES OF THE
KERR SOLUTION TO AXIDILATON GRAVITY

A =r(r —2M)+a, Z =r +a cos 0,

ur = 2Mrasin 0/(a sin 0 —A)

(2)

(a is the Kerr rotation parameter; M is the mass), one
can write the transformed metric corresponding to the
axidilaton gravity in the same form, where the substitu-
tions

A~ ~ L, E~-+ Z

are to be done, where

Ag = r(r + r ) —2Mr + a,
Zg = r(r+r )+a cos 0,

r =Q /M.

(4)

(7)

Q is the electric charge.
It will be convenient for our analysis to represent the

Kerr solution to axidilaton gravity in the Kerr coordi-
nates [7]. We will do it in two steps by representing the
charged Kerr solution (the Kerr-Newman solution) at the
first step in the Boyer-Lindquist form [8] in terms of pa-
rameters 4 and Z:

rithm for obtaining this solution &om the original Kerr
solution given by Gal'tsov and Kechkin [4]. According to
Ref. [4], starting with the vacuum Kerr solution

0

/'dr 2
2 A sin' 0

A —a2sin 0 )
where

We will restrict ourselves in this paper to the case of an
electric charged Kerr solution (without the NUT param-
eter and magnetic charge). We are going to use the algo-

2 2
ds = ——dt —csin Odp

Z
sin 0-

+ (r + a )dp —adt

d&2 + gdg2 (8)

'Electronic address: grgibrae. msk. su
It was known only that this solution does not belong to

type D in contrast with the Kerr solution of Einstein gravity The coordinate r used here corresponds to ro in the defini-
tion of Ref. [4j.
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The corresponding electromagnetic field is given by the
vector potential

A = 2 ~ Q —(dt —a sin 8dy).
Z

Next we rewrite the Kerr-Newman solution in the Kerr
coordinates by using the relations [8]

2+a sin 0 a
dV = dt — dr, dP = d(p+ dr, —(10)

dilaton factor

2 2 3g4 + 281 2 —2(4—4p)Sg — 8 6 8 8 8 )

where
—2(C' —40 i

Thus we have a new tetrad,
1 —(4' —4'p ) 1 ~ —(4' —4p ) 2e =e e, e =e 6 )

(20)

(21)

and express it again in terms of the parameters 4 and
Z

ds = Z(d8 + sin 8dP ) + 2K(dr —a sin 8d&p)

—(1 —2H) K'. (11)

Here

H = (Z+ a sin 8 —A)/Z (12)

and K is a vector field tangent to the one of two principal
null directions of the Kerr solution:

e = e, e = e (with substitution Hg -+ H), (22)

where the original DKS tetrad is the following: The
tetrad null vectors e and e are complex conjugate,

e = 2 ~ Z (d8+i sin8dg) = (PZ) dY, e = e;
(23)

e and e are real null vectors,

e = K, e = dr+iaP (YdY —YdY)+2 (H —1)e .

(24)

K = dV —asin ed'. (13) Prom (12) we obtain the function Hg..

The electromagnetic field for the electric charged Kerr
solution is given by the vector potential

Hd = 2Mr/Zd.

The functions P, Z, and Y are

(25)

A = 2 i Q(r/Z)K. (14)

A = 2 ~ Qe '(r/Zd)K, (15)

where @p is the asymptotic value of the dilaton field.
The axion field 4' and the dilaton field C are joined in
the complex axidilaton Geld

A = @+ie = As+ ir e '/(r+iacos8),
where

After substituting E~ ~ A, Zg ~ Z, expressions (ll)—
(14) yield, according to the Gal'tsov-Kechkin algorithm,
the transformed Kerr solution to the axidilaton gravity
in the Kerr coordinates. Now the gauge field is given by

P =2 (1+YY), Z = (r+ iacos8)
Y = e'~ tan 8/2.

Now we would like to get some algebraic characteristics
of the new solution in comparison with the correspond-
ing characteristics of the original Kerr solution. In the
Kerr solution the vector e = K is the multiple Debever-
Penrose vector tangent to a geodesic and shear-&ee null
congruence; thus, the Kerr solution is algebraically spe-
cial of type D in the Petrov-Pirani classification. The
condition for e to be a Debever-Penrose null vector is
expressed via the component of Weyl's conformal curva-
ture tensor [7]

Ap ——tI'p + ie (17)
C = 2B4242 ——0.

is an asymptotic value of the axidilaton.
This form allows us to use the Debney-Kerr-Schild

(DKS) formalism [7] to analyze the solution. We rep-
resent the metric of the transformed solution in tetrad
form,

1242 + B3442 —0(4) (28)

The geodesic and shear-h. ee condition for e is

The condition for e to be a double Debever-Penrose vec-
tor (or solution to be algebraically special) is

dsg = 28 8 +26 8 ) I 424 ~422 (29)

and express it via the original DKS tetrad e, a
1, 2, 3, 4, as a deformation of the Kerr solution by the

Checking these conditions for the axidilatonic Kerr solu-
tion we obtain

The extra factor 2 in the de6nition of the electric charge
has been introduced to match the definitions of Refs. [2, 4]
and Ref. [8].

Equivalence of these forms for A& and Z& may also be veri-
6ed by direct calculations by using the relations given in Ap-
pendix A.

The DKS-tetrad suffixes are raised or lowered by perform-
ing the permutation 1, 2, 3, 4 + 2, 1,4, 3.

In Appendix B the expressions for the Ricci rotation coef-
ficients I'& are given via the known values of the coefficients
for the original Kerr solution I'~, some necessary tetrad com-
ponents of the curvature tensor are also given.
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C~» =2R..., =0, (30)

or e is a Debever-Penrose null vector forming the prin-
cipal null congruence,

(ii)

The coordinates r, 0, p cover the Minkowski space twice,
by positive and by negative values of r with a branch line
along the singular ring r = cos 8 = 0; so the coordinate
r will be two valued near the Kerr singular filament.

Near the point of singularity (x, y, z) = (a, 0, 0), in the
orthogonal to the filament two-plane y = 0, we introduce
coordinates with their origin on the filament;

r„,=r„,=0, (3I) u=z, v=x —a, (38)
and the principal null congruence of e is geodesic and
shear &ee,

(iii)

and obtain, ~ from (34), keeping the leading term in 8/a,

r = Z ' = a[2(v + iu)/a]'~,

~~'l = R»42+ R.«2 W o; (32)

therefore, the new axidilatonic Kerr solution is not al-
gebraically special; it is of type I in the Petrov-Pirani
classification.

dr (dv + idu)/[2(v + iu)/a] (40)

The function Y in Cartesian coordinates may be ex-
tracted &om Eq. (5.72) of [7],

III. LIMITING FORM OF THE AXIDILATONIC
KERR SOLUTION NEAR THE SINGULAR RING

Y = (z —ia —r)/(z —iy),

which yields

(41)

x +iy = (r + ia)e'~ sine,
z=rcoso,
t=V —r.

(35)
(36)

(37)

By using these coordinates the Kerr metric may be ex-
pressed in the Kerr Schild form [7-] g~„= rI„+2hK„K„,
where g is the metric of the auxiliary Minkowski space.

The Kerr singular ring is one of the remarkable pecu-
liarities of the Kerr solution. It is a branch line of space
on two sheets, "negative" and "positive, " where the fields
change their signs and directions. There exist the Newton
and Coulomb analogues of the Kerr solution possessing
the Kerr singular ring. The corresponding Coulomb so-
lution was obtained by Appel in 1887 by a method of
complex shift [S].

A pointlike charge q, placed on the complex Z axis
(xo, yp, zp) = (0, 0, ia), gives the real Appel potential

4- = V/r + V/r.

Here r is in fact the Kerr complex radial coordinate
Z = r +iacoso. It may be expressed in the usual
rectangular Cartesian coordinates x, y, z, t as

' = [(*—*.)'+ (y —y.)'+ ( — .)']'"
[ 2+ 2+ (

' )2]1/2 (34)

It is not difIicult to see that the Appel potential P is
singular at the ring z = 0, x +y = a, or by r =
cos0 = 0.

We would like to consider the axidilaton corrections
to the original Kerr field near the singular ring and will
consider the radius of the ring a to be much larger than
the distance b &om the singular line. Thus, the param-
eter 8/a will be used as a small parameter to get an
approximate limiting form of the metric near the Kerr
singularity.

Formulas for the connection of the Cartesian and the
Kerr angular coordinates are

dY (dz —dr)/a. (42)

By using the coordinate transformations (35)—(37) and
relations (39)—(42) one finds the limiting form of the
tetrad (21)—(24) near the singular filament, up to leading
terms in b/a:

e' = —e-~ — 'l2-'~'(dv+ idu),

e = —e ~ ' 2 (dv —idu), (43)

e =2 ~ (dt —dy),

e = 2 ~ (dt+ dy) + Hd2 ~ (dt —dy), (44)

where dy is directed along the singular filament. The
functions Z, Zp, Hp, and e ~ '~ are given by

Z 2a(v +u) ~, (45)

Zg 2a(v + u ) + ar ([2(v + iu)/a] ~

+[2(v —iu)/a]'~2), (46)

Hd, = 2Mr/Eg, (47)

e ~ 'l = Zg/2 = j. +r (Z+ Z)/2.

The limiting form of the metric is

ds = e 2ic' @0 (dv + du2) +. dy

+ (2Mr/Eg) (dy —dt) .

(48)

(4S)

Our approximation will be the most efFective for the case
of a large

~

a ~. The Kerr solution with
~

a ~)) m has at-
tracted special attention because it displays some relation-
ships with the spinning elementary particles [7, 13,10,1lj. For
example, the corresponding parameters of the electron will be
a 10, m 10, in units 5 = c = l. In this case all
the fields concentrate very close to the singular filament.
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The gauge Geld is given by the vector potential

A = 2Q(r/Zg)(dt —dy). (5o)

By introducing an electric charge per unit length of the
Kerr ring q = 2& ~ lQ/(2vra) and a two-dimensional (two-

valued) Green's function Gl l in the (u, v) complex plane
near the Kerr singularity,

Gl l = 27rar/Z vr
2(u+ iv)

a+
2(u —iv)

the dilaton factor may be represented as

(52)

where

N = r /27ra. (53)

2MG"
(dy —dt) .

2~a(1 ~ mG.")2
(54)

This metric is remarkably similar to the form of the met-
ric obtained by Sen for a field around a fundamental het-
erotic string [3, 2].

However, the structure of axidilaton field A and the
form of two-dimensional Green's function G difFer from
those of the Sen solution. These differences are very nat-
ural and they are connected to the two valuedness of
the fields near the Kerr singularity and with the known
twofoldedness of the Kerr space.

This two valuedness was an object of the special con-
sideration in the old problem of the source of the Kerr so-
lution [11].One of the traditional solutions of this prob-
lem is cutting ofF the negative sheet of the Kerr space by
introducing a disklike source spanned by the Kerr sin-
gular ring. The analysis shows [ll] that this disk has

I

Then the rescaled 0-model metric d8,&,
——e ~ '~ds&,

used in string theory, may be written in the form

1
ds.„=(dv ~ du ) + (dy —dt )i+ xa.'"
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APPENDIX A

To match the notations of Refs. [2] and [4] we will
add subscripts 8 for the Sen parameters and g for the
Gal'tsov-Kechkin parameters. Then we have

Q, = Qg = Q, M = M, = Mg = m, cosh 2' (A1)

q = 2~2Q, (A2)

r
m, =M—2' (A3)

r = Q /M = 2m, sinh —' = 2(M, —m, ).
2

(A4)

The following relations are useful when deriving the
transformed solution in the Kerr coordinates:

to be in a rigid relativistic rotation and consists of an
exotic material with superconducting properties. Thus,
the Kerr singular string is placed at the board of the su-
perconducting disk. The superconducting nature of the
heterotic strings was also mentioned before in Refs. [3,
12]. Some earlier presumptions concerning the Kerr sin-
gular ring to be a string may be found in Ref. [13].

Further, it would be interesting to consider electro-
magnetic and axidilatonic excitations of the Kerr string
in the form of traveling waves [14] and the case of mas-
sive dilaton.

There is one more stringlike structure in the Kerr ge-
ometry which is connected to the above representation of
the Kerr source as an object propagating along a com-
plex world line and based on the fact that the complex
world line is really a world sheet [16]. The physical role
of these strings and their interaction are still unclear.

Note added. After this paper was written I was in-
formed that the Petrov-Pirani-type Kerr solution in axi-
dilaton gravity was also determined by Gal'tsov and
Lunin (unpublished).

(Zg + a sin 0) —Ega sin 0 = (Zg + a sin 0) Zg + 2Mra sin 0,

dt —asin ed' = K — dr,
zg

(A5)

where the vector K is given by

K = dV —asin dy (A7)

and points in the principal null direction. In the Kerr coordinates

Sen has constructed this solution by the method for generating new solutions from the fundamental string solution of Ref. [1j.
Similar model for the Kerr solution in Einstein gravity was suggested in Ref. [15j.
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V = dt+dr, (AS)

if the principal null congruence is directed "inside. "
In the expression for vector potential (15) the term ~& ~&dr is omitted since it is full difFerential.

APPENI3IX B

We use a freedom of tetrad transformations [Eqs. (2.21) nf Ref. [7]] to adopt the tetrad (23),(24) to the DKS form
of Sec. 3 of Ref. [7]:

e =e,I1 1

Dropping primes, we calculate the Ricci rotation coefficients to the axidilaton solution expressed via the coefficients
of the original Kerr solution I' g, . For example, we extract r2s, from the relations

-1 —(4 —40) 1e =e e, de =I' e Ae'=e ' (de —d@he ),bc (82)

where de = I'2Ibje A e .
The result is given by

r„,= —e' 'Z(z-') +e' -~ )e-

(@—@o)z(z —
&) (@—c'0) e,

r] 23 —e( ')r&23 + e( ') (1 —e( ')) (r3$2 I 32/)/2 + (H —Hg) (Z —Z)/4

I' = ( ') (1 — ( '))(Z —Z)/2,

1 = e ' (1+e ' )I' /2 —e ' (1 —e( '))I' /2+ (H —H )(e ' + 1)(Z —Z),

rsi3 —— (H —Hg), ,—+e ' [r-313+ (H Hd)Z(Z ')&2]&

(4 —4o)Z(z—

I' = I'343+ (H —Hg), /2, -

1344 = 0,

=-Z" "'(1+ " "')/2-Z" "'(1— " "')/2

r422 r423 r424

Directional derivatives along the tetrad vectors are, =,&
e" and, - =,~ e".

The curvature tensor is defined by the Cartan formula

Xb =ah.~e Ae"=drb+r. Arb
Some tetrad components of the curvature tensor for the axidilatonic Kerr solution are

+4242 +4234 —+4223 —01) (84)

B42g4 = (X —X,4)/2,
where

a„„=&(r„,—2e&'- )C „- ) —2&„-, (85)

= —(1/2) &'- )[Z(1+ & -"))+ Z(1 — &'- ))],
and Z = (r +iacos 0)/P.

(86)
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